Probabilistic In-Network Caching for Information-Centric
Networks -

loannis Psaras, Wei Koong Chai, George Pavlou
Dept. of Electrical & Electronic Engineering, University College London
WCH1E 7JE, Torrington Place, London, UK
{i.psaras, w.chai, g.pavlou}@ucl.ac.uk

ABSTRACT

In-network caching necessitates the transformation of cen-
tralised operations of traditional, overlay caching techniques
to a decentralised and uncoordinated environment. Given
that caching capacity in routers is relatively small in com-
parison to the amount of forwarded content, a key aspect is
balanced distribution of content among the available caches.
In this paper, we are concerned with decentralised, real-time
distribution of content in router caches. Our goal is to reduce
caching redundancy and in turn, make more efficient utili-
sation of available cache resources along a delivery path.

Our in-network caching scheme, called ProbCache, ap-
proximates the caching capability of a path and caches con-
tents probabilistically in order to: i) leave caching space
for other flows sharing (part of) the same path, and i)
fairly multiplex contents of different flows among caches of
a shared path.

We compare our algorithm against universal caching and
against schemes proposed in the past for Web-Caching ar-
chitectures, such as Leave Copy Down (LCD). Our results
show reduction of up to 20% in server hits, and up to 10%
in the number of hops required to hit cached contents, but,
most importantly, reduction of cache-evictions by an order
of magnitude in comparison to universal caching.

Categories and Subject Descriptors

C2.1 [Computer-Communication Networks]: Network
Architecture and Design - Distributed Networks

Keywords

In-Network Caching, Information-Centric Networks

*The research leading to these results was supported by the
EU FP7 COMET project, under Grant Agreement 248784.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICN’12, August 17, 2012, Helsinki, Finland.

Copyright 2012 ACM 978-1-4503-1479-4/12/08 ...$15.00.

55

1. INTRODUCTION

Naming content objects directly, instead of their respec-
tive end-hosts, gives the opportunity to identify content ob-
jects as they travel from source to destination [16, 13, 12].
In turn, given that the network transfers named objects
(instead of unidentifiable data containers, i.e., IP packets),
these objects can be cached in the network and be forwarded
to subsequent users interested in the same content [1, 2].

In-network caching has therefore emerged as a distinct
research field in the context of Information-Centric Net-
works (ICN). In-network caching exhibits fundamental dif-
ferences from overlay web-caching [5], or hierarchical and
co-operative caching approaches [8, 11] and poses new chal-
lenges [20, 19]. For instance, past research considered mainly
caching of whole files (with a few exceptions [23]) as well as
administration of their placement [14] and location [17] by
centralised entities, e.g., DNS and HTTP redirection. Cen-
tralised administration of content placement gives the op-
portunity to control and manage network resources better at
the cost of: i) increased communication overhead to update
the content location database, and ii) reduced flexibility in
terms of available cache locations.

In contrast, Information-Centric Networking enables caching
of addressable content chunks [13, 23] in every cache-equipped
network device [21] and replacement of cached chunks at
line-speed [3]. Although, this operation increases the avail-
ability of cache locations [22] it renders prohibitive the pro-
cess of updating logically-centralised content location databases
with the exact location of cached contents. This decen-
tralised, location-independent operation alters many of the
basic features of past overlay caching techniques, e.g., content-
to-cache allocation [14], while it invalidates the applicability
of some others, e.g., content placement based on fixed over-
lay topologies of caches and servers [17].

In this paper, we are concerned with cache management
operations that have to be adjusted to fit in a completely
decentralised and unco-ordinated environment. We focus
on the fair sharing of the available cache capacity of a path
among the content flows that use part of this path per unit
time. In other words, we focus on the allocation of the avail-
able cache capacity along a path of caching entities among
different content flows. As a starting point we intuitively
observe that caching every content in every cache-enabled
device along the delivery route (an operation implicitly sup-
ported in [13]), inherently causes huge caching redundancy.
Subsequently, our goal is to reduce caching redundancy and
make more efficient use of available cache resources, in order
to reduce overall network utilisation and potentially increase

user-perceived quality. Indeed, our initial investigation of se-
lective caching policies based on node centrality metrics, [7],
shows very promising results on this direction.

To achieve our goal, we approximate the caching capabil-
ity of a given path per unit time (Section 2.2) and we design
ProbCache, a probabilistic algorithm for distributed content
caching along a path of caches (Section 3). Our results sug-
gest that there is a lot of space for resource management
optimisation of in-network caching policies, given that ap-
propriate content multiplexing rules are in place (Section 4).

We use the terms “router” and “cache” interchangeably
to refer to cache-enabled network devices [3]; it should be
noted that our approach does not require every router to
be cache-enabled, but it will work in hybrid architectures as
well. Furthermore, we refer to content “packets”, “messages”
and “chunks” interchangeably to refer to the cacheable unit,
which is not necessarily of similar size to an IP packet. In
fact, we leave open the actual size of the cacheable unit
which is yet to be defined by the ICN research community.
We highlight that the concepts and algorithms proposed here
are cache unit- as well as architecture-agnostic and would
apply to almost any ICN environment [6, 13, 9, 4].

We differentiate between two types of redundancy, namely,
network traffic redundancy [2] and caching redundancy [14,
11]. Caching has been traditionally used to reduce traffic
redundancy [1, 5]. Assuming a set of available caches, as op-
posed to a single proxy cache, redundancy can still exist be-
tween cached contents in different locations, something that
has also been investigated in the past for overlay caching
schemes [14, 11]. However, and as mentioned earlier, over-
lay schemes require some form of co-operation between the
caches themselves and/or between the caches and a central
management entity. In contrast, in the case of in-network
caching, management has to happen in an unco-ordinated,
unco-operative fashion. In this paper, we consider each path
of caching entities as a pool of caching resources; we try to
find optimal ways of distributing content in these caches
in order to eliminate caching redundancy and in turn, re-
duce traffic redundancy. Our results show that careful con-
tent flow multiplexing in caches can achieve up to 20% more
cache hits. Surprisingly, this translates to one order of mag-
nitude reduction in terms of traffic redundancy.

2. SYSTEM MODEL AND ASSUMPTIONS

We argue that in-network cache management has to take
into account the approximate cache capacity of the path of
caches and the estimated amount of traffic that these caches
serve per unit time, in order to make decisions on whether
to cache incoming contents or not. In Section 2.1, we make
assumptions that help us approximate the cache capacity
of a given path and in Section 2.2, we present our design
principles.

2.1 Assumptions on Caching Technologies

By definition, caching is different to storage, both in net-
works and in computer systems, in that caching keeps con-
tents stored for a specific amount of time and not indef-
initely, as in storage. Therefore, the size of a cache is a
relative factor, which cannot stand on its own, but instead
has to be linked to the amount of time that a given content
is cached for. We, therefore, associate the cache size with
the traffic that the corresponding router serves per second.
Our cache size unit is the number of seconds worth of traffic

56

LNk NAME || LINK SPEED | 1-SEC TRAFFIC | TRAFFIC
IN 10GBs
0C-24 1,2 Gbps ~ 0.15 GBs ~ 64 secs
0C-48 2,4 Gbps ~ 0.31 GBs ~ 32 secs
0C-192 9,9 Gbps ~ 1.25 GBs ~ 4 secs
OC-768 39,8 Gbps ~ 5 GBs ~ 2 secs
0C-1536 79,6 Gbps ~ 10 GBs ~ 1 sec
0C-3072 159,2 Gbps | ~ 20 GBs ~ 0.5 secs

Table 1: Link Speeds and Caching Properties
cached in a given router and depends on the speed of the
outgoing links of the router in question.

One important question then is: “For how long can we af-
ford to cache contents in a given router?”. Furthermore,
given that in this study we are concerned with paths of
caches and not with single-caches only, another important
question is: “For how long do we need to cache contents in a
giwen path in order to minimise redundant traffic and maz-
imise gain?”. Our reasoning for answering these questions
is as follows:

e Today’s memory access technologies guarantee line-
speed access to DRAM chips of up to 10GBytes at
a reasonable price [3]. This means that a 56GByte-long
cache behind a 40Gbps link! can safely be assumed to
hold contents for one second (see also Table 1). With-
out loss of generality, we assume that each cache along
a path has sufficient memory to cache contents in a
DRAM chip for at least one second (see third column
in Table 1).

e Authors in [2] show up to 60% bandwidth savings by
redundant traffic elimination within the first 10 sec-
onds after the original transmission, in some enterprise
networks. We associate redundant traffic, i.e., subse-
quent requests for the same content, with the afore-
mentioned result. That is, we consider, without loss of
generality, that any content should be kept in any one
of the path’s caches for a target time window, Ti., of
10 seconds.

Both the above settings are relatively arbitrary and can
change in the future, but these values are a good starting
point based on today’s technology. In addition, our concepts
and algorithms presented next are still applicable should
these values change.

2.2 System Model

The path from source to destination in our topology (Fig. 1)
comprises n routers, where router r; has IV; cache slots, each
able to hold one addressable content chunk; based on the dis-
cussion above, we assume that N; slots can hold one second
worth of traffic. Our notation is given in Table 2.

Path Cache Capacity. The caching capacity of our path
of caches is Y. | Ny, in terms of memory, which amounts
to n seconds worth of traffic cached along the path.

'To the best of our knowledge, operators to date use
links of up to 40 Gbps, while some operators plan to
update a limited number of their links to 100 Gbps:
http://www.prnewswire.com/news-releases/verizon-first-
service-provider-to-announce-100g-deployment-on-us-
network-118891754.html

| SymBoL | MEANING |

n Number of caches on the path

N; Cache memory in 7; - holds 1-sec worth of traffic

Tiw Target Time Window (set to 10 secs here)

TSI, ¢ Time Since Inception (Request Message Header):
Hop-Distance from Client, Value range: 1 to n

TSB, « | Time Since Birth (Content Message Header):
Hop-Distance from Server, Value range: 1 to n

Table 2: Model Notation
Path Cache Capability. Given that our target time win-
dow is T3, seconds worth of traffic cached along a given
path, the caching capability of an n-long path, as a fraction
of the required capacity for T;, seconds, is ZT:;T;,V L where
N is the average cache size along the path. We revisit the

issue of average cache size in the next section.

Symmetric Paths. Request and Content messages follow
the same route, similarly to [16], [6], [13], [15].

Path Length Monitoring. Similar to the TTL field in-
cluded in IP packets, our design requires that ICN request
message headers include the Time Since Inception (TSI)
field and content message headers include both the TSI and
the Time Since Birth (TSB) fields. Every router increases
the TSI value of request packets by one. The content source
attaches the TSI value that it sees on the request message
to the content message. Every router increases the TSB
value of the content message by one. Hence, during the con-
tent message’s journey to the client, the TSI value is a fixed
value and denotes the path-length of this specific content
flow, while the TSB value denotes the number of hops that
the content message has travelled so far?.

User 1
Request 1

r 2 3 r4 5 TSlyl) =1
TSB(x*)=1 TSB(x*)=2 TSB(x*)=3 TSB(x1)=4 TSB(x1)=5</

TSlyl) =5
TSl(y2) = 4
r31

TSB(x2)=4

User 2
Request 2
TSIy2) = 1

Figure 1: Design Topology

3. PROBABILISTIC IN-NETWORK CACHING

We approach the problem of content placement within a
system of caches from the path caching capability point of
view. In particular, each router, based on the amount of traf-
fic that it has to serve per unit time, indirectly approrimates
the number of copies of incoming contents that the (rest of
the) path can accommodate. This value is the TimesIn
factor (Section 3.1). Based on this indication and on the
router’s distance from the user, which we call CacheW eight
(Section 3.2), each router probabilistically caches contents
as they travel along the path (Section 3.3). We consider the
example topology of Fig. 1, where two users are connected
five and four hops away from the server, respectively.

2In case of a cache hit, the TSI and TSB values are treated
as if the cache is the actual source, that is, the TSI value of
the content packet is replaced by that of the Request packet,
while the TSB is set to 1.

57

3.1 Estimating Caching Capability of Paths

The total cache capacity of the path in Fig. 11is y .| Ny,
where n1 = 5 for Request; and ny = 4 for Requests. Grey
circles denote the caches that have to be shared between the
two users, while white and black circles denote caches used
exclusively by Users 1 and 2, respectively.

The number of times that the path can afford to cache this
packet is reflected in the TvmesIn factor, whose calculation
takes place as follows:

ZC7(171> N;

i=1
Tthx (1)
where ¢ is the Time Since Inception (TSI) value and z is
the Time Since Birth (TSB) value that the router sees in
the header of the content message (Table 2). For exam-
ple, content messages traveling through router ro to fulfil
Request1, in Fig. 1, will have T'ST = 5 and T'SB = 2, while
contents for Requests will have TSI = 4 and T'SB = 2.
The sum in Eq. 1 incorporates the result of the subtraction
of TSI minus TSB (or ¢ — (z — 1) in Eq. 1) to account for
the remaining caches only, instead of the total number of
caches from the content source to the client.

3.2 Weight-based Caching

We argue that in order to achieve fair resource (in our case
cache) allocation in a distributed environment, each content
flow has to take into account other content flows sharing the
same path (grey circles in Fig. 1). Hence, to decide where
to cache the number of copies that TimesIn indicated, we
use the Cache Weight factor:

TimesIn(z) =

Cache Weight(x) = % (2)

where x is the T'SB value of the packet header and c is the
TSI value. We note that the TSI value is fixed during the
content packet’s journey from the source to the client, while
the TSB value is increasing for each router the packet tra-
verses; hence, CacheWeight — 1 as the packet is getting
closer to its destination. This is a desirable system prop-
erty considering path-diversity, in terms of number of hops,
between clients and sources of different content flows.

3.3 Building ProbCache
ProbCache is the product of TimesIn and CacheW eight.

Each router caches incoming chunks with probability ProbCache,

depending on their TSI and TSB values.

c—(z=1) pr.
ProbCache(x) = % z (3)
wiVx C
¢ ~—
TimesIn CacheWeight

The Cache Weight factor increases the probability of a
content being cached closer to its destination. This way, we
achieve fair content flow multiplexing between contents that
travel to different destinations in terms of path length. For
example, contents for User 1 in Fig. 1 should be cached in-
versely proportionally to User 1’s distance from the server,
i.e., in (white) routers 74, or rs, in order to leave (grey)
routers r1 — r3 for clients travelling shorter paths to cache
their contents. This is in accordance with our previous find-
ings in [22] that contents tend to be cached for longer to-
wards the edge of the network.

NoTE: To calculate the TimesIn factor each router has
to conjecture on the size of the rest of the routers on the
path. However, given that we do not know what amount
of memory each router will have, or if backbone routers, for
instance, will have bigger caches than edge-network routers,
we make the following simplifying assumption. Fach router
assumes that all other routers on the path have the same
amount of cache as it has got. Even in a random-size cache
deployment scenario, this assumption serves our purposes
well. That is, a router with a big cache, compared to the
caches along the path, will be caching contents with higher
probability, while a router with a small cache will experi-
ence the opposite effect (Eq. 1). This is a desirable sys-
tem property which alleviates the effect of unknown cache
sizes, but at the same time guarantees fair load distribution
among nodes with diverse caches. We relax the assumption
of homogeneous cache sizes later on and show that although
our simplifying assumption does not harm the performance
of ProbCache in heterogeneous cache size environments, it
fails to exploit extra caching resources (Section 4.2).

4. PERFORMANCE EVALUATION

We test our algorithm in a custom-built simulator, where
we use Least Recently Used (LRU) caches. Given that the
ultimate goal of ProbCache is to manage caching resources
more efficiently, by reducing cache redundancy, the straight-
forward metric of interest is the reduction of Server Hits.
Furthermore, the gain from serving user requests from in-
termediate caches, instead of travelling to the origin server,
depends on the number of hops that the request travels be-
fore it eventually hits cached contents. Clearly, as the num-
ber of hops increases, the overall gain decreases. To measure
this gain, we also monitor the Hop Reduction Ratio.

We use binary tree topologies; set the exponent of the
Zipf distribution of content popularity to 0.8 to capture the
case of fairly unpopular content [25]; and compare the per-
formance of ProbCache against: i) the universal caching ap-
proach proposed in [13], a scheme that we call Cache Fvery-
thing Bverywhere (CE?), ii) the Leave Copy Down (LCD)
[18] algorithm proposed in the past for overlay caching topolo-
gies?, i11) a probabilistic algorithm that caches with proba-
bility p = 0.7 at every cache and v) a probabilistic algorithm
that caches with probability p = 0.3.

4.1 Scenario 1: Path Resource Management

We use a 6-level binary tree topology (127 nodes in total).
The root node represents the server node and we configure
requests to come from the last two levels of the tree, as-
suming that individual users are not connected to backbone
network routers; we note however that results are similar in
case of users attached to all routers. We generate a total
of 100,000 requests, to allow enough time for the system to
reach a steady-state. As noted earlier, our cache-size unit
is the number of seconds worth of traffic cached in a given
router. In our first experiment, we assume homogeneous

3 According to LCD [18], every request for a specific content
causes the content to be copied one hop closer to the user,
or one level down in the cache hierarchy. If a request for a
content is received after the content has been evicted from
the cache, according to the LRU policy, the content has to
be retrieved from another cache up-the-hierarchy, or from
the origin server.

58

caches and we evaluate the algorithms as we increase each
router’s cache capacity from one to six seconds (Fig. 2).
The Server Hits performance difference balances around
a reduction of approximately 12-15% (12,000-15,000 Server
Hits less) for ProbCache against CE? and around 7-10%

compared to the rest of the algorithms evaluated here (Fig. 2(a)).

The Hop Reduction difference is roughly 8-10% against
the CE? scheme, while it is smaller compared to the rest of
the algorithms and especially compared to LCD (up to 3%).
However, considering short path lengths (up to 6 hops) and
the operational properties of both CE? and LCD, whose de-
sign targets bringing content as close to the end-user as pos-
sible, we argue that even this small performance difference
unveils better exploitation of storage resources in merit of
ProbCache. To validate this claim further, we trace the av-
erage number of: i) Cache Hits, i) Received Requests, and
i11) Cache Evictions per tree level. The size of the cache is
set to three seconds worth of traffic at each cache.

CE® —*—

LCD —a—
P(0.7) —o—
P(0.3) —e—
ProbCache —&—

1 2 3 4 5 6
Number of Seconds worth of Traffic Held at each Cache (N_i)

95000
90000
85000
80000
75000
70000
65000

Server Hits

(a) Server Hit Saving

CEZ —*—
LCD
P(0.7) —o—
P(0.3) —e—
ProbCache —&—

Hop Reduction
o
@
&

Number of Seconds worth of Traffic Held at each Cache (N_i)

(b) Hop Reduction Ratio

Figure 2: Scenario 1: Homogeneous Caches

We observe, although do not present the related results
here due to space limitations, disproportionate differences
between the number of Cache Hits and the corresponding
number of Received Requests in case of ProbCache. That
is, ProbCache has more Cache Hits and less Received Re-
quests than the rest of the algorithms. This difference in
Cache Hits and Received Requests owes to the efficient re-
source management of ProbCache, which results in contents
staying in caches for longer. To substantiate our claims, we
plot in Fig. 3 the average number of evictions per tree-level,
where the smaller the tree level, the closer to the server this
level is. The very big difference in terms of cache evictions
validates our claim that per-path, distributed resource man-
agement results in more contents staying in the caches for
longer and therefore, getting more cache hits. This huge re-
duction in cache evictions in Fig. 3 reflects the reduction in
terms of traffic that flows through the network and subse-
quently, redundant traffic elimination.

4.2 Scenario 2: Heterogeneous Cache Sizes

We proceed to relax the assumption of homogeneous caches.
In particular, we expect that as research in the area ma-
tures, caches will be sized according to a specific norm or a
set of guidelines. We conjecture three potential norms: i)

45000
40000
35000
30000
25000
20000

ProbCache T——
P(0.3) ==
P(0.7) mmmmm

LCD
CE” e

15000
10000
5000
0

Cache Evictions

Tree Level

Figure 3: Average Cache Evictions per Tree Level
larger caches are deployed towards the core of the network,
where servers reside, i) larger caches are deployed towards
the edges of the network, where users are connected, #3) all
caches have roughly similar sizes (homogeneous cache sce-
nario presented in the previous section).

We use the same topology as before, set cache sizes ac-
cording to the formula: N; x T'SB (see Table 2) and ob-
serve the performance difference in case of heterogeneous
caches. That is, if a core router caches one second worth
of traffic and we assume larger caches towards the edges of
the network (which we denote as c(ore) — FE(dge)), then
the edge router of a six-hop path will cache six seconds
worth of traffic. The capacity of the path in that case is
c— E: Z?;l(z_l)(c — i)N;. The opposite applies for de-
ployments where larger caches are deployed in the core of
the network (which we denote as C(ore) — e(dge)); the

capacity of the path in this case is C' — e : Zf;l(z_l) IN;.
We modify the TimesIn factor based on the above path
capacities for each case in Egs. 4 and 5, respectively and call
the new algorithm ProbCache+. The corresponding cache
capacity calculations along a six-hop path for Egs. 1, 4 and 5
are shown in Fig. 4. We use the default algorithm (i.e.,
Egs. 1 and 3) as our benchmark for comparisons, and for
clarity, we compare the performance of ProbCache+ against

CE? [13] and LCD [18] only.

267(171) iN;

=1

4

TimesInc_.e)(x) =

Y (e —)N
Tthz

()

TimesIn_gy(x) =

Path Capacity

Hop Number

Figure 4: Path Capacity calculation that takes place
at each router along a 6-hop Path: the N; curve is
for homogeneous caches, hence the capacity is given
by ¢ — e : Zf;l(xfl) N;; the iN; curve is for larger
core caches, hence C' — ¢ : Zf;l@fl) iN;; the (c —1)N;
curve is for larger caches towards the edge, hence
c— E: " (e —)N

In Fig. 5 we present the ratio of each protocol’s cache hits
performance in case of extra cache added in the core (Sce-

59

nario 2.1) or the edge (Scenario 2.2) over the performance
in case of homogeneous caches (Scenario 1).

As noted, ProbCache is the original algorithm in Eq. 3,
hence this algorithm does not take into account the ex-
tra caching capacity; in contrast, ProbCache+ incorporates
Eq. 4 in Scenario 2.1, Fig. 5(a), and Eq. 5 in Scenario 2.2,
Fig. 5(b). In both cases, we observe that both CE? and
LCD fail to utilise the extra available cache capacity; that
is, their performance increases by less than 5%, although
the extra cache capacity we added is 30% compared to Sce-
nario 1 (Section 4.1). We see that this is the case too with
ProbCache and ProbCache+ in case of extra cache capacity
at the core of the network (i.e., Fig. 5(a))*.

Interestingly, and in contrast to recent results reported in
[26], where the authors show that cache size heterogeneity
does not improve the caching performance in ICNs, we find
that both ProbCache and especially ProbCache+ utilise
a good amount (up to 18%) of the extra caching capac-
ity added towards the edge of the network in Scenario 2.2,
Fig. 5(b). The overall performance difference in that case
is between 20-25% compared to CE? and LCD, if we take
into account the absolute results reported in Section 4.1,
Fig. 2(a). We argue that this is due to more efficient re-
source utilisation of the proposed algorithm and better con-
tent multiplexing in caches, something that does not consti-
tute a design goal for either CE? or LCD.

Actual Extra Amount of Cache

Performance Increase Ratio

178 3TsB 4758 5TsB 67TSB
Number of Seconds worth of Traffic Held at each Cache times TSB (N_i x TSB)
[CE == [CD —W— ProbCache —F— ProbGaches 1]

(a) Sc. 2.1: Larger Cache at Core (C — ¢)

035

03 Actual Extra Amount of Cache

025
02
015
01
005

Performance Increase Ratio

0
1788 27Ts8 3TsB 478 5TsB 67TSB

Number of Seconds worth of Traffic Held at each Cache times TSB (N_i x TSB)
[CE —%— [CD —W— ProbCache —J— ProbCaches -]

(b) Sc. 2.2: Larger Cache at Edge (¢ — E)

Figure 5: Scenario 2: Heterogeneous Caches — y-axis
measures the performance difference ratio compared
to the homogeneous scenario presented in Fig. 2 —
the inner part of Fig. 5(a) is a zoom-in to the line-
plots of the same figure.

Summarising, we argue that these are the properties of
in-network caching that the research community needs to
investigate further, in order to exploit this inherent capa-
bility of ICNs for in-network caching. We have tested our
algorithm in scale-free topologies with multiple servers and
multiple replicas of contents. Our results show even greater

4We note that in Fig. 5 we present the performance increase
of the protocols compared to the previous scenario. This
means that the performance of the algorithms in absolute
terms is similar to the one presented in Fig. 2.

differences in terms of redundant traffic elimination in favour
of ProbCache. In case of CE? this owes to inefficient re-
source utilisation, while in case of LCD it owes to its in-
herent design to fit to directed graphs only, where the di-
rection from servers to clients is a fixed hierarchy. In con-
trast, ProbCache exploits the knowledge provided by TSI
and TSB and multiplexes content flows according to their
respective path lengths.

S. RELATED WORK

Several recent studies have focused specifically on the prop-
erties of a network with in-network caches (e.g., [20], [25],
[24]). In [25], the authors provide a comprehensive perfor-
mance evaluation of in-network caching taking into account
several parameters, such as request distributions, the cata-
log size, and cache replacement policies. They conclude that
content popularity is (by far) the most important parame-
ter of all. Along the same lines, authors in [10] investigate
the impact of traffic mix on the caching performance of a
two-level cache hierarchy. They conclude that VoD content
should be cached towards the edge of the network, while
other types of content should be stored in large discs to-
wards the core.

In a recent study [26], the authors show that having het-
erogeneously sized caches does not improve overall perfor-
mance. We argue that this owes to the assumption of ubig-
uitous caching, that is, caching chunks in all routers along
the content delivery path. As we have shown both in this
paper (see Section 4.2, Fig. 5) and in our recent study [7],
by caching a limited number of copies of a chunk in selected
caches in the network, we achieve significantly higher gains.
In particular, in [7], we show that the centrality of nodes in a
given network topology gives valid evidence of which nodes
are within the most number of paths. In turn, caching in
those nodes increases the overall performance [7].

6. CONCLUSIONS

We have argued that caching named chunks in network
routers’” DRAM memory, as opposed to caching large ob-
jects or files in proxy disks, calls for reconsideration of past
approaches to caching. That is, in-network caching in ICNs
has to happen in an uncoordinated and distributed fashion.
We have proposed ProbCache, an algorithm that approx-
imates the capability of paths to cache contents, based on
path lengths, and multiplexes content flows accordingly. The
ultimate goal of ProbCache is to utilise resources efficiently,
reduce caching redundancy and in turn, network traffic re-
dundancy. We have considered both homogeneous and het-
erogeneous cache sizes and have adjusted ProbCache to fit
in both environments.

We report savings of up to 20% in server hits; 7-8% in
the number of hops to hit cached contents; and reduction
by an order of magnitude in cache evictions, which directly
translates to network traffic redundancy elimination by the
same proportion.

7[.1} /{;]%FERENCE

nand and et al. Packet caches on routers: the
implications of universal redundant traffic elimination.
In ACM SIGCOMM, pages 219-230, 2008.
[2] A. Anand, C. Muthukrishnan, A. Akella, and
R. Ramjee. Redundancy in network traffic: findings
and implications. In SIGMETRICS *09.

60

3]

[4]

[5]

[6]

7]

8]

[9]

(10]

(11]

(12]

(13]
(14]

(15]

(16]
(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

[25]

[26]

S. Arianfar, P. Nikander, and J. Ott. On
content-centric router design and implications. In
ReArch Workshop, volume 9, page 5. ACM, 2010.

J. M. Batalla, A. Beben, and Y. Chen. Optimization
of the decision process in NEtwork and Server-aware
algorithms. In Proc. of IEEE Networks 2012, 2012.

L. Breslau and et al. Web caching and zipf-like
distributions: Evidence and implications. In In
INFOCOM, pages 126-134, 1999.

W. K. Chai and et al. Curling: Content-ubiquitous
resolution and delivery infrastructure for
next-generation services. IEEE Communications
Magazine, 49(3):112-120, 2011.

W. K. Chai, D. He, I. Psaras, and G. Pavlou. Cache
‘Less for More’ in Information-centric Networks. In
Proc. of IFIP Networking, 2012.

H. Che, Z. Wang, and Y. Tung. Analysis and Design
of Hierarchical Web Caching Systems. In INFOCOM,
pages 1416-1424. IEEE, 2001.

N. Fotiou, G. C. Polyzos, and D. Trossen. Illustrating
a publish-subscribe internet architecture. Journal on
Telecommunication Systems, Springer, March, 2011.
C. Fricker, P. Robert, J. Roberts, and N. Sbihi.
Impact of traffic mix on caching performance in a
content-centric network. In IEEE NOMEN, 2012.

N. Fujita, Y. Ishikawa, A. Iwata, and R. Izmailov.
Coarse-grain replica management strategies for
dynamic replication of web contents. Comput. Netw.,
45(1), 2004.

A. Ghodsi and et al. Naming in content-oriented
architectures. In ACM SIGCOMM ICN Workshop,
pages 1-6, 2011.

V. Jacobson and et al. Networking Named Content. In
ACM CoNEXT ’09, pages 1-12, 2009.

A. A. Jiang and J. Bruck. Optimal content placement
for en-route web caching. In Proc. of IEEE NCA 03.
K. Katsaros, G. Xylomenos, and G. C. Polyzos.
Multicache: An overlay architecture for
information-centric networking. Comput. Netw.,, 2011.
T. Koponen and et al. A Data-Oriented (and beyond)
Network Architecture. SIGCOMM, 37(4):181-192, ’07.
P. Krishnan, D. Raz, and Y. Shavitt. The cache
location problem. IEEE/ACM Trans. Netw.,
8(5):568-582, Oct. 2000.

N. Laoutaris, H. Che, and I. Stavrakakis. The lcd
interconnection of Iru caches and its analysis.
Perform. Eval., 63(7), July 2006.

U. Lee, I. Rimac, and V. Hilt. Greening the internet
with content-centric networking. eEnergy, 2010.

L. Muscariello, G. Carofiglio, and M. Gallo.
Bandwidth and storage sharing performance in
information centric networking. In ACM SIGCOMM
ICN Workshop, pages 26-31, 2011.

D. Perino and M. Varvello. A reality check for content
centric networking. In ACM SIGCOMM ICN
Workshop, pages 44—49, 2011.

I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and
G. Pavlou. Modelling and Evaluation of CCN-Caching
Trees. In Proc. of IFIP NETWORKING, 2011.

E. J. Rosensweig and J. Kurose. Breadcrumbs:
Efficient, Best-Effort Content Location in Cache
Networks. In INFOCOM, 09.

E. J. Rosensweig, J. Kurose, and D. Towsley.
Approximate models for general cache networks. In
IEEE INFOCOM, 2010.

D. Rossi and G. Rossini. Caching performance of
content centric networks under multi-path routing.
Technical Report, 2011.

D. Rossi and G. Rossini. On sizing CCN content
stores by exploiting topological information. In IFEE
NOMEN Workshop, 2012.

