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Abstract-- IP multicast is used to deliver services to groups of 
users. However, this approach needs an infrastructure support in 
place, which makes the service not always available. We propose 
a novel application-level multicast approach based on mobile 
agents, which does not require any specific layer 3 support and 
suits the requirements of dynamic networking environments. We 
present a simulation-based comparative analysis between our 
approach and DVMRP, focussing on performance and 
scalability. 

I. INTRODUCTION 

The simultaneous provision of services to many different 
users is nowadays realized through the multicast solution. This 
approach performs data group distribution at network layer 
adding more capabilities to the routers. In this way multicast is 
able to reduce packet replication to the minimum necessary. 
Although various multicast protocols have been proposed over 
the last decade, this solution performs well for LAN networks 
but does not achieve the same performance for inter-domain 
networks. In [1] a number of problems are identified and 
discussed. Existing network-level multicast protocols incur 
significant overheads in the routers; they require specific 
hardware support in place; they cause sensitive issues behind 
protocol standardisation; and, finally, they are not suitable for 
extremely dynamic environments such as the mobile one. 
These reasons have induced some researchers to find new 
solutions working above the network level, which are 
commonly referred to as application-level multicast or overlay 
multicast. Unlike network-layer multicast, in application-level 
multicast data is replicated at the end hosts rather than at 
routers. Those end-systems form, therefore, an overlay 
network that is used to deliver data packets to end users. The 
purpose of application-level multicast is, hence, to build and 
maintain this overlay network.  

In this article we present an application-level multicast 
solution in which end-systems are realised as Mobile Agents 
(MAs)1 that are in charge of creating the overlay network and 
of maintaining it as network conditions evolve. In this context, 
the task of constructing the overlay network is equivalent to 
that of optimally placing the end-systems within the network. 
We divide this task in tree different phases: 1) finding the 

                                                           
1 MAs are software entities that act on behalf of some other software 

entity, exhibit some degree of autonomy and are particularly featured with 
migration capability – i.e. they can roam the network and execute in those 
nodes that can host them. Other properties of a MA include re-activeness, pro-
activeness, adaptability and cloning capability. In particular, cloning is the 
ability of an agent to create and dispatch copies, or ‘clones’, of itself. 

optimal number of end-systems (p); 2) partitioning the 
multicast group in p sub-groups; 3) near-optimally placing 
those end-systems within their respective partition. The latter 
phase involves MA migration both at start-up time (creation of 
overlay network) and during data distribution (maintenance of 
overlay network). To demonstrate and assess our MA 
application-level multicast approach, we carried out a 
simulation-based comparison with the Distance Vector 
Multicast Routing Protocol (DVMRP)[10], which is used as a 
representative network-level solution. We focussed on two 
performance metrics: 1) The DVRMP multicast tree build-up 
time versus the overlay tree build-up time, and 2) the stress 
ratio2 of the overall network. We have prototyped and 
evaluated this MA-based application level multicast on top of 
the JavaSim network simulator, a component-based, 
compositional simulation environment [12]. While we rely on 
JavaSim for network and protocol behaviour, we have 
extended it with MA capabilities in order to prototype our 
system. In this way, we could assess performance, scalability, 
correctness, validity, robustness, and stability of the system 
under consideration. The remainder of this paper describes the 
related work (Section 2), illustrates our approach (Section 3), 
presents the evaluation methodology and simulations set up 
used (Section 4), discusses the simulation results (Section 5), 
and finally draws our conclusion, giving also an indication of 
future work (Section 6). 

 
II. RELATED WORK 

Application-level multicast is aimed at supporting end-
systems that are interconnected through networks which do 
not support multicasting at layer 3 (i.e. the network layer). 
They create overlay networks which employ the end systems 
for data forwarding. In contrast, conventional multicast 
protocols deliver data streams from source to destination 
through a store-duplicate-and-forward mechanism performed 
at the routers. 

Various application level multicast approaches have been 
proposed in the literature. Following [2] it is possible to 
identify three main areas in terms of overlay construction for 
data distribution:  

                                                           
2 Stress is one of the metrics employed to compare the performance of an 

application level multicast solution with the traditional one. It is defined as the 
number of identical packet that a physical link carries. The optimal value for 
native multicast is 1. 



 

1. Mesh-first approaches construct overlay mesh3 
networks and employ DVMRP-like routing 
algorithms to deliver the data using mesh 
information. 

2. Tree-first approaches configure directly a data 
distribution tree when a new end-system joins the 
multicast group and the existing end-system leaves 
the group. 

3. Different protocols such as virtual addressing 
approaches or other topology construction protocols 
belong to implicit approaches. Virtual addressing 
approaches assign a virtual address to an end-system 
using a specific mapping function such as a hash 
function and flood data according to the virtual 
address mechanism. 

Mesh-First Approaches utilize the mesh topology to create 
the overlay network needed to deliver the data. The receivers 
create a mesh or a Complete Virtual Graph (CVG). Then, the 
sender sends the data to the receivers building a source-
spanning tree from the mesh. Finally, each user gets from the 
mesh group the information needed to find the best path to 
reach its group members. Thus, since the receivers have access 
to system information this solution can create optimal 
multicast routing paths, reducing the delay latency with source 
specific trees. This allows supporting of many-to-many 
multicast for real-time application such as audio/video 
conferencing applications with small-sized group. 

Narada, for example, is an application level multicast 
protocol that employs the CVG or mesh [3]. In this way it is 
very robust because it relies on mesh or CVG overlay 
networks but in order to keep this overlay network up to date 
all the members have to exchange a large amount of packets 
losing therefore in scalability. Thus, Narada can target 
audio/video conferencing applications for small-sized groups. 

ALMI uses, instead, a centralised control solution to 
maintain tree consistency and efficiency [4]. The problem of 
centralized approaches is that they have a single point of 
failure, in addition of generally being less scalable than their 
distributed counterparts. It applies a shared-tree solution to 
build the overlay network used for data distribution, which 
may result in relatively long delay latencies. Therefore, ALMI 
is not scalable because of its centralized and mesh-first nature. 

Another solution that belongs to the mesh-first area is 
Scattercast [5], which implements a combination of the 
overlay approach (over Internet-wide networks) with a 
localised IP multicast domains. Scattercast makes use of 
application-aware agents located at strategic positions within 
the network to adapt the delivery to the specific needs of 
individual applications and end clients. Agents are located 
within hosts, not at the router. Thus, the path used for the data 
will generally incur longer latencies. 

Tree-first approaches allow group members to choose the 
joining location, which includes the possibility that some 
members do not have knowledge of the overall tree. Because 
of that, this approach tends to be more scalable than mesh-

                                                           
3 A mesh network consists of a topology where multiple paths exist 

between a pair of group members. 

first. Problems may, however, arise from the appearance of 
loops caused by the partial knowledge of tree by group 
members. Therefore, tree-construction algorithms must take 
appropriate loop-detection or loop-avoidance measures. 

An example of tree-first approach is the Tree Building 
Control Protocol (TBCP), which builds the tree using a 
recursive approach where the root of the tree behaves as a 
rendezvous point and the new member contact this root to join 
the group [6]. The root will accept the new member 
considering information on its latency from the root children. 
Because of its recursive nature, the join process is not very 
fast. However, this approach has the advantage of being 
scalable. Other solutions as Overcast [7], TAG [8], and 
Peercast [9] use recursive approaches which cause high 
latency or low bandwidth, resulting in not fast join procedure. 

Finally, within Implicit approaches there are solutions 
such as NICE [14], designed for large groups and low-
bandwidth, real-time application, and CAN [15] which uses a 
virtual addressing approach. The first one uses a recursive 
joining procedure, which is relatively slow. The second one 
employs a multicast flooding of the data that does not give 
guarantee on the delivery. 

All of the above approaches try to address different issues 
that are usually conflicting and are then applicable only to 
specific cases. Our MA-based solution can be classified 
among the tree-first approaches. Each agent builds and 
maintains its part of the tree relying on routing information 
which is independently maintained by network routing 
protocols. Thus, the algorithm is scalable, as confirmed by the 
analysis of section III.  

 
III. OUR APPROACH: MOBILE AGENT BASED APPLICATION 

LEVEL MULTICAST 

In this section we describe the structure of our system, 
including the construction and run-time maintenance of the 
overlay network by the MA system, as illustrated in Fig.  1. 
Upon being deployed, starting from the data source (dotted 
line), MAs act as end-systems delivering the group data to the 
users (tick-line). We can identify two different phases. The 
first one consists of agent deployment (those agents 
collectively form the overlay network). It is through a strategic 
and efficient location process that we rapidly construct 
effective overlays. We shall next illustrate a progressive 
deployment process which is linear with network size as well 
as being near-optimal in terms of agent location. 

Once deployed, the agents relay data among themselves as 
well as distributing it locally. The second phase consists of a 
combination of data relay with agent self-regulation, aimed at 
maintaining the overlay in phase of evolving network 
conditions. The overlay network can be interpreted as source 
rooted distribution tree where MAs represent the tree leafs. 
Within their competition zone, MAs deliver data to the users 
using the unicast protocol. In this phase of the data delivery 
our approach pays off in terms of stress and adaptivity, with 
respect to native multicasting. 
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Fig.  1 System structure. MAs act as end-systems to deliver 
group data from the source to the users. 

These two phases are described below in more detail. 

A. Deployment phase 

In this phase we calculate the number and location of agents 
needed for a given network and set of recipients. Agents of 
such a system need to have three important abilities: mobility, 
ability to perform agent cloning, and read-access of the 
network routing tables. Routing information provides agents 
the necessary input for the processing of the deployment and 
self-adaptation processes. Because of that, the efficiency of 
the MA overlay is sensitive to the accuracy of the routers 
routing tables which is, in turn, maintained by routing 
protocols operating independently of the MA system. 

Fig.  2 illustrates the MA deployment algorithm. The 
algorithm deploys the end-systems by partitioning the network 
through an MA "clone and send" process, which starts at the 
source host. Initially, the first MA is created at a node that is 
MA-enabled, namely an MA host. This MA is given the list of 
group users (U) and the operations to be performed on them 
(data delivery). This first MA builds an estimate of the total 
cost associated to the current location by summing up the 
individual routing costs (extracted from the local routing 
table) related to the involved users’ locations. Having 
estimated the total cost for performing the task from its current 
location, the MA will then consider alternative configurations 
(i.e. MA locations) using partial costs attached to the current 
neighbor nodes. 

For each neighbor, partial costs are found by adding the 
routing costs involved only by those target users that are 
reached through the specific neighbor node. After that, a 
simple heuristic function is employed in order to decide 
whether or not to clone new agents to be sent to the neighbors. 
For each neighbor node (i), the heuristic function computes 
the probability (i.e. the advantage) of sending an MA to the 
node, by using the following formula  
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Fig.  2 Deployment algorithm. 

Where |Ut| is the total number of users targeted by the agent, 
|Ui| is the number of users targeted through node i, Ct is the 
total cost and Ci the partial cost. The cloning decision is made 
by comparing this probability with two appropriate cloning 
threshold values THC  THM and which have also an impact on 
the number of MAs that is finally cloned and deployed. When 
Pi lays between THM and THC, the agent triggers migration. 
Otherwise, agent deployment is finished, multicasting starts 
and the agent system switches to the self-regulation phase 
(described in the next section). A migration flag (m) is 
activated when Pi exceeds THM but the actual migration is only 
activated after all the alternative locations have been 
examined. Piold is a variable that allows the algorithm to 
remember the value of Pi for which migration has been set. If 
another neighbor having a higher Pi appears, migration will be 
set for that neighbor, therefore ensuring that migration to the 
neighbor with maximum Pi is triggered. The variable mnode 
identifies the MA destination node. This value is finally 
compared with pnode, which denotes a previously visited node 
(by the MA). If mnode and pnode are equal there is the risk 
that the MA oscillates between two locations leading the MA 
system to become unstable. This is avoided by increasing the 
THC threshold  according to our preference.  



 

B. Self-Regulation phase 

The second phase is to make sure that the agents are 
following the dynamics of the network. Node failures, link 
congestion and users leaving the multicast session result in 
changes in the network conditions. In order for the agent 
system to be adaptive, it has to periodically access relevant 
routing tables and reconsider the MA locations. Fig.  3 shows 
the algorithm employed for self-regulating the system. This 
follows the same approach adopted during MA deployment, 
with the exception for cloning which is disabled in order to 
avoid uncontrolled agent proliferation.  

The parameters of the algorithm are the rooting table look 
up period (Π), the difference between the monitoring costs 
associated to two successive retrieves (DCt), and an MA 
migration threshold (TH1). Each MA autonomously identifies 
the neighbor associated to the local minimum multicast cost 
(this related to the MA partition only). As for deployment, 
migration is controlled through the use of second threshold 
(TH2) and a flag, which prevents instability (i.e. agent 
oscillation between two adjacent nodes).  

Next, we evaluate the methodology and simulations design 
used to carry out our results. 

 
IV. EVALUATION METHODOLOGY 

This section illustrated the methodology used to compare 
our solution with the Distance Vector Multicast Routing 
Protocol (DVMRP) [10] [11]. DVMRP is a multicast routing 
protocol for dense topologies, which means that group 
members are densely distributed across the network. It 
forwards packets using a multicast tree that is built by 
applying the Reverse Path Multicast (RPM) algorithm.  

Without loosing generality and in order to achieve 
reasonable simulation times, we assume that all the nodes in 
the network are group members. The metrics used for the 
comparison are the Tree Build up Time and the Stress Ratio 
that are plotted against topology size. The former is defined 
for the DVRMP as the period of time elapsed between the 
initiation of the members’ joining procedure and the 
construction of data distribution tree. In the MA system, the 
tree build time is the time to finish the MA deployment phase. 

Stress Ratio is defined as: 

SressMcast
layStressOver

oStressRati =  

which gives the variation of the overlay network from the 
optimal value. Since we assume that all nodes are group 
members, the optimal stress value is 1 packet per link, 
corresponding to 1 packet per member. For example, a 
topology of 25 nodes may have a stress of 24 (1 node is the 
data source) for the DVMRP algorithm, and 33 (calculated as 
the total number of packets generated) for the MA-based one. 
In that case, the stress ratio would be 1.32, which means that 
the overlay network generates on average 1.32 packets per 
node4. 

                                                           
4 Note that the leaf’ members receive only 1 packet, but the end-systems 

can receive more than 1. 

In order to carry out this comparison, extensive simulations 
under random network environments have been performed. It 
was very important to run the algorithm under realistic 
network topologies composed of routers, links and hosts. For 
this reason we used the Javasim network simulator [12], which 
allows the simulation of a variety of scenarios.  
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Fig.  3 Self-regulation algorithm. 

TCP/IP networking and transport, including the Distance 
Vector (DV) routing protocol, is used as the bases for our 
simulations. We have also enhanced the simulator with MAs 
capabilities, including agent generation, cloning, migration, 
termination and so on.  

The GT-ITM topology generator was used to create 
realistic, Internet-like, transit-stub topologies [13]. The 
simulations have been executed for topologies of 25, 50, 75, 
100, 150, 200 and 300 nodes. To ensure statistical 
significance, simulations have been repeated 20 times for each 
of the above network sizes. That is, we have randomized the 
simulation process, generating families of 20 topologies at a 
time, characterized by comparable topological features (e.g. 
average node degree, number of nodes, etc). In this way we 
could assess the sensitivity of our metrics to network size, 
using the number of node as network size parameter and 
isolating other effects. 

In the next section we present and analyze the results of the 
simulations. 

 
V. RESULTS 

Fig.  4 shows the average tree build time for each of the two 
approaches under evaluation. We can see that the MA-based 
approach performs slightly worse than DVMRP. This was 
expected due to the difference in the very nature of the two 
approaches. Being an application-based solution, our MA 



 

approach is bound to incur larger overheads which are 
countered by a larger flexibility and by its ability to work 
without layer 3 multicasting support.  

An important aspect of both algorithms is linearity with 
respect to network size. This is an essential feature, which 
makes the MA approach viable even in the case of large 
number of nodes/users. Linearity during MA deployment is 
obtained because that process is carried out in parallel upon 
each cloning instance. As soon as being injected into the 
system, each new agent continues the deployment process 
within its sub-partition (defined by its parent MA), 
autonomously from any other agent that act in parallel. 

Because of that, the overall agent deployment time is 
proportional to the depth of the agent deployment tree, i.e. to 
the network size. The factor dominating the linear deployment 
process is the time needed to migrate between two nodes. We 
have taken measures in real MA systems and we have found 
that this factor is in the order of hundred of milliseconds [16]. 
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Fig.  4 DVMRP Tree build time Vs MA-based Tree build 
time 

Our findings on the Average Stress Ratio are depicted in 
Fig.  5. Again we find linearity with respect to number of 
network nodes/users. In particular, we see that the distance 
from optimality is relatively small (considering that we have 
an application-level algorithm compared to a layer-3 solution). 
The relatively small slope of the MA line (0.049 degrees) 
demonstrates a negligible sensitivity to network size that can 
be controlled by changing the number of MAs injected in the 
system.  

When the ratio between number of MAs and number of 
nodes/users is reduced, the time to deploy those agents (i.e. the 
time to build the overlay network) tends to decrease because 
there are less agents to be located. However, in that case the 
size of the network partitions (i.e. number of nodes/users per 
MA) increases and, hence, the cost of unicasting within those 
partitions increases. On the other hand, if the MA to nodes 
ratio increases, we observe the reverse phenomenon. We can 
therefore conclude that due to its linearity and order of 
magnitude of the dominant factors, the MA solution is 
scalable with respect to network size and number of users and 
represents a viable alternative to native, layer-3 multicasting 
protocols. 

In this paper we have reported some key problems 

encountered by the important area of multicast, including layer 
3 multicast and other application-level multicast approaches. 
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Fig.  5 Stress Ratio Vs Topology size. 

 
VI. CONCLUSIONS & FUTURE WORK 

Because there seems to be increased scope for application-
level solutions, we have embarked the study of a new 
approach based on mobile software agents. The idea was that, 
in order to find adaptable solutions in the context of dynamic 
and mobile networking environment, the natural way was to 
use code mobility as a means to address the necessary 
requirements. 

We have therefore come up with an algorithm that would be 
distributed (in order to pursue scalability), adaptive (in order 
to keep the pace with changing networking conditions), 
infrastructure-less (in order to be easily deployed), and 
efficient (in order to be represent a viable alternative to 
existing solutions). It is through agent mobility and cloning 
that we have addressed those requirements. 

At the same time, we have gone through the exercise of 
developing a suitable assessment methodology that would be 
acceptable to the networking community, providing an insight 
on the MA-based solution. To achieve that, we started from a 
widely used network simulator (JavaSim is a Java version of 
the NS network simulator), enhancing it with the necessary 
MA capabilities. 

Although our initial results show that our approach offers 
performance that are not too worse than DVMRP, the 
intention was not to make the case to replace layer-3 solutions 
with application-level ones. DVMRP has been selected mainly 
because its implementation was already available in the 
adopted simulator. Other more efficient layer-3 solutions do 
exist and it would probably be unwise to pursue the avenue to 
replace them with better application-layer counterparts. 
Therefore, we would see network- and application-level 
multicast as complementary rather than competing solutions, 
capable of addressing complementary requirements. 

Our assessment of the potential of the MA approach is not 
completed. We shall also seek to improve its performance and 
reduce instability problems that occasionally arise. But the 
main focus of the work to be done next is an evaluation of 
MA-based multicast in the context of mobile networks and 
mobile users. Having put into place the basic simulation 



 

infrastructure we can now look at the behaviour of our system 
in a number of more complex scenarios, assessing for instance 
its sensitivity to different routing protocols (our approach 
relies on routing table information). Finally, our priority will 
be to refine run-time self-regulation under very dynamic 
conditions. 
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