
A Scalable Application-Level Multicast Approach based on Mobile Agents

C. Ragusa, A. Liotta, G. Pavlou
Centre for Communication System Research

University of Surrey
Guildford

Surrey, UK
{c.ragusa, a.liotta, g.pavlou}@eim.surrey.ac.uk

=

Abstract-- IP multicast is used to deliver services to groups of
users. However, this approach needs an infrastructure support in
place, which makes the service not always available. We propose
a novel application-level multicast approach based on mobile
agents, which does not require any specific layer 3 support and
suits the requirements of dynamic networking environments. We
present a simulation-based comparative analysis between our
approach and DVMRP, focussing on performance and
scalability.

I. INTRODUCTION

The simultaneous provision of services to many different
users is nowadays realized through the multicast solution. This
approach performs data group distribution at network layer
adding more capabilities to the routers. In this way multicast is
able to reduce packet replication to the minimum necessary.
Although various multicast protocols have been proposed over
the last decade, this solution performs well for LAN networks
but does not achieve the same performance for inter-domain
networks. In [1] a number of problems are identified and
discussed. Existing network-level multicast protocols incur
significant overheads in the routers; they require specific
hardware support in place; they cause sensitive issues behind
protocol standardisation; and, finally, they are not suitable for
extremely dynamic environments such as the mobile one.
These reasons have induced some researchers to find new
solutions working above the network level, which are
commonly referred to as application-level multicast or overlay
multicast. Unlike network-layer multicast, in application-level
multicast data is replicated at the end hosts rather than at
routers. Those end-systems form, therefore, an overlay
network that is used to deliver data packets to end users. The
purpose of application-level multicast is, hence, to build and
maintain this overlay network.

In this article we present an application-level multicast
solution in which end-systems are realised as Mobile Agents
(MAs)1 that are in charge of creating the overlay network and
of maintaining it as network conditions evolve. In this context,
the task of constructing the overlay network is equivalent to
that of optimally placing the end-systems within the network.
We divide this task in tree different phases: 1) finding the

1 MAs are software entities that act on behalf of some other software

entity, exhibit some degree of autonomy and are particularly featured with
migration capability – i.e. they can roam the network and execute in those
nodes that can host them. Other properties of a MA include re-activeness, pro-
activeness, adaptability and cloning capability. In particular, cloning is the
ability of an agent to create and dispatch copies, or ‘clones’, of itself.

optimal number of end-systems (p); 2) partitioning the
multicast group in p sub-groups; 3) near-optimally placing
those end-systems within their respective partition. The latter
phase involves MA migration both at start-up time (creation of
overlay network) and during data distribution (maintenance of
overlay network). To demonstrate and assess our MA
application-level multicast approach, we carried out a
simulation-based comparison with the Distance Vector
Multicast Routing Protocol (DVMRP)[10], which is used as a
representative network-level solution. We focussed on two
performance metrics: 1) The DVRMP multicast tree build-up
time versus the overlay tree build-up time, and 2) the stress
ratio2 of the overall network. We have prototyped and
evaluated this MA-based application level multicast on top of
the JavaSim network simulator, a component-based,
compositional simulation environment [12]. While we rely on
JavaSim for network and protocol behaviour, we have
extended it with MA capabilities in order to prototype our
system. In this way, we could assess performance, scalability,
correctness, validity, robustness, and stability of the system
under consideration. The remainder of this paper describes the
related work (Section 2), illustrates our approach (Section 3),
presents the evaluation methodology and simulations set up
used (Section 4), discusses the simulation results (Section 5),
and finally draws our conclusion, giving also an indication of
future work (Section 6).

II. RELATED WORK

Application-level multicast is aimed at supporting end-
systems that are interconnected through networks which do
not support multicasting at layer 3 (i.e. the network layer).
They create overlay networks which employ the end systems
for data forwarding. In contrast, conventional multicast
protocols deliver data streams from source to destination
through a store-duplicate-and-forward mechanism performed
at the routers.

Various application level multicast approaches have been
proposed in the literature. Following [2] it is possible to
identify three main areas in terms of overlay construction for
data distribution:

2 Stress is one of the metrics employed to compare the performance of an

application level multicast solution with the traditional one. It is defined as the
number of identical packet that a physical link carries. The optimal value for
native multicast is 1.

1. Mesh-first approaches construct overlay mesh3
networks and employ DVMRP-like routing
algorithms to deliver the data using mesh
information.

2. Tree-first approaches configure directly a data
distribution tree when a new end-system joins the
multicast group and the existing end-system leaves
the group.

3. Different protocols such as virtual addressing
approaches or other topology construction protocols
belong to implicit approaches. Virtual addressing
approaches assign a virtual address to an end-system
using a specific mapping function such as a hash
function and flood data according to the virtual
address mechanism.

Mesh-First Approaches utilize the mesh topology to create
the overlay network needed to deliver the data. The receivers
create a mesh or a Complete Virtual Graph (CVG). Then, the
sender sends the data to the receivers building a source-
spanning tree from the mesh. Finally, each user gets from the
mesh group the information needed to find the best path to
reach its group members. Thus, since the receivers have access
to system information this solution can create optimal
multicast routing paths, reducing the delay latency with source
specific trees. This allows supporting of many-to-many
multicast for real-time application such as audio/video
conferencing applications with small-sized group.

Narada, for example, is an application level multicast
protocol that employs the CVG or mesh [3]. In this way it is
very robust because it relies on mesh or CVG overlay
networks but in order to keep this overlay network up to date
all the members have to exchange a large amount of packets
losing therefore in scalability. Thus, Narada can target
audio/video conferencing applications for small-sized groups.

ALMI uses, instead, a centralised control solution to
maintain tree consistency and efficiency [4]. The problem of
centralized approaches is that they have a single point of
failure, in addition of generally being less scalable than their
distributed counterparts. It applies a shared-tree solution to
build the overlay network used for data distribution, which
may result in relatively long delay latencies. Therefore, ALMI
is not scalable because of its centralized and mesh-first nature.

Another solution that belongs to the mesh-first area is
Scattercast [5], which implements a combination of the
overlay approach (over Internet-wide networks) with a
localised IP multicast domains. Scattercast makes use of
application-aware agents located at strategic positions within
the network to adapt the delivery to the specific needs of
individual applications and end clients. Agents are located
within hosts, not at the router. Thus, the path used for the data
will generally incur longer latencies.

Tree-first approaches allow group members to choose the
joining location, which includes the possibility that some
members do not have knowledge of the overall tree. Because
of that, this approach tends to be more scalable than mesh-

3 A mesh network consists of a topology where multiple paths exist

between a pair of group members.

first. Problems may, however, arise from the appearance of
loops caused by the partial knowledge of tree by group
members. Therefore, tree-construction algorithms must take
appropriate loop-detection or loop-avoidance measures.

An example of tree-first approach is the Tree Building
Control Protocol (TBCP), which builds the tree using a
recursive approach where the root of the tree behaves as a
rendezvous point and the new member contact this root to join
the group [6]. The root will accept the new member
considering information on its latency from the root children.
Because of its recursive nature, the join process is not very
fast. However, this approach has the advantage of being
scalable. Other solutions as Overcast [7], TAG [8], and
Peercast [9] use recursive approaches which cause high
latency or low bandwidth, resulting in not fast join procedure.

Finally, within Implicit approaches there are solutions
such as NICE [14], designed for large groups and low-
bandwidth, real-time application, and CAN [15] which uses a
virtual addressing approach. The first one uses a recursive
joining procedure, which is relatively slow. The second one
employs a multicast flooding of the data that does not give
guarantee on the delivery.

All of the above approaches try to address different issues
that are usually conflicting and are then applicable only to
specific cases. Our MA-based solution can be classified
among the tree-first approaches. Each agent builds and
maintains its part of the tree relying on routing information
which is independently maintained by network routing
protocols. Thus, the algorithm is scalable, as confirmed by the
analysis of section III.

III. OUR APPROACH: MOBILE AGENT BASED APPLICATION

LEVEL MULTICAST

In this section we describe the structure of our system,
including the construction and run-time maintenance of the
overlay network by the MA system, as illustrated in Fig. 1.
Upon being deployed, starting from the data source (dotted
line), MAs act as end-systems delivering the group data to the
users (tick-line). We can identify two different phases. The
first one consists of agent deployment (those agents
collectively form the overlay network). It is through a strategic
and efficient location process that we rapidly construct
effective overlays. We shall next illustrate a progressive
deployment process which is linear with network size as well
as being near-optimal in terms of agent location.

Once deployed, the agents relay data among themselves as
well as distributing it locally. The second phase consists of a
combination of data relay with agent self-regulation, aimed at
maintaining the overlay in phase of evolving network
conditions. The overlay network can be interpreted as source
rooted distribution tree where MAs represent the tree leafs.
Within their competition zone, MAs deliver data to the users
using the unicast protocol. In this phase of the data delivery
our approach pays off in terms of stress and adaptivity, with
respect to native multicasting.

iMac

Data SourceData Source

iMac

i Mac

i Mac

iMac

Data SourceData Source

iMac

i Mac

i Mac

Fig. 1 System structure. MAs act as end-systems to deliver
group data from the source to the users.

These two phases are described below in more detail.

A. Deployment phase

In this phase we calculate the number and location of agents
needed for a given network and set of recipients. Agents of
such a system need to have three important abilities: mobility,
ability to perform agent cloning, and read-access of the
network routing tables. Routing information provides agents
the necessary input for the processing of the deployment and
self-adaptation processes. Because of that, the efficiency of
the MA overlay is sensitive to the accuracy of the routers
routing tables which is, in turn, maintained by routing
protocols operating independently of the MA system.

Fig. 2 illustrates the MA deployment algorithm. The
algorithm deploys the end-systems by partitioning the network
through an MA "clone and send" process, which starts at the
source host. Initially, the first MA is created at a node that is
MA-enabled, namely an MA host. This MA is given the list of
group users (U) and the operations to be performed on them
(data delivery). This first MA builds an estimate of the total
cost associated to the current location by summing up the
individual routing costs (extracted from the local routing
table) related to the involved users’ locations. Having
estimated the total cost for performing the task from its current
location, the MA will then consider alternative configurations
(i.e. MA locations) using partial costs attached to the current
neighbor nodes.

For each neighbor, partial costs are found by adding the
routing costs involved only by those target users that are
reached through the specific neighbor node. After that, a
simple heuristic function is employed in order to decide
whether or not to clone new agents to be sent to the neighbors.
For each neighbor node (i), the heuristic function computes
the probability (i.e. the advantage) of sending an MA to the
node, by using the following formula

Ct

Ci

Ut

Ui
Pi ×=

MA LogicMA Logic

STARTSTART

Source Node ID, v
List of Users IDs, U
Partitioning threshold, THC
Migration threshold, TLM
Number of neighbors, such that: Pi > TLM , m=0

Source Node ID, v
List of Users IDs, U
Partitioning threshold, THC
Migration threshold, TLM
Number of neighbors, such that: Pi > TLM , m=0

Total number of users |U|, Ut
From local routing table compute total cost, Ctot
Create and Initialize first Agent

Select new neighbour, i. From local
routing table, compute sub-partition
rooted at i: partial cost, Ci and nodes in
sub-partition, Ui

Pi = (| Ui |* C i) / (Ut * Ctot)

Pi > THC

have all neighbours
been visited?

have all neighbours
been visited?

Y

Y

N

N

Start
self-regulation

Start
self-regulation

Remove Ui list from U

Clone new MA and
send it to node i.

clnode = i; v = i; U≡ Ui

Start parallel thread
with new MA

OUTPUT sub-list
of users U (if not
empty) centred in
current root node

OUTPUT sub-list
of users U (if not
empty) centred in
current root node

Pi > TLM
&
Pi>Piold

m = 1
Piold= P i

mnode = i
pnode = v

Y

m = 1m = 1

MA in root migrates to
node mnode; v=i; m=0

N

Y

N

N
o

m
ig

ra
tio

n

N
ew

 M
A

 c
o

m
p

ut
e

th
e

 s
a

m
e

 a
lg

or
it

hm
 b

u
t i

n
a

 s
e

pa
ra

te
 t

hr
ea

dmnode = clnodemnode = clnode

Y
THM = 5*THM

N

Fig. 2 Deployment algorithm.

Where |Ut| is the total number of users targeted by the agent,
|Ui| is the number of users targeted through node i, Ct is the
total cost and Ci the partial cost. The cloning decision is made
by comparing this probability with two appropriate cloning
threshold values THC THM and which have also an impact on
the number of MAs that is finally cloned and deployed. When
Pi lays between THM and THC, the agent triggers migration.
Otherwise, agent deployment is finished, multicasting starts
and the agent system switches to the self-regulation phase
(described in the next section). A migration flag (m) is
activated when Pi exceeds THM but the actual migration is only
activated after all the alternative locations have been
examined. Piold is a variable that allows the algorithm to
remember the value of Pi for which migration has been set. If
another neighbor having a higher Pi appears, migration will be
set for that neighbor, therefore ensuring that migration to the
neighbor with maximum Pi is triggered. The variable mnode
identifies the MA destination node. This value is finally
compared with pnode, which denotes a previously visited node
(by the MA). If mnode and pnode are equal there is the risk
that the MA oscillates between two locations leading the MA
system to become unstable. This is avoided by increasing the
THC threshold according to our preference.

B. Self-Regulation phase

The second phase is to make sure that the agents are
following the dynamics of the network. Node failures, link
congestion and users leaving the multicast session result in
changes in the network conditions. In order for the agent
system to be adaptive, it has to periodically access relevant
routing tables and reconsider the MA locations. Fig. 3 shows
the algorithm employed for self-regulating the system. This
follows the same approach adopted during MA deployment,
with the exception for cloning which is disabled in order to
avoid uncontrolled agent proliferation.

The parameters of the algorithm are the rooting table look
up period (Π), the difference between the monitoring costs
associated to two successive retrieves (DCt), and an MA
migration threshold (TH1). Each MA autonomously identifies
the neighbor associated to the local minimum multicast cost
(this related to the MA partition only). As for deployment,
migration is controlled through the use of second threshold
(TH2) and a flag, which prevents instability (i.e. agent
oscillation between two adjacent nodes).

Next, we evaluate the methodology and simulations design
used to carry out our results.

IV. EVALUATION METHODOLOGY

This section illustrated the methodology used to compare
our solution with the Distance Vector Multicast Routing
Protocol (DVMRP) [10] [11]. DVMRP is a multicast routing
protocol for dense topologies, which means that group
members are densely distributed across the network. It
forwards packets using a multicast tree that is built by
applying the Reverse Path Multicast (RPM) algorithm.

Without loosing generality and in order to achieve
reasonable simulation times, we assume that all the nodes in
the network are group members. The metrics used for the
comparison are the Tree Build up Time and the Stress Ratio
that are plotted against topology size. The former is defined
for the DVRMP as the period of time elapsed between the
initiation of the members’ joining procedure and the
construction of data distribution tree. In the MA system, the
tree build time is the time to finish the MA deployment phase.

Stress Ratio is defined as:

SressMcast
layStressOver

oStressRati =

which gives the variation of the overlay network from the
optimal value. Since we assume that all nodes are group
members, the optimal stress value is 1 packet per link,
corresponding to 1 packet per member. For example, a
topology of 25 nodes may have a stress of 24 (1 node is the
data source) for the DVMRP algorithm, and 33 (calculated as
the total number of packets generated) for the MA-based one.
In that case, the stress ratio would be 1.32, which means that
the overlay network generates on average 1.32 packets per
node4.

4 Note that the leaf’ members receive only 1 packet, but the end-systems

can receive more than 1.

In order to carry out this comparison, extensive simulations
under random network environments have been performed. It
was very important to run the algorithm under realistic
network topologies composed of routers, links and hosts. For
this reason we used the Javasim network simulator [12], which
allows the simulation of a variety of scenarios.

MA Logic

Self-regulationSelf-regulation

Heuristic Function (Π, TH1, TH2)

Compute max(Pi) from NeighbourList[]
Set mnode = Neighbour with max(Pi)

max(Pi) > TH2
&&
pnode ! =mnode

max(Pi) > TH2
&&
pnode ! =mnode

DCt > TH1?DCt > TH1?

Y

N

Y

Remove Ni list from N

Sleep For Π

Migrate to
mnode

Read local routing table,
identify NeighbourList[] and

Compute DCt

N

Fig. 3 Self-regulation algorithm.

TCP/IP networking and transport, including the Distance
Vector (DV) routing protocol, is used as the bases for our
simulations. We have also enhanced the simulator with MAs
capabilities, including agent generation, cloning, migration,
termination and so on.

The GT-ITM topology generator was used to create
realistic, Internet-like, transit-stub topologies [13]. The
simulations have been executed for topologies of 25, 50, 75,
100, 150, 200 and 300 nodes. To ensure statistical
significance, simulations have been repeated 20 times for each
of the above network sizes. That is, we have randomized the
simulation process, generating families of 20 topologies at a
time, characterized by comparable topological features (e.g.
average node degree, number of nodes, etc). In this way we
could assess the sensitivity of our metrics to network size,
using the number of node as network size parameter and
isolating other effects.

In the next section we present and analyze the results of the
simulations.

V. RESULTS

Fig. 4 shows the average tree build time for each of the two
approaches under evaluation. We can see that the MA-based
approach performs slightly worse than DVMRP. This was
expected due to the difference in the very nature of the two
approaches. Being an application-based solution, our MA

approach is bound to incur larger overheads which are
countered by a larger flexibility and by its ability to work
without layer 3 multicasting support.

An important aspect of both algorithms is linearity with
respect to network size. This is an essential feature, which
makes the MA approach viable even in the case of large
number of nodes/users. Linearity during MA deployment is
obtained because that process is carried out in parallel upon
each cloning instance. As soon as being injected into the
system, each new agent continues the deployment process
within its sub-partition (defined by its parent MA),
autonomously from any other agent that act in parallel.

Because of that, the overall agent deployment time is
proportional to the depth of the agent deployment tree, i.e. to
the network size. The factor dominating the linear deployment
process is the time needed to migrate between two nodes. We
have taken measures in real MA systems and we have found
that this factor is in the order of hundred of milliseconds [16].

DVMRP VS MA-Based

0

0.5

1

1.5

2

2.5

0 100 200 300 400

Topology size (No of nodes)

A
vg

 T
re

e
B

ui
ld

 T
im

e
(s

ec
)

MA-Based
DVMRP

Fig. 4 DVMRP Tree build time Vs MA-based Tree build
time

Our findings on the Average Stress Ratio are depicted in
Fig. 5. Again we find linearity with respect to number of
network nodes/users. In particular, we see that the distance
from optimality is relatively small (considering that we have
an application-level algorithm compared to a layer-3 solution).
The relatively small slope of the MA line (0.049 degrees)
demonstrates a negligible sensitivity to network size that can
be controlled by changing the number of MAs injected in the
system.

When the ratio between number of MAs and number of
nodes/users is reduced, the time to deploy those agents (i.e. the
time to build the overlay network) tends to decrease because
there are less agents to be located. However, in that case the
size of the network partitions (i.e. number of nodes/users per
MA) increases and, hence, the cost of unicasting within those
partitions increases. On the other hand, if the MA to nodes
ratio increases, we observe the reverse phenomenon. We can
therefore conclude that due to its linearity and order of
magnitude of the dominant factors, the MA solution is
scalable with respect to network size and number of users and
represents a viable alternative to native, layer-3 multicasting
protocols.

In this paper we have reported some key problems

encountered by the important area of multicast, including layer
3 multicast and other application-level multicast approaches.

Stress Ratio Vs Topology size

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 100 200 300 400

Topology size (No of nodes)

A
vg

 S
tr

es
s

ra
tio

MA-Based

DVMRP

Best Linear Fit

Fig. 5 Stress Ratio Vs Topology size.

VI. CONCLUSIONS & FUTURE WORK

Because there seems to be increased scope for application-
level solutions, we have embarked the study of a new
approach based on mobile software agents. The idea was that,
in order to find adaptable solutions in the context of dynamic
and mobile networking environment, the natural way was to
use code mobility as a means to address the necessary
requirements.

We have therefore come up with an algorithm that would be
distributed (in order to pursue scalability), adaptive (in order
to keep the pace with changing networking conditions),
infrastructure-less (in order to be easily deployed), and
efficient (in order to be represent a viable alternative to
existing solutions). It is through agent mobility and cloning
that we have addressed those requirements.

At the same time, we have gone through the exercise of
developing a suitable assessment methodology that would be
acceptable to the networking community, providing an insight
on the MA-based solution. To achieve that, we started from a
widely used network simulator (JavaSim is a Java version of
the NS network simulator), enhancing it with the necessary
MA capabilities.

Although our initial results show that our approach offers
performance that are not too worse than DVMRP, the
intention was not to make the case to replace layer-3 solutions
with application-level ones. DVMRP has been selected mainly
because its implementation was already available in the
adopted simulator. Other more efficient layer-3 solutions do
exist and it would probably be unwise to pursue the avenue to
replace them with better application-layer counterparts.
Therefore, we would see network- and application-level
multicast as complementary rather than competing solutions,
capable of addressing complementary requirements.

Our assessment of the potential of the MA approach is not
completed. We shall also seek to improve its performance and
reduce instability problems that occasionally arise. But the
main focus of the work to be done next is an evaluation of
MA-based multicast in the context of mobile networks and
mobile users. Having put into place the basic simulation

infrastructure we can now look at the behaviour of our system
in a number of more complex scenarios, assessing for instance
its sensitivity to different routing protocols (our approach
relies on routing table information). Finally, our priority will
be to refine run-time self-regulation under very dynamic
conditions.

ACKNOWLEDGMENT

The work reported in this paper has formed part of the WA1
area of the Core 2 Research Programme of the Virtual Centre
of Excellence in Mobile & Personal Communications, Mobile
VCE, www.mobilevce.com, whose funding support, including
that of EPSRC, is gratefully acknowledged. More detailed
technical reports on this research are available to Industrial
Members of Mobile VCE.

REFERENCES
[1] A. El-Sayed, V. Roca, L. Mathy, “A survey of Proposals for an

Alternative Group Communication Service”, IEEE Network magazine,
Special issue on “Multicasting: An Enabling Technology”,
January/February 2003.

[2] Korikang, Kimsh, “Survey on Application Level Multicast”, CDS&N
(Collaborative Distributed System and Network) laboratory.

[3] Y-h. Chu, S. G. Rao, and H. Zhang, “A Case for End System Multicast,”
ACM SIGMETRICS 2000, June 2000.

[4] D. Pendarakis, S. Shi, D. Verma and M. Waldvogel, “ALMI: An
Application Level Multicast Infrastructure,” the 3rd Usenix Symposium
on Internet Technologies & Systems (USITS 2001), March 2001.

[5] Y. Chawathe, “Scattercast: An Adaptable Broadcast Distribution
Framework,” In special issue of the ACM Multimedia Systems Journal
on Multimedia Distribution, 2002.

[6] L. Mathy, R. Canonico, and D. Hutchison, “An Overlay Tree Building
Control Protocol,” NGC 2001, November 2001.

[7] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.
O'Toole Jr., “Overcast: Reliable Multicasting with an Overlay
Network,” USENIX Symposium on Operating Systems Design and
Implementation, October 2000.

[8] M. Kwon and S. Fahmy, “Topology Aware Overlay Networks for Group
Communication,” Proceeding of NOSSDAV’02, May 2002.

[9] M. Bawa, H. Deshpande, and H. Garcia-Molina, “Transience of Peers &
Streaming Media,” HotNets-I, October 2002.

[10] IP Multicast and DVMRP, FutureSoft, www.futsoft.com.
[11] Seiji Ueno, Toshihiko Kato, Kenji Suzuki: Analysis of Internet Multicast

Traffic Performance Considering Multicast Routing Protocol. ICNP
2000: 95-104.

[12] The JavaSim simulator, www.javasim.org
[13] Source code of GT-ITM, available as http://www.cc.gatech.edu/projects/

gtitm/.
[14] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy,

"Scalable Application Layer Multicast," Proc. of ACM SIGCOMM'02,
August 2002.

[15] Sylvia Ratnasamy, Mark Handley, Richard Karp, Scott Shenker,
Application-level Multicast using Content-Addressable Networks,
In Proceedings of Third International Workshop on Networked Group
Communication (NGC'01).

[16] C. Bohoris, A. Liotta, G. Pavlou, Evaluation of Constrained Mobility for
Programmability in Network Management, in Services Management in
Intelligent Networks, Proceedings of the 11th IEEE/IFIP International
Workshop on Distributed Systems: Operations and Management
(DSOM '00), Austin, Texas, USA, December 2000

