
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 6, NO. 1, MARCH 2009 15

Policy Conflict Analysis for DiffServ Quality of
Service Management

Marinos Charalambides, Paris Flegkas, George Pavlou, Javier Rubio-Loyola, Member, IEEE
Arosha K Bandara, Emil C Lupu, Alessandra Russo, Naranker Dulay, Morris Sloman, Member, IEEE

Abstract—Policy-based management provides the ability to
(re-)configure differentiated services networks so that desired
Quality of Service (QoS) goals are achieved. This requires
implementing network provisioning decisions, performing ad-
mission control, and adapting bandwidth allocation to emerging
traffic demands. A policy-based approach facilitates flexibility
and adaptability as policies can be dynamically changed without
modifying the underlying implementation. However, inconsis-
tencies may arise in the policy specification. In this paper
we provide a comprehensive set of QoS policies for managing
Differentiated Services (DiffServ) networks, and classify the
possible conflicts that can arise between them. We demonstrate
the use of Event Calculus and formal reasoning for the analysis of
both static and dynamic conflicts in a semi-automated fashion.
In addition, we present a conflict analysis tool that provides
network administrators with a user-friendly environment for
determining and resolving potential inconsistencies. The tool has
been extensively tested with large numbers of policies over a
range of conflict types.

Index Terms—QoS management policies, conflict detection,
dynamic conflict resolution.

I. INTRODUCTION

IN RECENT years, policy-based management has been
proposed as a suitable means for managing different as-

pects of IP networks, including Quality of Service (QoS) and
security. Yet despite various research projects, standardization
efforts and substantial interest from industry, policy-based
management is still not a reality. There are some vendor tools,
mostly for virtual private network provisioning, but policy-
based management is still far from being widely adopted
despite its potential benefits of flexibility and “constrained
programmability.” One of the reasons behind the reticence to
adopt this technology is that it is difficult to analyze policies

Manuscript received March 2008; revised and accepted March 2009.
The associate editor coordinating the review of this paper was Prof. R.
Stadler. This work was supported by EPSRC (Grant Nos: GR/S79985/01 and
GR/S79992/01) and EU EMANICS Network of Excellence (No: 26854).
M. Charalambides and G. Pavlou are with the Department of Elec-

tronic and Electrical Engineering, University College London, UK (e-mail:
{m.charalambides, g.pavlou}@ee.ucl.ac.uk).
P. Flegkas is with the Department of Computer and Communication

Engineering, University of Thessaly, Greece (e-mail: pflegkas@inf.uth.gr).
J. Rubio-Loyola is with the Department of Communication Technologies,

Universitat Pompeu Fabra, Spain (e-mail: javier.rubio@upf.edu).
A. K. Bandara is with the Department of Computing, The Open University,

Milton Keynes, UK (e-mail: a.k.bandara@open.ac.uk).
E. C. Lupu, A. Russo, N. Dulay, and M. Sloman are all with the Department

of Computing, Imperial College London, UK (e-mail: {e.c.lupu, a.russo,
n.dulay, m.sloman}@imperial.ac.uk).
Digital Object Identifier 10.1109/TNSM.2009.090302.

in order to guarantee configuration stability given that policies
may have conflicts leading to unpredictable effects.

Although there has been considerable work on analysis of
security policies, analysis of management policy has received
comparatively little attention. Initial work in [1] identified pol-
icy conflicts in policy-based management as being analogous
to software bugs. Subsequent work [2] focused on conflicts
related to generic management policies and described means
to statically detect conflicts, but did not take into account
policy constraints that restrict the applicability of the policies
involved. A logic-based approach was therefore introduced in
[3], which provides advanced reasoning capabilities to cope
with the emerging requirements of complex systems.

This paper generalizes our initial approach [5, 6], provides a
comprehensive review of policy conflicts in QoS management
for DiffServ networks and describes an integrated framework
for policy analysis, conflict detection and resolution. The
approach we adopt is based on the work presented in [3]
where Event Calculus (EC) was proposed as the underlying
formal representation for policies, systems behavior and for
the rules that define the conditions that will result in conflicts
and are therefore used to detect the presence of conflicts. In
this approach, Ponder policies [7] and design-level models
of managed objects such as state-charts are automatically
translated to the EC representation to facilitate analysis and
detect the presence of inconsistencies.

In contrast to prior work that only used examples from
QoS management to illustrate specific techniques, we aim
here to comprehensively cover QoS provisioning policies
from service management to traffic engineering, and classify
inconsistencies that may arise between them based on their
properties. We re-visit static conflict detection in the context
of service subscription policies and enhance our approach to-
wards automating dynamic conflict analysis which can trigger
conflict resolving policies. Our approach is implemented in
an integrated tool supporting both static and dynamic conflict
analysis, which has been extensively tested for scalability
using large numbers of policies.

In the next section we present background information
regarding the QoS management framework we adopt and our
conflict analysis approach. This is followed by a detailed
description of the various policies that can be used to drive the
functionality of individual QoS modules in Section III. Section
IV presents a classification of the conflict types identified and
the conditions under which these conflicts arise. Section V
elaborates on our conflict analysis approach and describes

1932-4537/09$25.00 c© 2009 IEEE

16 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 6, NO. 1, MARCH 2009

the tool developed. Section VI presents and discusses exper-
imental results and analysis examples. Section VII reviews
the results of this paper in the context of the related work in
this area and Section VIII presents our conclusions and future
work.

II. BACKGROUND

A. DiffServ QoS Management Framework

In order to provide a holistic approach for QoS management
in DiffServ networks, a range of management operations need
to be deployed from traffic engineering and admission control,
to dynamic management of resources. Several frameworks
have been proposed for this purpose that mainly stemmed from
European collaborative research projects including TEQUILA
[8], MESCAL [9], and ENTHRONE [10]. All frameworks
propose the use of a general model depicted on Fig. 1,
where the QoS management goals are realized by two dis-
tinct management blocks: Service Management and Traffic
Engineering (TE). The former is responsible for agreeing the
customers’ or peer domain’s QoS requirements in terms of
Service Level Specifications (SLSs), while Traffic Engineering
is responsible for fulfilling contracted SLSs by deriving the
network configuration.
The functionality of each of the two sub-systems is realized

by a two-level hierarchy of modules that reflect the off-line and
run-time operational mode of the model. On the service man-
agement side, the SLS-Subscription (SLS-S) module has a cen-
tralized off-line functionality and performs admission control
on subscription requests based on resource availability pro-
vided by the TE system, whereas the SLS-Invocation (SLS-I)
module is distributed across ingress routers and performs
dynamic invocation of already subscribed SLSs based on the
network state, following operational guidelines provided by
the SLS-S. On the Traffic Engineering side, the Network
Dimensioning (ND) module is a centralized off-line compo-
nent that has a global view of the network. It maps forecasted
traffic demands onto physical network resources in terms of
MPLS Labeled Switched Paths (LSPs) and anticipated loading
for each QoS class on all interfaces, providing a long to
medium term network configuration. Configuration parameters
are given in the form of an admissible range of values and are
used by Dynamic Resource Management (DRsM) modules as
guidelines for the run-time allocation of resources in response
to short-term traffic variations.
The dynamic aspects of the architecture are supported by

a monitoring sub-system that closes the management loop.
It provides information about the current network state, e.g.
link utilization, in the form of threshold-crossing alarms that
trigger dynamic reconfiguration actions.

B. Approach to Policy Conflict Analysis

In an environment where a number of policies need to
coexist, there is always the likelihood that several policies will
be in conflict, either because of a specification error or because
of application-specific constraints. It is therefore imperative to
detect and resolve these conflicts.
Our approach is based on a identify-classify-detect-resolve

principle, where an application expert would (a) analyze the

Fig. 1. QoS Management Framework. Two main sub-systems, Service
Management and Traffic Engineering, each implementing a two-level module
hierarchy.

various policy types governing the behavior of a managed
system and identify possible inconsistencies that may arise
among these policies, (b) classify the conflicts based on the
nature of their occurrence, and, (c) develop techniques and
mechanisms for their effective detection and resolution. Policy
conflicts can be characterized by the policy types involved
and the scope of their enforcement, application environment
constraints, and the time frame at which they can be detected
relative to policy enforcement. A classification based on such
properties/characteristics is vital for the correct design of
efficient detection rules as well as for the implementation of
appropriate detection/resolution mechanisms.
Various conflict types have been identified in the literature,

at different abstraction levels, spanning from generic policy
conflicts in distributed systems management [1] [2] to more
specific ones in the domain of QoS and security management
[4] [34]. These were broadly classified into modality and
application-specific conflicts, the former being conflicts that
can be derived from the policy syntax such as positive/negative
conflicts and the latter being specific to the application i.e.,
the subjects, targets and actions specified in the policy. Whilst
for modality conflicts the conditions under which the conflicts
arise are generic, for application specific conflicts these condi-
tions need to be specified and encoded in rules that can detect
the occurrence of a conflict. These rules are also sometimes
called meta-policies, although the term is overloaded, and may
include system-specific data in addition to policy information
for correctly capturing conflicting situations. An instance of
system-specific data here are the functional dependencies
between the QoS management modules, which in effect define
the scope of a conflict. These dependencies are implicit in the
hierarchical QoS management framework described, where the
functionality of the SLS-I and DRsM modules is constrained
by guidelines provided from SLS-S and ND respectively. We
can thus distinguish between intra- and inter-module conflicts,
the former arising from policies applying to a single module,
and the latter arising between policies defined for different
modules.
In addition to scope and level of abstraction, policy conflicts

can also be classified based on the time-frame at which
they can be detected. Thus we can distinguish between static
conflicts that can be detected through off-line analysis at spec-
ification time and dynamic conflicts that can only be detected
when policies are enforced and depend on the current state of
the managed system [6]. These factors influence the analysis
methodology and requirements for dealing with conflicts.

CHARALAMBIDES et al.: POLICY CONFLICT ANALYSIS FOR DIFFSERV QUALITY OF SERVICE MANAGEMENT 17

TABLE I
EVENT CALCULUS BASE PREDICATES

Predicate Description
initiates(A, B, T) Event A initiates fluent B for all time >T

terminates(A, B, T) Event A terminates fluent B for all time >T

happens(A, T) Event A happens at time point T

holdsAt(B, T) Fluent B holds at time point T

initiallyTrue(B) Fluent B is initially true

initiallyFalse(B) Fluent B is initially false

Static conflicts are typically detected through analysis initiated
manually by the system administrator; conflicts represent
inconsistencies between policies and are typically resolved by
amending the policies. In contrast, run-time conflicts must be
detected by a process that monitors policy enforcement and
detects inconsistent situations in the system’s execution. Res-
olution must be achieved automatically, for example through
enforcing resolution rules. Lack of automation in the handling
of run-time conflicts may have catastrophic consequences on
the correct system operation, especially when managing QoS
for delay sensitive applications.
Our conflict analysis approach is based on formal methods

and derivation that caters for the various conflict types we
have identified in policy-driven service management and traffic
engineering. Based on previous work [3] we have chosen to
use Event Calculus for this purpose as it permits representation
of events and persistent properties. The formalism is used
for the representation of both policies and the managed
system [11], providing a uniform description that is amenable
to analysis. Analysis relies on specifying detection rules to
define the conditions for a conflict. As discussed in Section
V-A&B, resolution for the identified static conflicts largely
requires human intervention, in contrast to dynamic conflicts
for which resolution is automated and comes in the form of
predefined policies. For demonstration purposes, the dynamic
analysis process developed operates on Event Calculus-based
models that emulate the behavior of on-line QoS management
modules.

C. Formal Representation and Event Calculus

Event Calculus (EC) is a logic formalism for representing
and reasoning about dynamic systems. Because it supports a
time representation that is independent of any events that may
occur, it provides a particularly useful way to specify a variety
of event-driven systems. In the context of our work, EC serves
as the underlying formalism for describing policies and the
managed system since it has well understood semantics, and
supports all modes of logical reasoning.
Since its initial presentation [12], a number of variations

have been presented in the literature. In this work we use the
form presented in [13], consisting of (i) a set of time points
(that can be mapped to the non-negative integers); (ii) a set of
properties that can vary over the lifetime of the system, called
fluents; and (iii) a set of event types. In addition, the language
includes a number of base predicates: initiates, terminates,
holdsAt, and happens, as summarized on Table I.

This is the classical form of Event Calculus where the-
ories are written using Horn clauses. The frame problem
is solved by circumscription, which allows the completion
of the predicates initiates, terminates and happens, leaving
open the predicates holdsAt, initiallyTrue and initiallyFalse.
This approach allows the representation of partial domain
knowledge (e.g. the initial state of the system). Formulae
derived from Event Calculus are in effect derived from the
circumscription of the EC representation.
The analysis we wish to perform must determine the poli-

cies that hold given some preconditions and a sequence of
events. This involves performing deductive reasoning over the
Event Calculus based formalism, taking into account rules
containing applicability constraints for the policies. If we
ensure that the formal representation conforms to a restricted
version of normal logic programs — known as stratified
normal logic programs — it can be shown that the analysis
reasoning task is P-complete [14]. A stratified normal logic
program is a program whose rules can be ordered such that
for any rule that has a negated literal in its body, there is rule
before it with that literal in the head. This can be achieved by
ensuring that the behavioral specification of managed objects
does not involve self-transitions — a restriction which does
not affect our ability to model the behavior of the presented
QoS management framework.

III. POLICY DRIVEN QOS MANAGEMENT

QoS management has always been one of the most popular
application domains of policies since ISPs can realize their
objectives through flexible programmability with respect to
offered services and treatment of customer traffic in their
network. A small number of policies have been defined for
some of the components of the QoS management framework
described in the previous section [15]. Here, we provide a
comprehensive set of QoS management policies and explain
how their enforcement defines the behavior of the managed
modules and associated IP DiffServ managed objects. The
majority of these policies are generic enough to apply to other
QoS and resource management frameworks, where functions
for admission control and BW management are essential.
They are categorized into service management and traffic
engineering policies and follow the hierarchy of Fig. 1.

A. Service Management Policies

The service management functionality is realized by the
SLS-S and SLS-I modules that perform static and dynamic
admission control respectively. The main objective of sub-
scription logic is to control the number and type of service
subscriptions, aiming to avoid overloading the network, whilst
at the same time maximizing subscribed traffic. To achieve
this objective, the SLS-S module employs managed objects
that expose a set of methods defining its programmable
functionality. These methods guide the evolution of the SLS-S
module in its operation through a number of states represented
in the state machine diagram of Fig. 2. The transitions between
these states can thus be managed through policies. The SLS-S
operation distinguishes two main processes — initialization
and admission control — during which parameters essential

18 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 6, NO. 1, MARCH 2009

Fig. 2. SLS-S module behavior.

for the modules operation are initialized, and the actual
decision on the acceptance/rejection of new subscriptions is
taken; the relevant policy actions are summarized on Table II.

The first two actions, P1.1 and P1.2, use the notion of
service satisfaction and quality levels [16] to set the relevant
parameters per QoS Class (QC) and their values range from
0 to 1. Satisfaction parameters essentially define multiplexing
factors that are used to derive the rates at which a service is
considered almost and fully satisfied, and quality parameters
are analogous to the confidence level with which a SLS is
to enjoy the agreed QoS — quality values close to 1 being
appropriate for high priority QCs. The example below encodes
action P1.1 into policy specification following the Ponder
format [7] and defines the almost satisfied factor for AF1
traffic during peak hours.

inst oblig /policies/sls-s/P1.1 {
on newRPC();
subj s = sls-sPMA;
targ t = sls-s/servSatisfMO;
do t.setAlmstSatisf(af1, 0.2);
when duration(08:00-18:00);

}

As mentioned in Section II-A, subscription admission con-
trol is based on resource availability and more specifically
on a Resource Availability Buffer (RAB) [16] which holds
aggregated traffic demand of subscribed SLSs on a per Traffic
Trunk (TT) basis. Policy actions P1.3 set the upper limit
— subscription upper (SU) — as a percentage of the RAB
for accepting new subscriptions in a conservative, moderate,
or risky fashion and define the level of associated risk in
satisfying the QoS requirements. The acceptance limit is used
as a constraint when deciding whether to accept or reject a
request as in the policy example below encoding P1.4, where
a request is accepted if the aggregated traffic demand is less
than SU.

inst oblig /policies/sls-s/P1.4 {
on totalAnticipatedDemandCalced(SLS);
subj s = sls-sPMA;
targ t = sls-s/acMO;
do t.accept(SLS);
when t.getTotalDemand(SLS.tt) < t.getSU(SLS.tt);

}

In contrast to the static nature of the subscription module,
the service invocation logic is based on run-time events/
notifications to regulate the traffic entering the network. The
policies used here perform dynamic admission control on the
number and types of active services, as well as on the volume
and type of traffic admitted into the network. The behavior of
the SLS-I module as a result of policies is depicted in Fig. 3
and the relevant actions supported are listed on Table III.
The first three actions are invoked by policies during the

initialization of the module and provide initial values to
various parameters — P2.1 sets the rates that are thought to
almost/fully satisfy a service, P2.2 sets minimum (ACmin)
and maximum (ACmax) parameters of the admission control
algorithm, and P2.3 defines two thresholds that signal target
critical (TCL) and very critical levels (VCL) of traffic flowing
into the network.
The run-time operation of the module is triggered by

threshold crossing alarms and service invocation requests. The
latter activate policy actions for accepting/rejecting a request
(P2.4, P2.5), whereas the former initiate a set of actions
that control the rates of incoming traffic (P2.8) and change
invocation admission control parameters (P2.6, P2.7). These
parameters are used as constraints in accept/reject policies and
essentially define the treatment of new service invocations:
the closer the aggregate value of current TT utilization and
the requesting SLS traffic rate to ACmax, the less the chances
of the SLS being successfully invoked. The example policies
below encode actions P2.6 and P2.8 to handle the event of
a TCL threshold crossing alarm. When enforced, they take
proactive measures to avoid potential congestion built-up,
by decreasing ACmin — thus decreasing the probability of
accepting new invocations — and the service rate by 20%
and 10% respectively.

inst oblig /policies/sls-i/P2.6 {
on TCLAlarmRaised(up, TT);
subj s = sls-iPMA;
targ t = sls-i/servAdjustMO;
do t.decrACmin(TT, 20);
when duration(08:00-18:00);

}
inst oblig /policies/sls-i/P2.8 {

on TCLAlarmRaised(up, TT);
subj s = sls-iPMA;
targ t = sls-i/servAdjustMO;
do t.decrSR(TT, 10);
when duration(08:00-18:00);

}

B. Traffic Engineering Policies

Traffic Engineering is responsible for fulfilling the con-
tracted SLSs by deriving the long- and short-term network
configuration. The former is realized by Network Dimension-
ing (ND) that maps the forecasted traffic demand provided by
SLS-S onto physical network resources in terms of MPLS La-
beled Switched Paths (LSPs) and anticipated loading for each
DiffServ QoS class (QC) on all interfaces. The policy actions
on Table IV guide the functional behavior of dimensioning
to effectively achieve an optimal configuration in terms of
network load.
The first two policy actions, P3.1 and P3.2, allow an ad-

ministrator to set upper and lower bounds of network capacity

CHARALAMBIDES et al.: POLICY CONFLICT ANALYSIS FOR DIFFSERV QUALITY OF SERVICE MANAGEMENT 19

Fig. 3. SLS-I module behavior.

TABLE II
SLS-S POLICY ACTIONS

ID Policy action Description

P1.1 setAlmstSatisf(QC, Fctr) Sets the almost and full satisfaction
setFullSatisf(QC, Fctr) factors per QC

P1.2 setQltLvl(QC, OQL) Sets the overall quality level per QC

P1.3
setSUConsrv(Value) Sets the RAB upper limit in a
setSUModrt(Value) conservative, moderate, or risky
setSURisky(Value) fashion

P1.4 accpt(SLS) Accepts an SLS subscription request

P1.5 rejct(SLS) Rejects an SLS subscription request

per QC, and setup explicit paths through which specific traffic
will be routed. Another function of ND is to handle the QoS
requirements of the expected traffic in terms of delay and
packet loss. This process is simplified by transforming the
delay and loss requirements into constraints for the maxi-
mum hop count for each traffic trunk. The actions of P3.3
allow for different strategies in achieving this objective with
calcHopCountMax being conservative and appropriate for high
priority traffic. The core component of ND is an optimization
algorithm and its objective is to find a set of paths for which
the BW requirements of TTs are satisfied and the delay and
loss requirements are met by using the hop count constraint
as an upper bound. This is a non-linear optimization problem
which is solved by the gradient projection method [24]. Action
P3.4 sets an upper bound on the number of hops the calculated
paths are permitted to have, and P3.5 defines the number of
alternative paths the optimization algorithm should allow for
every traffic trunk that belongs to a specific QC for the purpose
of load balancing. In the final stages, ND assigns the residual
physical capacity to the various traffic classes or reduces the
allocated capacity because the link capacity is not enough to
satisfy the predicted traffic requirements. Actions P3.6 and
P3.7 can achieve these objectives with different strategies
by explicitly, equally or proportionally reducing/distributing
capacity between the various traffic classes.
The provisioning directives from ND are treated as nom-

inal values and are a result of predicted demand. Dynamic
TE functions are deployed by DRsM that deal with traffic
fluctuations around the forecasted values in order to optimize

TABLE III
SLS-I POLICY ACTIONS

ID Policy action Description

P2.1 setSRAS(TT, Value) Sets almost/fully satisfied service
setSRFS(TT, Value) rates per TT

P2.2
setACMin(TT, Value) Sets admission control min/max
setACMax(TT, Value) limits wrt RAB per TT

P2.3
setTCL(TT, Value) Sets target/very critical level
setVCL(TT, Value) thresholds wrt RAB per TT

P2.4 rejct(SLS) Rejects an SLS invocation request

P2.5 accpt(SLS) Accepts an SLS invocation request

P2.6
incrACMin(TT, Value) Increases/decreases admission
decrACMin(TT, Value) control min parameter of a TT

P2.7 incrACMax(TT, Value) Increases/decreases admission
decrACMax(TT, Value) control max parameter of a TT

P2.8 incrSR(TT, Value) Increases/decreases the service
decrSR(TT, Value) rate of a TT

TABLE IV
NETWORK DIMENSIONING POLICY ACTIONS

ID Policy action Description

P3.1
setNDMin(QC, BW) Sets min/max allocation
setNDMax(QC, BW) per QC

P3.2 setupLSP(QC, [Path], BW)
Sets explicit LSPs per QC
through nodes of Path

P3.3
calcHopCountMin(QC) Derives hop count constraint
calcHopCountMax(QC) of ND algorithm per QC,
calcHopCountAvg(QC) with different strategies

P3.4 setMaxHops(QC, HopNum) Sets the maximum number of
hops per QC

P3.5
setMaxAltPaths(QC, [TT], Sets the maximum number of
PathNum) alternative paths per TT

P3.6 allocSpareBW()
Distributes spare BW
among QCs

P3.7 redOverBW() Reduces over-allocated BW

resource utilization. The DRsM policy actions of Table V
manage available resources based on utilization monitoring.
Utilization monitoring generates events to trigger policy

actions that increase/decrease resource allocation as well as
utilization tracking thresholds using absolute (e.g. in kbps)
or relative values (e.g. as a percentage). The example policy
below encodes action P4.1 to increase the allocation for AF1
traffic by 10% on a particular link, in the event of an upper
tracking threshold crossing alarm.

inst oblig /policies/drsm/P4.1 {
on drsmAlarmRaised(upprTh, link1, af1);
subj s = drsmPMA;
targ t = drsm/allocMO;
do t.incrAllocRel(link1, af1, 10);
when duration(08:00-18:00);

}

State chart behavior representations of both TE modules can
be found in [5] and [6].

IV. QOS MANAGEMENT POLICY CONFLICTS

Thus far we have described the behavior of the individual
QoS management modules and provided example policies that

20 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 6, NO. 1, MARCH 2009

TABLE V
DRSM POLICY ACTIONS

ID Policy action Description

P4.1 incrAlloc(Link, QC, BW) Increases allocation per QC

P4.2 decrAlloc(Link, QC, BW) Decreases allocation per QC

P4.3 incrThs(Link, QC, BW) Increases tracking thresholds
per QC

P4.4 decrThs(Link, QC, BW) Decreases tracking thresholds
per QC

would be used to manage these modules. In order to use these
policies in a running system it is necessary to check that they
do not conflict with policies already deployed in the system. In
this section we present the different types of conflict that could
arise between policies written for different modules in the QoS
management system. We start by providing a taxonomy of the
conflict types that have been identified.

A. Conflict Classification

We identified a number of potential conflicts related to poli-
cies that drive the QoS management modules’ functionality,
and classified them as shown in Fig. 4.
Although it would be possible to classify these conflicts us-

ing different characteristics we have chosen to distinguish the
categories based on their level of abstraction, the subsystem
in which they occur and their specificity to the application
domain as we believe these most naturally reflect the scope
in which they occur. First we distinguish between conflicts
that are module-independent and those specific to the two
management subsystems. Module-independent conflicts may
occur among any of the QoS management policies, whilst
service management and traffic engineering conflicts are spe-
cific to the operations supported by the relevant modules. The
latter categories are further subdivided into conflicts relating
to policies for individual QoS management modules (intra-
module), and to policies applying to different modules (inter-
module).
Module-independent conflicts represent the simplest forms

of inconsistency that may arise between policy specifications
and examples include redundancy, mutual exclusivity and QC
priority conflicts. Redundancy conflicts may arise because of
duplicate policies or policies with inconsistent action param-
eters in relation to others and can be detected by syntactic
analysis. Mutual exclusion conflicts occur between policies
implementing alternative strategies that realize the same goal.
Examples of the latter conflict type include SLS-S policies
for setting the upper limit in the RAB in a conservative,
moderate, or risky fashion, ND policies defining the treatment
of spare/over-provisioned BW, and DRsM policies managing
the allocation on link resources through different strategies.
The various actions are said to be mutually exclusive since
there should not be more than one directive specifying an
operation on a particular managed resource. An example
of such inconsistency would be between a DRsM policy
incrementing the resource allocation using an absolute value
(e.g. 500 kbps) and policy P4.1 of the previous section. The

conflict will materialize if the two policies are triggered by
the same event, apply to the same link and QC, and have an
overlap in the time constraints.
The relative priorities between traffic classes can cause

inconsistencies to arise between policies defined on the various
QCs in the context of any QoS management module. These are
termed qcPriority conflicts and will materialize if the effect of
a policy action violates the priority between QCs. Fig. 4 shows
two examples of such a conflict between SLS-S policies for
setting service satisfaction and quality levels (P1.1 and P1.2).
A multiplex conflict will occur if the multiplexing factor of a
particular QC is higher than that of another QC with lower
priority, whereas an oql conflict will arise if the quality level
of a QC with high priority is lower than that of QC with lower
priority.
The above module-independent conflicts, as well as some

of the identified inconsistencies, can be determined through
static analysis at policy-specification time. Policies governing
the behavior of online modules, on the other hand, are mostly
prone to conflicts that can only be detected dynamically
at enforcement-time as their manifestation depends on the
current state of the underlying managed resources. The next
sub-sections describe the various conflicts relating to service
management and traffic engineering policies and the condi-
tions under which they arise.

B. Service Management Policy Conflicts

Conflicts specific to our application domain primarily occur
because of inconsistent attribute values set by policies. It is
essential that these are individually identified such that the
exact reason for their occurrence can be defined and eventually
resolved by a network administrator or in an automated
manner.
Conflicts related to the SLS-S module can be detected at

specification-time and arise between policies governing the
process of static admission control. As mentioned previously,
the upper limit in the RAB is a major factor for the decision
of accepting/rejecting a new subscription request and can
be defined with different strategies (P1.3): risky, moderate,
and conservative. A subscrAdmStrg conflict will arise if the
resulting value of the conservative approach is greater than that
of moderate, or if the latter is greater than the one generated by
the risky approach. Multiplex conflicts occur between service
satisfaction policies (P1.1) that define the multiplexing factors
used to derive the rates at which a service is considered almost
and fully satisfied. This inconsistency will occur if the fully
satisfied factor is greater than the almost satisfied one for
the same QoS class, as they are inversely proportional to the
service rates produced.
To regulate the traffic entering the network, SLS-I works

on guidelines provided by SLS-S. These come in the form
of policies that act as constraints and although harmoniz-
ing the operation of the two modules, they may cause dy-
namic conflicts that we term inter-module: srMaxViolation
or srMinViolation conflicts occur when service invocation
policy actions (P2.8) try to alter the service rate of a specific
trunk but violate the almost or fully satisfied rate boundaries
provided by the subscription policy P2.1. Besides activating

CHARALAMBIDES et al.: POLICY CONFLICT ANALYSIS FOR DIFFSERV QUALITY OF SERVICE MANAGEMENT 21

Fig. 4. Policy conflict classification. Blue and green colors denote static and dynamic conflicts respectively. The dotted box outline indicates instances of
the module-independent qcPriority conflict pertaining to service management policies.

service rate policies, threshold crossing alarms also trigger
policies that manipulate AC parameters (P2.6, P2.7) aiming to
provide proactive and reactive control over invoked services.
The relative position of both thresholds and AC parameters
in the RAB of each trunk allows the administrator to adapt
the strategy by which services are admitted to the network and
potentially avoid the build-up of congestion while maximizing
resource utilization. Incorrect definition of these parameters
will lead to an invcAdmStrg conflict that can occur both at
policy specification-time, but also during system execution
as AC parameters may be re-calculated on the fly. This
inconsistency will arise if ACmax is less than VCL, or if
ACmin is greater than TCL. Lastly, an intra-module static
conflict — threshold incompatibility (thrshIncompat) — can
occur between policies setting the threshold values (P2.3) if
TCL — aiming to trigger some proactive measures — is
greater than VCL.

C. Traffic Engineering Policy Conflicts

Conflicts between policies guiding the functional behavior
of Network Dimensioning are static in nature and occur due to
contradicting action parameters of BW allocation and routing
policies. A divergActions conflict may arise between two
policies setting the BW allocation boundaries for a specific
QC (P3.1), if their parameter values do not converge. These
policies may also cause an overAlloc conflict if the sum of
the allocation corresponding to all the supported QCs exceeds
100%. The same rule applies to explicit actions responsible
for the distribution of spare resources or the treatment of over-
provisioned BW (P3.6, P3.7). HopsExceed conflicts occur if
the hop count of the path, through which an LSP is set (P3.2),
exceeds the maximum number of allowed hops specified in
P3.5, provided both policies apply to the same QC. LSP
policies can lead to further inconsistencies — altPathExceed
and bwRtViolation— if their instantiated number is more than
the one defined by policy P3.5, for the same QC and TT, or
if the specified allocation exceeds the maximum allowed by
policy P3.1.
Conflicts related to DRsM policies are mainly dynamic and

arise due to ND policies constraining the run-time allocation of

resources. These are inter-module conflicts and are a result of
the hierarchical relationship between the two modules where
policies introduced at the ND level are refined, communi-
cated, and executed by DRsM as well. More specifically,
an ndMaxViolation conflict occurs when policy P4.1 tries to
increment the allocation for a QC but the calculated BW ex-
ceeds the upper bound set by the ND directive P3.1. Similarly,
an ndMinViolation conflict occurs when policy P4.2 tries to
decrement the allocation but the calculated BW is less than
the lower bound set by the ND. Another high-level directive
that is refined down to the DRsM level is a general resource
management policy, which explicitly specifies that during a
DRsM operational cycle, the full link capacity should be
allocated between the various QCs. This implies that a DRsM
policy action aiming to increase or decrease the allocation
for a specific QC will violate the above rule as the resulting
allocation may exceed or be less than the link capacity.
We term these inconsistencies as overAlloc and underAlloc
conflicts respectively. The last of DRsM related conflicts is an
intra-module conflict and involves policies responsible for the
computation of new thresholds and allocation of resources.
The inconsistency arises if the allocated BW is below its
respective upper utilization tracking threshold, in which case
a threshold incompatibility (thrshIncompat) conflict should be
signaled.

V. CONFLICT ANALYSIS AND TOOL SUPPORT

The conflict analysis approach presented in this paper
has two main aspects: the definition of appropriate rules
for determining potential conflicts in policy specifications,
and the effective deployment of analysis processes in the
context of the managed environment. Detection rules are
used to describe the conditions under which a conflict will
arise and include information from policies and the managed
environment itself to cater for the various QoS management
conflicts. Although guidance can be provided by the policy
refinement process for some conflict types — in the case of
mutual exclusion conflicts the actions associated with multiple
disjunctive sub-goals should be encoded in a detection rule
— their specification is a manual process largely relying on

22 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 6, NO. 1, MARCH 2009

Fig. 5. Conflict analysis architecture. Static analysis is a centralized process
running within the PMT, whereas dynamic analysis is a distributed process
integrated within PMAs.

the knowledge of an expert administrator. Since most of the
defined policies are generic to a certain extent, re-use of the
conflict detection rules in other QoS frameworks could be
possible. A comprehensive set of detection rules together with
system-specific information is used by the analysis processes
to determine potential inconsistencies.
The principal challenges in detecting policy conflicts are

being able to account for the constraints that limit the ap-
plicability of a given policy to specific states of the managed
system and the effects of enforcing policies on the states of the
managed system. To achieve this, it is necessary to use formal
reasoning techniques and formal models of the QoS manage-
ment system behavior, the policy enforcement mechanisms
and the policy rules themselves. Since the QoS management
system and the policy enforcement mechanisms concerned are
event-based reactive systems, we have used Event Calculus
as the underlying formal representation. In addition to having
built-in representations for events and persistence of properties
Event Calculus is a suitable formalism because it supports both
deductive and abductive reasoning.
Fig. 5 outlines the architecture of our approach. Here,

we distinguish between static and dynamic analyses as two
different processes that are executed at different timescales
and physical locations. Static analysis is an integral part of a
Policy Management Tool (PMT) and is initiated by a network
administrator, whereas dynamic analysis runs in a Policy
Management Agent (PMA) and its execution is based on run-
time events generated by the network/managed system. Both
processes are semi-automated. In the case of static analysis a
set of pre-specified rules are used to search the policy space for
conflicts whose resolution is manual. Dynamic analysis also

makes use of conflict rules, but the invocation of the process
and the subsequent detection of conflicts are automated. The
run-time resolution process is also automated and is based on
a pre-defined set of policies. The details of the two processes
are presented in the next sub-sections.

A. Static Analysis

As shown in the upper part of Fig. 5, our approach towards
static conflict detection is based on the output of a refinement
process [11, 41], where high-level policy specifications intro-
duced by a network administrator are decomposed into low-
level implementable ones and mapped onto their respective
EC representation. Before their enforcement, policies are
analyzed by the static analysis engine, a process initiated by
a user administrator, by performing comparisons on a pair-
wise basis. This process makes use of specialized detection
rules, which are pre-specified by an expert and loaded to
the engine, but also domain-specific information regarding the
QoS management modules, to identify inconsistencies.
Based on the identified conflict types, we have defined a

set of rules expressed in the form of logic predicates that
encapsulate the conditions to be met for a conflict to occur.
These predicates are used as conflict fluents in EC notation and
can be considered as goal states that, when achieved, signify
the detection of a conflict. The advantage of using such a
methodology is that, in addition to detecting possible conflicts,
an explanation as to why a conflict occurred will always be
provided.
The conditions for a conflict can either be acquired from

the policy specification itself but also from domain-specific
information. The example predicate below is based solely
on information provided by policies and aims at detecting
redundancy conflicts by matching certain key parameters as
well as actions in the policy specification through a pattern
directed search. The variables of the conflictData term are
unified during the search if the conditions for a conflict,
as defined in the predicate, hold, thus providing all the
information pertinent to the conflict.

holdsAt(conflict(redundancy, conflictData(PolID1,
PolID2, QC1, QC2, OQL1, OQL2)), T) ←

holdsAt(oblig(PolID1, Subj, op(Targ,
Action[Params1])), T) ∧

holdsAt(oblig(PolID2, Subj, op(Targ,
Action[Params2])), T) ∧

(numParams(PolID1, PolID2) == 1 ∨
numParams(PolID1, PolID2) >= 2 ∧
intersect(Params1, Params2, Params) ∧
Params /== []) ∧

PolID1 /== PolID2.

Apart from redundancy conflicts the detection of all other
inconsistencies requires not only information provided by the
policy specification but also QoS-specific information, such as
properties of the managed resources and the supported QoS
classes. These are encoded in the detection rules as further
constraints that should not be violated. The example below
represents the relevant predicate for detecting QoS priority
conflicts among policies for setting the quality level of traffic
classes. As described in Section IV-B, this conflict will be
detected if the defined quality level of a QC with high priority
is less than that of a QC with a lower priority.

CHARALAMBIDES et al.: POLICY CONFLICT ANALYSIS FOR DIFFSERV QUALITY OF SERVICE MANAGEMENT 23

holdsAt(conflict(qcPriority, conflictData(PolID1,
PolID2, QC1, QC2, OQL1, OQL2)), T) ←

holdsAt(oblig(PolID1, Subj, op(Targ,
setQltLvl(QC1, OQL1))), T) ∧

holdsAt(oblig(PolID2, Subj, op(Targ,
setQltLvl(QC2, OQL2))), T) ∧

((QC1::priority > QC2::priority ∧ OQL1 < OQL2) ∨
(QC2::priority > QC1::priority ∧ OQL2 < OQL1)) ∧

PolID1 /== PolID2.

The output of the static analysis process is a set of con-
flicting polices along with an explanation of their occurrence
[5]. The resolution of these conflicts is a manual process
that has to be carried out by the user administrator, in which
policy parameters are modified or, in the case of redundancies,
policies are eliminated from the system. A number of conflict
resolution methods aiming to automate the process have
been proposed in the literature, most of which are based on
policy priorities [2, 17, 22, 33]. These allow two potentially
inconsistent policies to coexist within the system and involve
determining which of the two should prevail in the event of
a conflict. This is possible due to the nature of the conflicts
considered for which precedence between contradicting poli-
cies can be established on the basis of modality, specificity, or
recency. The static conflicts identified in this work however,
do not allow for automation in their resolution since they
mostly occur due to inconsistent policy action parameters
rather than just actions. Taking the example of qcPriority
conflicts, consider two instances of policy P1.2 with which
the OQL values associated with EF and AF1 traffic are set
to 0.8 and 0.9, respectively. Resolution of this conflict can be
achieved by either resetting the OQL value of AF1 traffic to
be equal or less than that of EF traffic, or vice versa. Since
there is no clear indication as to which of the two strategies
to follow, and also because the amount by which the OQL
will change, for either QC, has an impact on the overall QoS
provisioning objectives, human intervention is unavoidable.
The details associated with the inconsistency however, can
guide the administrator when correcting it.

B. Dynamic Analysis and Conflict Resolution

While the analysis process described in the previous section
is able to deal with static conflicts, some inconsistencies
can only be detected at policy enforcement time as they
depend on the current state of the network and the resulting
configuration output of on-line QoS management modules
(SLS-I and DRsM). For this reason, the process for handling
dynamic conflicts needs to be embedded within a PMA which
has access to the run-time information required.
Detection of dynamic inconsistencies is still based on a

set of pre-specified conflict predicates, which, in this case,
require additional information regarding the run-time state of
online modules. In the context of our work, the conditions
under which a conflict will arise are represented by constraints
that depend on the conflict type. The rules for detecting such
conflicts are based on the fact that two or more policies violate
these constraints. The conflict(srMaxViolation, ...) fluent below
is such an example and indicates the violation of an SLS-S
refined directive defining the maximum service rate for a TT.
Here, the constraints conveyed to the conditional part of the

predicate include the specific policy actions with matching TT
parameters, and the actual value of required rate calculated by
SLS-I. The latter is represented as an argument of the reqSR
term and the conditions for a srMaxViolation conflict will be
satisfied if this value exceeds the maximum rate specified by
the SLS-S refined policy. Similar rules have been defined for
all the identified dynamic conflicts relating to both SLS-I and
DRsM policies [6].

holdsAt(conflict(srMaxViolation, conflictData(PolID1,
PolID2, TT, SRF S, SR)), T) ←

holdsAt(oblig(PolID1, Subj, op(Targ,
incrSR(TT, Value))), T) ∧

holdsAt(oblig(PolID2, Subj, op(Targ,
setSRFS(TT, SRF S))), T) ∧

reqSR(TT, SR) ∧ SR > SRFS.

Despite the fact that the resolution of static conflicts is
performed manually, this process takes place before policies
are deployed in the system and does not impose any run-
time overheads on the functionality of on-line modules. Dy-
namic conflicts however, require system components to both
detect and resolve conflicts in real-time, without degrading
the performance of the system. This has been the main
motivation behind our dynamic analysis approach, which aims
at automating the triggering of the detection process and the
handling of conflicts at run-time.
Unlike other resolution methodologies [2, 17, 22], our

approach does not involve identifying which of the con-
flicting policies will prevail based on their relative priority,
but provides separate resolution rules that handle potential
inconsistencies. These rules are effectively obligation policies
which are pre-specified by the administrator using the Ponder
format and their triggering events are conflict occurrences
rather than network events. Although less automated than
precedence-based solutions where resolutions do not require
to be defined prior to analysis, our approach is more flex-
ible since: (a) it overcomes the problem where precedence
cannot be established, and, (b) custom resolution rules can
be provided for handling different conflicting situations that
may arise. Once created, resolution policies are translated to
their respective EC representations and communicated to the
PMA, as shown on Fig. 5, where they are stored in a local
cache repository. They are triggered by events generated by
the dynamic analysis engine and their enforcement results in
resetting the system into a state in which a conflict is resolved.
It is evident that dynamic conflicts arise as a result of a

change in the state of a managed module, which in turn is
caused by the enforcement of a new policy. To enable the
automatic deployment of the analysis process, the latter needs
to be notified of such events. This is achieved by processing
the detection rules a priori and extracting information about
policy actions that can potentially cause a conflict when
enforced. These are encoded in the first field in the conditional
part of detection predicates as in the srMaxViolation example,
and are used to configure the Event Handler of Fig. 5. When
the latter intercepts a policy enforcement event matching an
action that can potentially lead to a conflict, the analysis
process is notified and detection is initiated for that specific
conflict. If the latter materializes, the resolution logic of Fig. 5
enters a resolving state which performs a search in the cache

24 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 6, NO. 1, MARCH 2009

repository for a possible resolution pertaining to the detected
conflict. If an appropriate resolution policy is identified a
notification is passed back to the Event Handler which in turn
triggers the enforcement of the resolution.
In contrast to the identified static inconsistencies, one of the

two policies involved in a dynamic conflict acts as a constraint,
the violation of which is the very reason for the occurrence
of that conflict. The use of resolution policies is enabled by
the fact that the constraining value can be considered as the
“strong” value and is therefore used to quantify the relevant
parameter in a resolving policy action. Extending the example
of the srMaxViolation conflict, the resolution policy below sets
the service rate to the maximum permissible value defined
by the relevant SLS-S directive. The resolving value, SRFS ,
can be acquired from the parameters of the SLS-S policy
on the fly — as this quantifies the relevant variable in the
conflict predicate — and instantiate the associated parameter
in the resolution policy action. The latter can be re-used for
multiple occurrences of the same inconsistency alleviating the
need for human intervention. Furthermore, since the resolution
rules are part of the formal description, the analysis engine
can determine which resolution policy applies for a particular
conflict predicate based on the information provided for that
conflict.

initiates(sysEvent(conflDetected(srMaxViolation,
conflictData(PolID1, PolID2, TT, SRF S))),
oblig(resPol1, slsiPMA, op(servAdjustMO,

setSR(TT, SRF S))), T).

The work in [32] describes an alternative approach for the
handling of dynamic inconsistencies and follows the validation
principle of [31]. The authors propose the use of constraints
to prevent a policy from firing if a new configuration pa-
rameter is not consistent with an associated system variable.
Although this approach can prevent a run-time conflict, it may
also prevent the system from making a potentially essential
reconfiguration to meet an SLS requirement. Consider, for
example, the fully satisfied service rate (SRFS) of a trunk to be
100Mbps, and a policy that increases the rate allocated to that
trunk by 20% when executed: if the policy triggering condition
is met when the current allocation is at 90Mbps, the constraint
will prevent the policy from firing and as a result the rate
allocation will remain unchanged. Our approach overcomes
this problem and allows for the correct configuration of
resources, which, in this case, is the maximum permissible
value of SRFS. A practical example of the run-time analysis
process is demonstrated in Section VI-B.

C. Conflict Analysis Tool

The proposed analysis techniques have been developed and
integrated into a policy conflict analyzer. This tool implements
static and dynamic analysis engines based on Prolog and
its deductive reasoning capabilities, supports Ponder policy
specifications and has mapping capabilities to formal represen-
tation, integrates emulated execution environments of online
QoS modules, and provides a conflict analysis user interface
(Fig. 6).
Static analysis implements the various conflict types identi-

fied in Section IV and takes as input Ponder policies that have

been previously converted into the Event Calculus represen-
tation. The reasoning engines iterate through the policies to
match the conditions specified in EC conflict rules, and outputs
a set of conflicting policy pairs, along with an explanation
of their occurrence. For demonstrating our dynamic analysis
approach, the tool integrates a run-time execution environment
that emulates the behavior of online modules through state
machines. This is an Event Calculus based model of the
system which allows the enforcement of policy actions and
can also generate user-defined events about emerging network
conditions. This is a temporary placeholder serving experi-
mentation purposes; we plan to hook our dynamic analysis
engine with the real execution environment in the future.
Dynamic reasoning engines interface with the run-time envi-
ronment through an event handler, which provides a two-way
notification service, allowing for an efficient and automated
run-time analysis process, including detection invocation, and
conflict resolution.
The user interface consists of three main panels correspond-

ing to static, dynamic analysis, and presentation of results.
The first allows the user to initiate detection queries for static
conflicts choosing among different inconsistencies to look for,
whereas the dynamic panel allows the user to interact with
the run-time environment by entering network events which
can trigger the detection and resolution of potential conflicts.
Lastly, the analysis results panel is shared by both processes
and displays the output of conflict analysis by mapping the EC
format in a user friendly representation. The example of Fig.
6 depicts the results of statically detecting qcPriority conflicts
among SLS-S policies. A demonstration of the capabilities of
the tool involving dynamic analysis is provided in the next
section.

VI. CONFLICT ANALYSIS TOOL EVALUATION

This section presents the results of a number of experi-
ments conducted to evaluate the performance, scalability, and
correct operation of the static and dynamic analysis engines
developed. All experiments were performed on a Centrino Duo
2GHz processor with 2GB of RAM, and subject of the conflict
analysis were service management policies.

A. Conflict Detection Performance Analysis

The main aim of the performance evaluation experiments
concerning static conflict analysis is to determine the relative
times taken to detect inconsistencies among varying numbers
of policy specifications. Performance is primarily influenced
by the evaluation of a conflict predicate in terms of: (a) the
cost in evaluating its conditions, and (b) the number of times
it is evaluated. Since experimentation showed that the number
of conflicts only has a minor impact on performance, the
experiments described below consider the number of policies,
their type, and QoS-specific information as the main factors
affecting the evaluation of conflict predicates.
Experiment 1
To investigate the impact of policy types in the analysis,

a module-independent conflict is required which can detect
the same inconsistency among different policy types and can
ultimately provide a uniform basis upon which to compare

CHARALAMBIDES et al.: POLICY CONFLICT ANALYSIS FOR DIFFSERV QUALITY OF SERVICE MANAGEMENT 25

Fig. 6. Conflict analysis tool interface, with three main panels corresponding to static analysis, dynamic analysis and presentation of results. Here we show
an example of analyzing 1000 policies for static conflicts and display the details of a QoS class priority conflict among SLS-S policies that set the quality
level of EF and AF1 traffic classes.

performance. As such, this experiment concerns redundancy
conflicts detected over different numbers of policies. In the
first case only one policy type is used — for setting the quality
level of a single QoS class. The number of conflicts, although
not having a substantial impact on the performance, is kept
constant as the number of policies is varied. The number
of times the conflict predicate is evaluated is defined by
the number of policies since the detection process iteratively
compares each policy with the rest in the set. This can be
quantified by equation (1) below, where L is the number of
policy types, and Nl is the number of policies of a particular
type.

L∑

l=1

Nl − 1
2

Nl (1)

Fig. 7 demonstrates the performance of the detection pro-
cess where the execution time grows quadratically with respect
to the number of policies, namely O(N2). As suggested by
(1), for 2500 policies of a single type the detection predicate
is evaluated 1999× 103 times, which takes 39 seconds. Intro-
ducing more policy types, e.g. for setting service satisfaction
factors and the upper limit in the RAB, the performance is sig-
nificantly improved as the number of comparisons decreases,
with all the conditions in the detection predicate only being
fully evaluated when matching policy actions are found. For
2500 policies of two and three types, there is a performance
improvement of 49% and 66% respectively. These results are
validated against the theoretical gain provided by (1), which
is 50% and 67%.
Experiment 2
Another factor that influences analysis performance is

application-specific information. This is particularly important
when dealing with QoS management conflicts whose occur-
rence depends on such information, as for example the number
of QoS classes supported and their impact on determining

qcPriority conflicts among SLS-S policies setting the service
quality level. Equation (2) below can be used to calculate
the number of times the relevant predicate is evaluated when
detecting such conflicts, where M is the number of QCs
involved, L is a counter equal to M − 1, and Nl and
Nm are the number of policies setting the quality level of
particular QCs. For an example scenario involving three QCs,
EF, AF1, and BE, policies setting the OQL of EF traffic
are compared against the ones for AF1 and BE, and those
for AF1 traffic against the ones for BE. It can be shown
that (N1 × N2) + (N1 × N3) + (N2 × N3) comparisons are
performed, where N1, N2, and N3 represent the number of
policies associated with each QC.

L∑

l=1

M∑

m=l+1

NlNm (2)

Although of the same complexity ofO(N2) as the previous
experiment, the detection process for this conflict type is more
expensive, as indicated by Fig. 8, especially with an increasing
number of QCs. The experimental results indicate an increase
of 35% in detection time between two and three QCs, and 53%
between two and four, which are comparable to theoretical
values of 33% and 50% obtained by (2) respectively.

Experiment 3

The last experiment compares the performance of various
detection predicates. To provide a meaningful comparison
this experiment involves a set of policies of the same type
which is prone to more than one inconsistency. We consider
redundancy/qcPriority conflicts among service quality policies
for two QCs, and redundancy/multiplexing conflicts between
almost and full satisfaction factor policies also for two QCs.
In the first case the performance of the qcPriority predicate is
substantially worse than that of redundancy by an average of
52% over a range of 3000 policies (Fig. 9), despite the fact

26 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 6, NO. 1, MARCH 2009

Fig. 7. Redundancy conflicts detection performance against number of
policies with varying policy types.

that it is evaluated half as many times based on equations
(1) and (2). This demonstrates the simplicity in detecting
redundancies involving the matching of policy actions, and
the cost associated with determining relative priorities between
potentially conflicting QCs.
The performance in detecting multiplexing conflicts is the

most efficient with nearly 100% gain when compared to a
redundancy analysis on the same set of policies. Equation (3)
below can be used to calculate the number of multiplexing
predicate evaluations, where L is the number of QCs, and
NAS and NFS are the number of policies for almost and full
satisfaction factors of a specific QC.

L∑

l=1

NASNFS (3)

For 2500 policies — NAS = NFS = 625 for each of the two
QCs — equation (3) results in 781250 predicate evaluations,
which is achieved in 9.7 seconds, whereas double the number
of comparisons are required to determine redundancy conflicts
in 19.6 seconds.
The last experimental result in Fig. 9 concerns the sequential

execution of all three conflict rules, where half of the policy
set consists of service quality policies and the other half is
equally split between policies for almost and full satisfaction
factors; 2 QCs are involved. The combined performance is
better than two of the individual predicate evaluations, which
is attributed to the policy set and the decreased number of
predicate evaluations. The number of policies associated with
the expensive qcPriority conflict, for example, has halved
resulting to a 75% decrease in evaluations of the relevant
predicate.

B. Dynamic Analysis and Emulated System Behavior

As mentioned previously, the analysis tool developed in-
teracts with the emulated dynamic behavior of online mod-
ules by enforcing policies to anticipate emerging conditions
regarding the network status and eventually handle potential
inconsistencies at run time. In contrast to static detection,
dynamic analysis aims at discovering a single inconsistency
at a time and enforcing the appropriate resolution policy. For
this reason, searching the entire policy space for a conflict may

Fig. 8. Detection performance against number of policies with varying QCs.

not be required, thus improving the detection performance in
comparison to static analysis. The evaluation of this approach,
in addition to performance, is in terms of correct functional
behavior in the event of a conflict.
To demonstrate the functionality of the dynamic analysis

engine, we consider a scenario involving the SLS-I module,
which is loaded with 100 policies, and concentrate on man-
aging the service rate of a specific TT. The current allocation
for this TT is 120Mbps with the almost and fully satisfied
service rates set by SLS-S policies at 100Mbps and 150Mbps,
respectively. The screenshot on Fig. 10 shows the response of
the analysis engine when an upper threshold crossing alarm
is received.
The analysis process is initialized at T=0, at which point it

goes through any loaded conflict specifications and extracts
policy actions that can potentially cause a conflict when
enforced. These actions are registered in the event handler
which can in turn notify the detection engine upon events that
activate such actions. In the example above, two such actions
are extracted from conflict predicates relating to service rate
violations. At T=1 the threshold alarm triggers a policy for
decreasing the service rate by 25% down to 90Mbps, which
activates the detection engine for a potential srMinViolation
at T=2. The conflict materializes and the resolution engine
is activated at T=3, which first determines and then triggers
the appropriate resolution policy for this conflict type. At T=4
this policy is enforced configuring the service at the minimum
acceptable (almost satisfied) rate. The cycle is completed with
the analysis process going to idle state at T=5 consuming not
more than 10ms. The delay introduced can be argued as being
acceptable, even for the strict requirements of EF traffic, as
long as conflicts do not occur extremely frequently. The lower
part of Fig. 10 shows the specifics of the detected conflict
including an explanation of the inconsistency, the policies
involved, and the resolution enforced.

VII. RELATED WORK

There has been considerable work on security policy conflict
analysis over a number of years [19, 20, 25, 26], but interest in
management policy conflict analysis is comparatively recent
although increasing. The authors in [2] identify and classify a
number of application-specific conflicts and describe the con-
ditions under which they occur. They provide a methodology

CHARALAMBIDES et al.: POLICY CONFLICT ANALYSIS FOR DIFFSERV QUALITY OF SERVICE MANAGEMENT 27

Fig. 9. Detection performance against number of policies for different
conflict types.

for their detection and resolution, the latter being the most
popular approach in the literature, where policy precedence
rules are used to define which of the conflicting policies is to
prevail after a conflict has been detected. A similar approach
is employed in [35] and [36] where different metrics have
been used to establish precedence among policies including
time, role, specificity, modality and numerical priority. The last
method is also used in [18], which targets system management
policies. This is part of a ratification process where new
policies are approved before being committed in a system.
The authors identify that meaningful numerical priorities are
notoriously difficult for users to assign and may result in
arbitrary priorities which do not really reflect the importance
of policies. For this reason, they developed algorithms to
automatically assign the priority values to new policies and
to adjust the values of related policies when given only the
relative priority of a new policy. The algorithms implement the
conflict resolution module of the IBM’s PMAC platform by
maintaining ordered lists under policy insertion and deletion
operations. Although resolution based on precedence may be
useful in some occasions, we believe that this may not be a
flexible solution to the problem, especially when application-
specific environments are concerned, as demonstrated in some
of our examples where new policies need to be enforced.

There are few conflict analysis examples that target specific
application domains. The authors of [4], [19], [20], and [21]
have focused on techniques for analyzing legacy firewall
policies for networks with centralized and distributed firewalls.
All possible firewall rule relations are formally defined and
are used to identify and classify policy conflicts (anomalies).
Their resolution is based on the relative ordering of rules in a
filtering policy and a degree of automation is proposed for
some conflict types by removing or re-ordering rules. The
main shortcomings of these approaches is the dependence
on low-level legacy firewall policies to perform anomaly
detection, the lack of explanations as to how and why conflicts
occur, and failure to address possible inconsistencies that may
arise at run-time.

Another application domain for which conflict analysis
has been addressed is that of telecommunications and more
specifically call control. In [28] the authors identify the
analogy between policy conflicts and feature interactions, and

Fig. 10. Analysis example of a dynamic conflict: detection and resolution.

provide a taxonomy of conflicts that is based on five principle
dimensions. Depending on the manifestation of the various
conflicts, they identify different approaches that could poten-
tially be used to detect and resolve conflicts, which are based
on techniques previously applied on feature interactions. This
work is extended in [29] where specific resolution processes
are proposed to handle call control policy conflicts both in cen-
tralized and distributed settings. The methodology is similar
to the one presented in this paper and is based on the notion of
resolution policies. The detection of conflicts however is not
supported by a separate process, but the various conditions
are encoded within resolution policies instead. Resolution
specifications can thus become complex and their evaluation
quite expensive. This work lacks assessment data which could
evaluate the performance of the proposed approach.
Recent work in [34] targets the same application domain

as the one considered in this paper. Here, the authors identify
conflicts among policies managing QoS in DiffServ networks,
but only tackle a small portion of the problem regarding
resource management at the router level. The policies involved
in this process define the treatment of a traffic flow on
network nodes by setting parameter values for BW allocation,
queue size, drop method, and priority for the various Per-Hop
Behaviors (PHBs). Inconsistencies among these policies are
classified according to the scope in which they occur: intra-
PHB conflicts arise within the flow properties at a specific
node and inter-PHB conflicts occur between policy definitions
across different nodes.

28 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 6, NO. 1, MARCH 2009

Aib et al. [42] [43] is the first work that addresses a detailed
use case for business-driven policy optimization. Starting from
a service provider SLA, they provide a systematic manual
refinement that respects a business objective. A Static analysis
phase is applied to the generated policies where conflicts
are detected and resolved. A subsequent dynamic analysis
phase further optimizes policy run-time behavior with regard
to business metrics.
Motivated by the advantages provided by information mod-

els in representing managed entities, such as platform and
protocol independency, the authors in [37] propose their use in
the process of conflict detection. More specifically, this work is
based on the DEN-ng model [39], which, apart from managed
entities, is also used for representing both the policies and
the conditions under which these may conflict. This work
has recently been extended in [38] to support the overall
methodology and implementation of the conflict detection
approach. Here, the authors describe a two-phase analysis
algorithm, which when querying an information model, firstly
determines the relationships between a pair of policies and
secondly, applies conflict patterns to determine if the policies
should be flagged as conflicting. Policy relationships are ex-
pressed in terms of policy subjects, targets and actions, while
conflict patterns concern constraints defined in the information
model describing policy relationships that must hold for a
conflict. Determining a conflict involves transforming the
above information into matrices and performing comparisons.
The use of information models is also proposed by Kempter in
[40], where invariants extracted from the models are used as
indicators for conflicts when they are breached. Although this
approach benefits from the inherent advantages of information
models, XML representation of policies and conflicting condi-
tions can become very verbose thus posing a cumbersome task
for a network administrator if a manual change is required.
Furthermore, the use of matrices in [38] limits the definition
of relationships to the core fields of a policy. As such, conflicts
that arise as a result of inconsistent action parameters, rather
than actions, are difficult to detect and the exact reason for
their occurrence cannot be provided.
Among the many alternative approaches to policy specifica-

tion, there are a number of proposals for formal, logic-based
notations. In particular, logic-based languages have proved at-
tractive for the specification of security policy, as they support
a well-understood formalism, amenable to analysis. However,
they can be difficult to use and are not always directly
translatable into efficient implementation. One such example
is the Policy Description Language (PDL) [27], which is used
for the specification of obligation policies. The language can
be described as a real-time specialized production rule system
to define policies. Later work by Chomicki [30], extends PDL
to include the concept of action constraints, which are policies
that prevent a specified action from being performed in a given
situation. This work introduces the idea of using a policy
monitor to detect conflict situations and resolve them by either
suppressing the events that could lead to a conflict or overrid-
ing the conflicting action. Another work that proposes the use
of logic-based specification of policies is [26]. The language
proposed has relatively simple, well-understood semantics and
policies are analyzed using deductive reasoning techniques.

Resolution of potential conflicts among authorization policies
relies on the use of precedence rules.
Work on computational efficiency for conflict detection

and resolution mechanisms was presented in [22] and [23].
The authors identified several conflicts that may occur in
open distributed systems and classified them into static and
dynamic. Their detection mechanism involves identifying and
predicting all possible conflicts at compile-time, based on
knowledge of the temporal characteristics of the policies in
the specification. In the case of dynamic conflicts the relevant
conditions are stored in a database and subsequent monitoring
of system events can lead to determining the occurrence of a
conflict. Furthermore, they developed an approach as to when
it is appropriate to resolve conflicts. Based on the fact that
a resolution process can be computationally intensive, they
proposed different approaches according to the likelihood of a
conflict occurring and the cost of resolving that conflict. The
actual resolution methodology presented by the authors fol-
lows the guidelines provided in [2], where policy precedence
rules are being used.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented our approach towards policy conflict
analysis based on the formalization and reasoning provided by
Event Calculus and its application in the domain of DiffServ
QoS management. The subject of the analysis techniques
presented here is a set of management policies that can be used
to influence/control the behavior of key modules in the process
of QoS provisioning. The various inconsistencies that can
arise between these policies have been identified and classified
based on their characteristics, which are used to describe the
reasons and the conditions under which a conflict will arise.
We define conflicts that can occur between policies applied

to a single management module (intra-module), or between
policies specified for different modules (inter-module) as a
result of their hierarchical relationship, but the main charac-
teristic distinguishing between conflicts is the time-frame at
which they can be detected. This has driven the design and
specification of two different methods to address the issues
associated with the analysis of conflicts that can be detected
statically, at policy specification-time, and those that can only
be determined dynamically, during system execution, based on
feedback regarding the current state of the managed system.
These techniques have been implemented and integrated in a
conflict analysis tool aiming to provide a network adminis-
trator with a usable interface through which to interact with
the management system and perform both static and dynamic
consistency checks.
Our implementation is heavily based on the use of Event

Calculus for which we provide seamless and efficient mapping
mechanisms used by the analysis engines. Its use allows
for advanced reasoning methods and provides the means to
not only identify a conflict but also generate an explana-
tion as to how that conflict occurred. This is particularly
important when guiding a network administrator to handle
inconsistencies requiring manual resolution, as in the case of
the static conflicts identified. To satisfy the requirements of
dynamic conflicts with respect to efficiency, we concentrated

CHARALAMBIDES et al.: POLICY CONFLICT ANALYSIS FOR DIFFSERV QUALITY OF SERVICE MANAGEMENT 29

in providing an automated run-time analysis process. This can
be automatically invoked based on run-time network events,
can provide a resolution if a conflict materializes, and also
instruct the appropriate entity for the enforcement of that
resolution. The latter is in the form of pre-defined policies that
are generic enough with only few required per conflict type
to cater for multiple occurrences of the same inconsistency.
Finally, the tool developed has been used to perform extensive
experiments through which it was possible to identify the main
reasons that influence the performance of the analysis engines.
The future directions of this work are in the domain of

collaborative QoS management, where neighboring network
providers set-up service-level agreements aiming to create an
end-to-end chain for the delivery of QoS sensitive applications.
We envisage the negotiation process to be one where each
provider tries to force its own policies in terms of requirements
and objectives resulting in conflicting situations. A collabora-
tive negotiating process would act as a mediator where an
optimal solution, satisfying both entities, would be achieved
through conflict analysis.

REFERENCES

[1] J.D. Moffett, M.S. Sloman, “Policy conflict analysis in distributed
system management,” Journal of Organisational Computing, vol. 4, pp.
1-22, 1994.

[2] E.C. Lupu, M.S. Sloman, “Conflicts in policy-based distributed systems
management,” IEEE Transactions on Software Engineering - Special
Issue on Inconsistency Management, vol. 25, pp. 852-869, 1999.

[3] A.K. Bandara, E.C. Lupu, A. Russo, “Using Event Calculus to formalise
policy specification and analysis,” proceedings of IEEE Workshop on
Policies for Distributed Systems and Networks, Lake Como, Italy, 2003.

[4] E. Al-Shaer, H. Hamed, “Modeling and management of firewall poli-
cies,” IEEE Transactions on Network and Service Management, vol.
1(1), 2004.

[5] M. Charalambides, et al., “Policy conflict analysis for quality of service
management,” proceedings of 6th IEEE Workshop on Policies for
Distributed Systems and Networks, Stockholm, Sweden, 2005.

[6] M. Charalambides, et al., “Dynamic policy analysis and conflict res-
olution for DiffServ Quality of Service Management,” proceedings of
IEEE/IFIP Network Operations and Management Symposium, Vancou-
ver, Canada, 2006.

[7] N. Damianou, N. Dulay, E.C. Lupu, M.S. Sloman, “The Ponder policy
specification language,” proceedings of 2nd IEEE Workshop on Policies
for Distributed Systems and Networks, Bristol, UK, 2001.

[8] P. Trimintzios, et al., “Service-driven traffic engineering for intra-domain
quality of service management,” IEEE Network Magazine, 17(3), pp.
29-36, 2003.

[9] M. P. Howarth, et al., “Provisioning for Inter-domain Quality of Service:
the MESCAL Approach,” IEEE Communications Magazine, 2005.

[10] E. Borcocci, et al., “Admission control algorithm for aggregated pipes
service invocation in multi-domain IP environment,” proceedings of 3rd
International Workshop on Next Generation Networking Middleware,
Coimbra, Portugal, 2006.

[11] A. Bandara, et al., “Policy refinement for IP differentiated services
quality of service management,” IEEE Transactions on Network and
Service Management, vol. 3(2), pp. 2-13, 2006.

[12] R.A. Kowalski, M.J. Sergot, “A logic-based calculus of events,” New
Generation Computing, vol. 4, pp. 67-95, 1986.

[13] A. Russo, R. Miller, B. Nuseibeh, J. Kramer, “An abductive approach
for analysing event-based requirements specifications,” proceedings of
International Conference on Logic Programming, Copenhagen, 2002.

[14] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, “Complexity and ex-
pressive power of logic programming,” proceedings of 12th IEEE
Conference on Computational Complexity, Ulm, Germany, 1997.

[15] P. Flegkas, P. Trimintzios, G. Pavlou, “A policy-based quality of service
management architecture for IP DiffServ networks,” IEEE Network
Magazine, vol. 16(2), pp. 50-56, 2002.

[16] E. Mykoniati, et al., “Admission control for providing QoS in IP
DiffServ networks: the TEQUILA approach,” IEEE Communications
Magazine, vol. 41(1), 2003.

[17] D. Agrawal, J. Giles, K.W. Lee, J. Lobo, “Policy ratification,” proceed-
ings of 6th IEEE Workshop on Policies for Distributed Systems and
Networks, Stockholm, Sweden, 2005.

[18] D. Agrawal, J. Giles, K.W. Lee, J. Lobo, “Policy-based management of
networked computing systems,” IEEE Communications Magazine, vol.
43(10), pp. 69-75, 2005.

[19] E. Al-Shaer, H. Hamed, “Discovery of policy anomalies in distributed
firewalls,” proceedings of 23rd IEEE Communications Society Confer-
ence, Hong Kong, 2004.

[20] L. Yuan, et al., “FIREMAN: a toolkit for firewall modeling and
analysis,” proceedings of IEEE Symposium on Security and Privacy,
Oakland, California, 2006.

[21] S. Ferraresi, et al., “Automatic conflict analysis and resolution of
traffic filtering policy for firewall and security gateway,” proceedings of
International Conference on Communications, Glasgow, Scotland, 2007.

[22] Dunlop, J. Indulska, K. Raymond, “Methods for conflict resolution in
policy-based management systems,” proceedings of 7th Int. Conference
on Enterprise Distributed Object Computing, Brisbane, Australia, 2003.

[23] N. Dunlop, J. Indulska, K. Raymond, “Dynamic conflict detection in
policy-based management systems,” proceedings of 6th Int. Conference
on Enterprise Distributed Object Computing, Lausanne, Switzerland,
2002.

[24] P. Trimintzios, et al., “Quality of service provisioning through traffic
engineering with applicability to IP-based production networks,” Com-
puter Communications, vol. 26(8), pp. 845-860, 2003.

[25] V.D. Gligor, S.I. Gavrila, D. Ferraiolo, “On the formal definition of
separation-of-duty policies and their composition,” proceedings of IEEE
Symposium on Security and Privacy, Oakland, California, 1998.

[26] S. Jajodia, et al., “Flexible support for multiple access control policies,”
ACM Transactions on Database Systems, vol. 26(2), pp. 214-260, 2000.

[27] J. Lobo, R. Bhatia, S. Naqvi, “A Policy Description Language,” proceed-
ings of 16th National Conference on Artificial Intelligence, Orlando,
Florida, 1999.

[28] S. Reiff-Margainiec, K. J. Turner, “Feature interaction in policies,”
Computer Networks, 45(5), pp. 569-584, 2004.

[29] L. Blair, K. Turner, “Handling policy conflicts in call control,” proceed-
ings of 8th International Conference on Feature Interaction, pp. 39-57,
IOS Press, Amsterdam, 2005.

[30] J. Chomicki, et al., “A logic programming approach to conflict resolution
in policy management,” proceedings of 7th International Conference on
Principles of Knowledge Representation and Reasoning, Breckenridge,
Colorado, Morgan Kaufmann, 2000.

[31] L. Lymberopoulos, E.C. Lupu, M.S. Sloman, “PONDER Policy im-
plementation and validation in a CIM and differentiated services
framework,” proceedings of 9th IEEE/IFIP Network Operations and
Management Symposium, Seoul, Korea, 2004.

[32] R. Chadha, L. Kant, “Policy-driven mobile ad hoc network manage-
ment,” John Wiley & Sons, ISBN 978-0-470-05537-3, 2008.

[33] G. Russello, C. Dong, N. Dulay, “Authorization and conflict resolution
for hierarchical domains,” proceedings of 8th IEEE Workshop on
Policies for Distributed Systems and Networks, Bologna, Italy, 2007.

[34] T. Samak, E. Al-Shaer, H. Li, “QoS policy modeling and conflict
analysis,” proceedings of 9th IEEE Workshop on Policies for Distributed
Systems and Networks, Palisades, New York, 2008.

[35] J.Brashaw, et al., “Representation and reasoning for DAML-based policy
and domain services in KAoS and nomads,” proceedings of Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems,
Melbourne, Australia, 2003.

[36] A. Uszok, et al., “New developments in ontology-based policy man-
agement: increasing the practicality and comprehensiveness of KAoS,”
proceedings of 8th IEEE Workshop on Policies for Distributed Systems
and Networks, Bologna, Italy, 2007.

[37] S. Davy, B. Jennings, J. Strassner, “Conflict prevention via model-driven
policy refinement,” proceedings of IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, Dublin, Ireland,
2006.

[38] S. Davy, B. Jennings, J. Strassner, “Application domain independent
policy conflict analysis using information models,” proceedings of IEEE
Network Operations and Management Symposium, Bahia, Brazil, 2008.

[39] J. Strassner, “DEN-ng: achieving business-driven network management,”
proceedings of IEEE/IFIP Network Operations and Management Sym-
posium, Colorado Springs, Colorado, 2002.

[40] B. Kempter, A.V. Danciu, “Generic policy conflict handling using apriori
models,” proceedings of IFIP/IEEE Workshop on Distributed Systems:
Operations and Management, Barcelona, Spain, 2005.

[41] J.R. Loyola, et al., “A methodological approach toward the refinement
problem in policy-based management systems,” IEEE Communications
Magazine, vol. 44(10), pp. 60-68, 2006.

30 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 6, NO. 1, MARCH 2009

[42] I. Aib, R. Boutaba, “On leveraging policy-based management for
maximizing business profit,” IEEE TNSM, vol. 4, no. 3, pp. 163–176,
2007.

[43] I. Aib, R. Boutaba, “PS: A policy simulator,” IEEE Commun. Mag., vol.
45, no. 4, pp. 130–137, 2007.

Dr. Marinos Charalambides received a BEng (First Class Hons.) in Elec-
tronic and Electrical Engineering, an MSc (Distinction) in Communications
Networks and Software, and a PhD in Policy-based Management, all from the
University of Surrey, UK, in 2001, 2002 and 2009 respectively. He has been
working as a research associate on a number of European and UK research
projects since 2005, and his research interests include policy analysis and
refinement, IP quality of service, network programmability and autonomics.

Dr. Paris Flegkas received a Diploma in Electrical and Computer Engineering
from Aristotle University, Greece, an MSc in Telematics, and a PhD from the
University of Surrey in 1998, 1999, and 2005, respectively. He is currently
an adjunct lecturer in the department of Computer and Communication
Engineering, University of Thessaly, Greece and his research interests are
in the areas of policy-based networking, network and service management,
content networking and future network architectures.

Professor George Pavlou is a Professor of Communication Networks at
the Department of Electronic and Electrical Engineering, University College
London, UK where he coordinates the activities of the Networks and Services
Research Lab. He holds a MEng in Engineering from the National Technical
University of Athens, Greece, and MSc and PhD degrees in Computer
Science from University College London, UK. He has been responsible for a
number of European and UK research projects. His research interests focus on
networking, network management and service engineering. He has contributed
to standardization activities in ISO, ITU-T, TMF, OMG and IETF.

Dr. Javier Rubio-Loyola is a Visiting Professor in Universitat Pompeu Fabra
and a Research Collaborator in Universitat Politcnica de Catalunya. He holds
a PhD in Telecommunications from UPC. He has actively contributed to
Spanish and IST European projects mainly in the network management area.
His research interests focus on network and service management, autonomic
networking, and policy-based management.

Dr. Arosha Bandara completed his PhD in Policy-based Systems Man-
agement at the Department of Computing at Imperial College London in
September 2005 and was appointed a Lecturer in Computing at the Open
University in October 2006. He received a MEng in Information Systems
Engineering from Imperial College London in 1998 and worked for Sapient
Corporation from until 2001. His research interests include the application
of formal methods to distributed systems management, autonomic computing
and privacy/security management.

Dr. Emil Lupu is a Reader in Adaptive Computing Systems in the Department
of Computing at Imperial College London. He pioneered some of the early
work on policy analysis and refinement and currently leads several research
projects on policy-based management, pervasive computing, security and
privacy. Emil co-founded the IEEE Symposium on Policies for Distributed
Systems and Networks and serves on the program committee of numerous
conferences in these areas.

Dr. Alessandra Russo is a senior lecturer at the Department of Computing,
Imperial College London. Her research interests include formal analysis and
elaboration of specifications, inductive learning and distributed reasoning. She
has over 60 publications in international conferences and journals, two of
which were awarded prizes for best application papers. She has served on
various program committees and been part to the IFIP Working Group 2.9
on Requirements Engineering. She is also Editor-in-Chief of IET Software
journal.

Dr. Naranker Dulay is a senior lecturer in the Department of Computing at
Imperial College London. His current research is in specification languages
and middleware for distributed and pervasive systems that address security,
trust, privacy and context awareness on which he leads several UK research
projects and one EU project. Dulay has over 90 publications in international
conferences and journals and has served on numerous program committees.

Professor Morris Sloman’s research interests include autonomic manage-
ment of pervasive and distributed systems, adaptive security management, pri-
vacy and security for pervasive systems. He is a member of the editorial boards
of the Journal of Network and Systems Management and IEEE Transactions
on Network and Services Management. See http://www.doc.ic.ac.uk/∼mss for
more details and selected papers.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

