
Distributed Overlay Anycast Tables using Space
Filling Curves

Eleni Mykoniati, Lawrence Latif, Raul Landa, Ben Yang, Richard Clegg, David Griffin, Miguel Rio
Department of Electronic and Electrical Engineering, University College London

Email: {emykoniati, llatif, rlanda, byang, rclegg, dgriffin, mrio}@ee.ucl.ac.uk

Abstract—In this paper we present the Distributed Over-
lay Anycast Table, a structured overlay that implements
application-layer anycast, allowing the discovery of the
closest host that is a member of a given group. One ap-
plication is in locality-aware peer-to-peer networks, where
peers need to discover low-latency peers participating in
the distribution of a particular file or stream. The DOAT
makes use of network delay coordinates and a space
filling curve to achieve locality-aware routing across the
overlay, and Bloom filters to aggregate group identifiers.
The solution is designed to optimise both accuracy and
query time, which are essential for real-time applications.
We simulated DOAT using both random and realistic node
distributions. The results show that accuracy is high and
query time is low.

I. INTRODUCTION

Anycast is a service that allows a host to discover
a close host which is a member of a given group,
where proximity is defined by a metric like the number
of hops or the delay over the IP path. Allowing the
application to locate nearby object replicas, anycast is
beneficial to Content Distribution Networks1, peer-to-
peer data distribution systems and WWW replication
architectures.

In anycast systems, hosts register their membership to
groups with their closest anycast-enabled routers. Each
group is associated with a distinct anycast address. Traf-
fic sent to an anycast destination address is routed to the
closest host registered as a member of the corresponding
group. It is up to the routing infrastructure to maintain
host group memberships, exchange anycast routes and
route the data to the closest member host.

However, due to limitations in routing table sizes,
addressing schemes and computational costs, the
widespread deployment of anycast at the network layer
(Network Layer Anycast, NLA) has been proven prob-
lematic, focusing instead on small groups of application-
specific hosts, such as the root DNS servers.

1such as http://www.akamai.com or http://www.limelight.com

An alternative to NLA, Application Layer Anycast
(ALA) bypasses the addressing and memory constraints
in edge and core routers by delegating anycast routing
functions to the hosts themselves. ALA peers organise
themselves in an overlay network, where links represent
peering relationships to exchange routing information
and to forward messages to anycast destination hosts.
Unlike NLA, ALA hosts use the overlay network only
to discover anycast destination hosts, not to route their
data. The latter is done separately, over the IP network.
The process of discovering an ALA group member host
is called ALA querying.

Although traditional applications can benefit from
anycast, the greatest benefits from an efficient anycast
service would be to those applications that require
consistently low-delay interactions, including live video
streaming applications [1], peer-to-peer virtual environ-
ments [2] and peer-to-peer networked games [3].

In these applications, peers need to discover other
peers that are participating in the distribution of a
particular stream, or in a given virtual spatial locality,
and which are at the same time able to sustain low
delay interactions that allow the system to maintain high
responsiveness and interactivity. With anycast groups
corresponding to a stream or a virtual space, a fast
anycast service can be used by peer selection algorithms
to improve the distribution topology and reduce the end-
to-end path latencies, while at the same time minimising
start-up delay.

Although there have been a number of proposals
regarding the implementation of NLA and ALA, there
is still a need for an anycast architecture focusing on
the stringent accuracy and query resolution time re-
quirements that this new class of real-time applications
presents. To address this, we present DOAT (Distributed
Overlay Anycast Table), a delay-aware, application-
layer anycast system designed to return accurate results
in short time. In this case, accuracy is associated with the
distance, measured as delay over the IP network path,

between the group member discovered by DOAT and
the actually closest group member. Our solution makes
use of three key technologies to implement an ALA
service: network coordinates, space filling curves and
Bloom filters.

To estimate network delay distance, DOAT nodes
use a network coordinate system to find their location
on a multi-dimensional (usually two or three dimen-
sional) delay space. This space is then mapped into
a single-dimensional DOAT coordinate using a space-
filling curve, in order to simplify searching operations.
This coordinate is used to construct a locality-aware
overlay. Scalability is addressed by aggregating group
memberships using Bloom filters, and query resolution
is accelerated using efficient routing.

II. BACKGROUND AND RELATED WORK

Given the great implementation challenges of NLA,
there have been a number of research studies on the
subject. Work by Katabi [4] overcomes some of the
shortfalls in NLA by using route caching techniques.
Proxies [5] are proposed as a means to reduce the size
of routing tables as the number of groups increases.

NLA has no access to metrics such as server load
and available bandwidth, which might be important
for certain applications. Since ALA resides above the
network layer, it can monitor both network conditions
and application-layer metrics. Bhattacharjee et. al [6]
propose the use of anycast domain names (ADNs) with
ADN resolvers maintaining a database of metrics, such
as server load. These metrics are useful only if they
accurately reflect the current state of the network, and
thus, techniques are needed to accurately propagate
them. Work presented by Zegura [7] provides a hybrid
server push technique for the maintenance of the metrics
database, and shows that lower response times can be
obtained when compared with randomly chosen servers.
Early work done on ALA [6], [8] assumes that groups
remain small and have low levels of churn. This last
assumption is rarely justified in peer-to-peer overlays
[9]. [10] proposes a solution suitable for large groups,
assuming however only a small number of groups, and
loose requirements for accurately routing to the closest
group member.

Although DOAT resembles a Distributed Hash Table
(DHT), its function is fundamentally different. As in a
DHT, DOAT peers form an overlay network where data
(membership entries) can be registered and searched with
a given key (group identifier). However, in DOAT there
is no one-to-one mapping between the key space and

the overlay nodes. Group members associated with the
same key register in arbitrary locations, and assignment
of group membership data to overlay nodes is based on
location, and not key to node identifier mapping, thus
allowing for localised searches.

III. ARCHITECTURE

In NLA there is a natural separation between hosts that
make use of the anycast routing capability of the system
and the routers that actually implement it. In the same
way, in DOAT not all hosts that use the anycast service
need to act as anycast routers. We distinguish between
a) group members, that register their membership to a
group with the anycast system in order to receive anycast
messages, b) DOAT nodes, who participate in the overlay
acting as anycast routers, and c) query senders, that
send queries to the ALA system in order to discover
the closest member of their group of interest.

Every group member registers its membership with its
closest DOAT node. DOAT nodes discover their neigh-
bour nodes and exchange information to establish routes
to group members. Every query sender is associated
with its closest DOAT node, which will forward its
queries into the DOAT overlay, following the established
routes until the closest group member is found. The
corresponding protocols are detailed in the following
section.

IV. PROTOCOLS

DOAT uses coordinates to obtain a measure of prox-
imity. In the rest of the paper, we assume network
delay coordinates, however, coordinates with more rich
semantics like load-aware network coordinates [11] are
also possible. In order to minimise query time, DOAT
operates on the principle of creating paths with log-
arithmically decreasing distances to the destination, a
technique similar to [12]. This principle underlies the
protocols for establishing connections between the over-
lay nodes, for exchanging routing information and for
forwarding queries for a particular group.

A. Overlay Topology Construction

Before connecting to the overlay, a node determines
its position using a distributed coordinate system such as
[13]. This allows the node to calculate its coordinates in a
multi-dimensional delay space X where metric distance
between peers in the space is directly correlated with
network delay between the peers in the network. Thus,
short metric distances imply low delay.

Coordinates in X are mapped to a single-dimensional
DOAT coordinate which becomes the identifier of the
node, used to determine its neighbours in the overlay.
The DOAT coordinate has the property that, if two nodes
are “close” in it, then they are close in X . Note that the
opposite is not true: closeness in X does not guarantee
closeness in the single dimensional DOAT space. This
has the drawback that the closest node in the single-
dimensional space might not be the closest node in the
multi-dimensional space, but coarser locality information
will be preserved.

The mapping from X to a single-dimensional space
is done by first using a linear transform to map X
coordinates into the unit square, and then mapping the
unit square to a single-dimensional coordinate using a
number of iterations of a space filling curve. The curve
used here is the H-curve [14], which is known to have
good locality preserving properties. The obtained single-
dimensional coordinate is a wrapping coordinate in the
range of [0, 1), that positions the nodes in a ring (see
figure 1). For the purpose of this paper we will treat X as
a two-dimensional space, note however that the H-curve
trivially generalises to the multi-dimensional space.

A(0.43)

C(0.50)

E(0.71)

F(0.95)

D(0.19)

B(0.40)

Distance

0.00

0.03

0.07

0.24

0.28

0.48

Next-Hop

A

B

C

D

E

F

0
DOAT coordinate

Coordinate

0.43

0.40

0.50

0.19

0.71

0.95

Bloom Filter

BF.local

BF.B

BF.C

BF.D

BF.E

BF.F

Fig. 1. DOAT Topology Construction using Space Filling Curve

After obtaining its DOAT coordinate, a node estab-
lishes peering connections with other DOAT nodes to
exchange routing information. Following the principle
of logarithmically decreasing distances, a node first
connects to the furthest neighbour (closest to the opposite
point of the ring at 0.5 distance), then to the two at half
distance (0.25) in either direction of the ring, and so on.
This process terminates when the immediately closest
node is found at each direction.

To connect to a neighbour n2 at a given distance and
direction on the ring, a DOAT node n1 calculates a target
coordinate for n2. For example, from n1 at 0.43, the

neighbours at a distance of 0.25 have target coordinates
of 0.68 (clockwise) and 0.18 (anti-clockwise). Node n1

then sends a message with the target coordinate n2 to
any known DOAT node n3 , which then forwards the
message to its neighbour that is closest to the target
coordinate n2. This is done recursively, until the message
reaches the actual DOAT node n′2 that is closest to
the target coordinate n2. This is the node that has no
neighbour closer to n2 than the node itself.

B. Registering Membership and Updating Routing Ta-
bles

When a host becomes a member of a group, it has
already calculated reliably its position in X . It then sends
a registration message to any known DOAT node, which
converts the position of the new group member to the
corresponding DOAT coordinate. The registration is then
forwarded to the DOAT neighbour node which is closest
to this DOAT coordinate, until it reaches the DOAT node
which is closest to the DOAT coordinate of the new
group member. This node installs the new membership
entry at its local registry.

Each DOAT node maintains a routing table to forward
queries for groups with no members in its local registry.
The routing table contains one entry for the local registry,
and one entry for each of its neighbours. Each entry
includes information on the identity of the next hop
(neighbour DOAT node), the distance to the next hop
along the DOAT ring, and the set of groups reachable
through it. Routing entries are sorted in ascending order
of distance to the next hop, with first the entry corre-
sponding to the local registry. Figure 1 shows the routing
table of the node at DOAT coordinate 0.43.

The group identifiers cannot be inherently aggregated
as it is the case with, for example, IP addresses. To
preserve the scalability of routing tables and routing
update messages, group identifiers are aggregated using
Bloom filters.

A route announcement from a node n1 to one of its
neighbours n2 contains the groups present in the local
registry of n1, and the groups that n1 can reach through
other DOAT nodes ni, where the distance between n1

and ni is less than the distance between n1 and n2. In
other words, the node announces all the anycast groups
for which there are member hosts in its local area, to
nodes further away. The area Bloom filter sent to each
neighbour ni is the aggregate of the Bloom filter that
corresponds to the local registry, and the Bloom filters
received from all the neighbours which are closer than
ni, i.e. appearing before ni in the routing table. When

a new group is registered with the node n1, the latter
sends an update to all its neighbours. When the node
n1 forwards a routing update received from another
neighbour n2 then it propagates the update only to these
nodes further away than n2.

To reduce the message overhead, a DOAT node
may not send routing updates synchronously with local
changes. Instead, a minimum interval may be enforced
between two consecutive updates sent to a neighbour.
There is an accuracy penalty incurred by delaying up-
dating the neighbours (see Section V-D). Additionally,
instead of sending the entire Bloom filter every time, a
node may send only the difference since the last update
and other compression techniques are possible.

A routing update message also contains the imme-
diately closest neighbour of the node in both directions.
These DOAT nodes can be used as alternative neighbours
in case the node fails and does not follow the procedure
of gracefully removing itself from the overlay.

C. Query Forwarding

When a DOAT node receives a query, it will either
return the appropriate group member IP address if the
group appears in its local registry, or forward the query
to another DOAT node, according to the Bloom filter
matches on its routing table.

To determine the next hop to forward the query, the
DOAT node will iterate its routing table in increasing
distance order, attempting to match the queried group
identifier with the Bloom filters at each step. The next
hop will be the first neighbour whose Bloom filter returns
a positive match with the group identifier. The query
is then forwarded to the associated next hop neighbour.
Because the routing table is sorted in ascending order
of distance to the next hop, this is the nearest next hop
that has announced a route for this group. The process is
repeated at each hop until a node with group members
in its local registry is found.

Because of the neighbour selection and route forward-
ing mechanisms, the path the query follows is composed
by hops of exponentially decreasing distances, starting
with a maximum of 0.5 on the DOAT coordinate, i.e.
the maximum network delay between any two DOAT
nodes.

D. Node Insertion and Deletion

The DOAT nodes may be statically appointed hosts,
operated by a single administration. However, the system
is designed to work in a peer-to-peer environment, where

any stable peer (high uptime, stable network delay coor-
dinates, considerable storage, bandwidth and processing
resources) can be elected to become a DOAT node 2

(more elaborate methods can be adopted to minimise
churn [16]).

Not every peer becomes a DOAT node and a peer does
not decide in isolation to become a DOAT node. When
the load on a DOAT node increases beyond a locally
defined threshold, it chooses the most stable peer in its
local area and sends a DOAT invite message.

When a node leaves the system it informs all its neigh-
bours with a message that also includes its direct neigh-
bours in both directions. This way, all its neighbours
can automatically substitute the removed neighbour with
one of its direct neighbours. Routing updates also carry
this information, in case the node fails without warning.
When a node detects that a neighbour has failed, it can
immediately forward queries and routing updates to the
replacing neighbour of the failed node.

Node removal and re-insertion can be also triggered
by network coordinate drift [17], or by changes in the
prevailing network congestion and delay patterns. As
the position of a node in the overlay is dependent on
its DOAT coordinate (which itself is calculated from
the its network coordinates), if it moves too far away
from its original position, the node will remove itself
from the DOAT and re-insert itself in the new position.
This is necessary because network delay changes that
are not reflected in the DOAT coordinate can reduce
the accuracy of the closest group member discovery
(see Section V-E for an evaluation of the impact of
coordinates accuracy on the DOAT accuracy).

V. EVALUATION

The performance of the DOAT system for a single
anycast group is evaluated using a discrete event simu-
lator. The number of anycast groups affects only the size
of the Bloom filters in the routing tables and the routing
update messages.

A number of nodes is generated, with each node
assigned to a two-dimensional coordinate in the net-
work delay space X . We used a uniform distribution
to generate coordinates in the range of [−100, 100] for
each dimension, creating a Euclidean space with average
delay of around 104 milliseconds. Three sets of 500,
1000 and 3000 nodes were generated. Additionally, we
used a set of coordinates for 1740 hosts and an average

2We assume that peers participate in DOAT altruistically or that
there is an incentives mechanism in place [15].

delay of around 145 milliseconds, generated by applying
the Vivaldi algorithm [13] to the delays of the King data
set [18].

Nodes join the DOAT system one by one, calculate
their DOAT coordinate and connect to neighbours. A
number of hosts, specified as a percentage over the total
number of DOAT nodes, register as group members. This
percentage represents the density of the group and affects
the average distance to the closest group member.

We distinguish between the synchronous and asyn-
chronous update methods. In the synchronous update, all
group members are registered at once, and queries are
generated from all the DOAT nodes. In the asynchronous
update case, each time a group member registers, queries
are generated from 10% of the nodes, thus recording
each of the intermediate states of the system.

For each query, the following metrics are evaluated:
• query time: the sum of the propagation delay along

the overlay query forwarding path,
• accuracy error: the difference in distance of the

discovered from the actual closest group member; it
is is calculated as: R−C

D , where R is the delay from
the querying host to the member host discovered by
DOAT, C is the delay from the querying host to the
actual closest member host, and D is the average
delay in the simulated two-dimensional delay space.

For each experiment, we evaluate overhead as the
number of routing messages exchanged per DOAT node,
for each registered group member. The trade-off be-
tween accuracy and overhead is investigated in the
asynchronous case. An update interval is set to constrain
the frequency of updates a DOAT node can send to
any of its neighbours. The update interval is specified
as multiplies of new group member arrival intervals.
By reducing the number of routing updates overhead is
reduced. However, there is a penalty in accuracy, as the
routing tables are not always up to date with routes to
reach all the members registered in the system.

Finally, we evaluate the impact of the accuracy of
the network delay coordinates on the accuracy of the
DOAT query results. The experiment progresses as in
the synchronous case; however, upon evaluating the
accuracy, we alter the coordinates of the nodes for a
random value around an average coordinate offset value.

A. Query time

Figures 2(a) and 2(b) show the average query delay
and number of hops for the artificial and the King data
sets, for different values of the ratio of members over
DOAT nodes. The average query delay to discover the

closest member is below the average delay between any
two nodes, even for the smallest groups, and decreases
rapidly for larger groups. As the number of DOAT nodes
increases, the routing tables become more fine-grained,
with more neighbours in smaller distances. This results
in query paths with more hops of smaller delays, as
can be seen by comparing the values between the 500,
1000 and 3000 artificial data sets. Also, comparing the
uniform delay distribution and the realistic distribution
of the King data set, we see that the impact is very small
in both the delay and the number of hops.

0

10

20

30

40

50

60

70

1 10 100

Group Members over DOAT Nodes (%)

500 artificial nodes

1000 artificial nodes

3000 artificial nodes

1740 King data nodes

Q
u

e
ry

 P
ro

p
a
g

a
ti

o
n

 D
e
la

y
 (

m
s
)

(a) Propagation Delay

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 10 100

Q
u

e
ry

 H
o

p
s

Group Members over DOAT Nodes (%)

500 artificial nodes

1000 artificial nodes

3000 artificial nodes

1740 King data nodes

(b) Number of Hops

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 10 100

A
c
c
u

ra
c
y
 E

rr
o

r

Group Members over DOAT Nodes (%)

500 artificial nodes

1000 artificial nodes

3000 artificial nodes

1740 King data nodes

(c) Accuracy

0

3

6

9

12

15

18

1 10 100

Group Members over DOAT Nodes (%)

500 artificial nodes

1000 artificial nodes

3000 artificial nodes

1740 King data nodes

R
o

u
te

 U
p

d
a
te

s

p
e
r

M
e
m

b
e
r

p
e
r

N
o

d
e

(d) Overhead

Fig. 2. Query Time and Accuracy

B. Accuracy

In Figure 2(c) we see the accuracy for the discovery
of the closest group member. Even for small groups and
small-sized DOAT overlays, the accuracy error is below
10%. For larger DOAT overlays and/or groups the error
becomes negligible. One factor that contributes in the
DOAT accuracy error is the error introduced by the space
filling curve as there might be neighbours which are
actually closer in the network delay space X , but appear
to be further away in the DOAT coordinate space.

C. Overhead

In Figure 2(d) we can see the number of routing update
messages exchanged per node for each new member.
When there are few members, routing updates have
to reach all DOAT nodes but as soon as groups start
growing, messages are only propagated in small regions
reducing the impact in the overlay.

D. Accuracy and Message Overhead Trade-Off

In Figure 3 we can see the trade-off between overhead
and accuracy with the King data. Even with a small

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 1 2 3 4 5 6 7 8 9 10

A
c
c
u

ra
c
y
 E

rr
o

r
10% members/nodes

20% members/nodes

40% members/nodes

60% members/nodes

80% members/nodes

Update Interval / New Member Arrival Interval

(a) Accuracy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 2 4 6 8 10

10% members/nodes

20% members/nodes

40% members/nodes

60% members/nodes

80% members/nodes

Update Interval / New Member Arrival Interval

R
o

u
te

 U
p

d
a

te
s

p
e
r

M
e

m
b

e
r

p
e

r
N

o
d

e

(b) Overhead

Fig. 3. Accuracy and Message Overhead Trade-Off

update interval the overhead is significantly reduced,
without significantly increasing the accuracy error.

E. Sensitivity to Coordinates Accuracy

Network delay coordinates do not represent the net-
work delay with accuracy [17], or in a static way. To
evaluate sensitivity to coordinates accuracy, we alter
the DOAT node coordinates during the course of the
experiment by a given offset distance, and we measure
the impact on the accuracy against the results obtained
with static accurate coordinates.

In Figure 4 one can see a linear relationship between
X accuracy and DOAT accuracy. This is considered
acceptable, as there are studies in the literature [19]
which address the problem of stabilising network delay
coordinates, enhancing their accuracy on the same time.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.1 0.2 0.3 0.4 0.5

A
c

c
u

ra
c

y
 E

rr
o

r

500 artificial nodes

1000 artificial nodes

3000 artificial nodes

Network Coordinate Inaccuracy (Offset Distance / Space Diameter)

Fig. 4. Effect of Coordinates Accuracy

VI. CONCLUSIONS AND FUTURE WORK

We present a structured overlay system that imple-
ments Application Layer Anycast. The system is de-
signed to support a large number of small to very
large anycast groups, with high locality accuracy while
minimising the query time. We show through simulations
in artificial and realistic conditions, that these objectives
are achieved.

One of the future directions is to prove the validity of
these early results through a prototype implementation.
This work could then be applied to large scale systems
like the World Wide Web, extending HTTP to work
with replicated pages. This will substantially improve
performance and allow small content providers to cope
with flash crowds and high volumes of hits.

REFERENCES

[1] X. Zhang, J. Liu, B. Li, and Y.-S.P. Yum. Coolstreaming/donet:
a data-driven overlay network for peer-to-peer live media
streaming. INFOCOM 2005. 24th Annual Joint Conference of
the IEEE Computer and Communications Societies. In Proc.
IEEE, 3:2102–2111 vol. 3, 13-17 March 2005.

[2] S.-Y. Hu, T.-H. Huang, S.-C. Chang, W.-L. Sung, J.-R. Jiang,
and B.-Y. Chen. Flod: A framework for peer-to-peer 3d
streaming. In Proc. of INFOCOM’08, March 2008.

[3] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda,
J. Pang, S. Seshan, and X. Zhuang. Donnybrook: Enabling
large-scale, high-speed, peer-to-peer games. In Proc. SIG-
COMM’08, August 2008.

[4] D. Katabi and J. Wroclawski. A framework for scalable global
IP-anycast (GIA). In Proc. SIGCOMM’00, pages 3–15, 2000.

[5] H. Ballani and P. Francis. Towards a global ip anycast service.
In Proc. SIGCOMM’05, August 2005.

[6] S. Bhattacharjee, MH Ammar, EW Zegura, and V. Shah.
Application-layer anycasting. INFOCOM’97. Sixteenth Annual
Joint Conference of the IEEE Computer and Communications
Societies. In Proc. IEEE, 3, 1997.

[7] E. W. Zegura, M. H. Ammar, Z. Fei, and S. Bhattacharjee.
Application-layer anycasting: a server selection architecture and
use in a replicated Web service. IEEE-ACM Trans. Netw.,
8(4):455–466, 2000.

[8] Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar.
A novel server selection technique for improving the response
time of a replicated service. In Proc. INFOCOM’98 (2), pages
783–791, 1998.

[9] D. Stutzbach and R. Rejaie. Understanding churn in peer-to-
peer networks. Proc. of the 6th ACM SIGCOMM on Internet
measurement, pages 189–202, 2006.

[10] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. Scal-
able application-level anycast for highly dynamic groups, 2003.

[11] N. Ball and P. Pietzuch. Distributed content delivery using
load-aware network coordinates. In Proc. of the 3rd Inter-
national Workshop on Real Overlays and Distributed System
(ROADS’08), Madrid, Spain, December 2008.

[12] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrish-
nan. Chord: A scalable Peer-To-Peer lookup service for internet
applications. In Proc. SIGCOMM’01, pages 149–160, 2001.

[13] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a de-
centralized network coordinate system. In Proc. SIGCOMM’04,
pages 15–26, New York, NY, USA, 2004. ACM.

[14] R. Niedermeier, K. Reinhardt, and P. Sanders. Towards optimal
locality in mesh-indexings. Discrete Applied Mathematics,
117(1-3):211–237, 2002.

[15] R. Landa, R.G. Clegg, E. Mykoniati, D. Griffin, and M. Rio.
A sybilproof indirect reciprocity mechanism for peer-to-peer
networks. In Proc. INFOCOM’09, April 2009.

[16] P. B. Godfrey, S. Shenker, and I. Stoica. Minimizing churn in
distributed systems. In Proc. of SIGCOMM’06, pages 147–158.
ACM Press, 2006.

[17] J. Ledlie, P. Gardner, and M. Seltzer. Network coordinates in
the wild. In Proc. of NSDI 2007, Cambridge, MA, April, 2007.

[18] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: estimat-
ing latency between arbitrary internet end hosts. SIGCOMM
Comput. Commun. Rev., 32(3):11–11, 2002.

[19] J. Ledlie, P. Pietzuch, and M. Seltzer. Stable and accurate
network coordinates. In Proc. of the 26th International Confer-
ence on Distributed Computing Systems (ICDCS’06), Lisboa,
Portugal, July 2006.

