
Incentives Against Hidden Action in QoS Overlays

Raúl Landa, Miguel Rio, David Griffin, Richard Clegg, Eleni Mykoniati
Department of Electronic and Electrical Engineering

Networks and Services Laboratory
{rlanda, mrio, dgriffin, rclegg, emykoniati}@ee.ucl.ac.uk

Abstract

Peer-to-peer networks providing QoS-enabled services
are sensitive to hidden action situations, where the actions
of a server peer are hidden from the peers who receive ser-
vices from it. This is because server peers can choose to
strategically minimize their effort, and client peers may be
unable to distinguish between cases where the server ex-
erted insufficient effort and cases where the server kept its
advertised effort levels but the end-to-end conditions in the
network were sufficiently adverse.

We propose a principal-agent model for hidden action
that gives server peers sufficient incentives to meet their
advertised effort levels, without client peers having to de-
cide for each transaction whether the outcome was due to
server behavior or network conditions. This allows peers
to draft contracts that provide incentives for truthful reve-
lation of QoS capabilities, and to have predictable transac-
tion quality. We then exemplify the model for the case of a
mesh-based, pull-oriented streaming system with low delay
requirements. For this case, we show how to estimate the
model parameters a function of the prevailing network con-
ditions, and how to enforce contract fulfillment through a
reciprocative strategy.

1. Introduction

The design of QoS overlays over best-effort networks is
still an open research problem [29, 33, 21]. In this paper,
we approach the problem of QoS as an observable indicator
of peer behavior: although the peer-experienced QoS will
depend on the underlay network conditions, it will be also
affected by the behavior of the serving overlay nodes. We
seek to propose an incentives mechanism that provides an
incentive for server peers to deliver their advertised levels
of effort, even if client peers are unable to unequivocally
determine if the unsatisfactory outcome of a transaction is
due to insufficient server effort or to network variability. We
will focus on peer-to-peer overlays with strategic, selfish

peers.
Although there is a large amount of work on the eco-

nomic and game theoretical modeling of peer-to-peer sys-
tems (in particular as it relates to the provision of incentives
against the free-rider problem [1, 13, 27, 10, 9]), it is fre-
quently assumed that peers can determine the level of server
effort by observing their own experienced QoS. Based on
this, peers choose the service quality that they provide to
other peers as a function of the service quality these other
peers have, in turn, provided to the system. Unfortunately,
clients are very often unable to observe the actual server ef-
fort, since it is obscured by shifting network and peer con-
ditions that affect transfer operations. The design for QoS
contracts between peers connected through a best-effort net-
work has been, thus, less widely studied.

The main difficulty in the analysis of peer-to-peer QoS
contract design is that the effect of the behavior of the server
is externalized to the client. This means that if a server peer
fails to deliver a high-enough contribution effort, and this
leads to low QoS for the client, the server does not naturally
bear the negative consequences of this action. Instead, these
consequences are externalized to the peer who requested the
service.

Since the client is unable to directly measure the actions
of the server, the fact that the server might have not de-
livered its advertised service quality can be only indirectly
inferred. In the present paper we propose a principal-agent
model for hidden action that gives server peers sufficient
incentives to meet their advertised effort levels, without the
peers having to decide for each transaction whether the ob-
servable outcome (the actual QoS linked to the transaction)
was due to server behavior or network conditions. This is
accomplished by allowing peers to draft contracts that pro-
vide incentives for truthful revelation of system contribution
capabilities. This, in turn, helps strategic peers to obtain
more predictable service levels. We propose an algorithm
for the calculation of the probabilistically optimal payments
on a QoS-dependent contract offering greater payment if the
transaction is concluded with high QoS, and a lower pay-
ment otherwise. Although we propose a general expres-



sion for the calculation of these payments, every particular
application will require its own probabilistic model of the
relationship between the effort that the server puts into a
transaction, the prevailing network conditions and the QoS
experienced by the client. We present such a model for
an specific example: a mesh-based, pull-oriented streaming
system with low delay requirements.

The structure of the paper is as follows. In Section 2 we
approach the general problem of hidden action in QoS over-
lays, and present the optimal differentiated payments that a
client must offer to provide a server with the incentive to
deliver its advertised level of service. In Section 3 we apply
the model to a delay-sensitive chunk distribution overlay for
media streaming, and show how the model parameters can
be defined in terms of observable network measurements.
In Section 4 we present other attempts to develop optimal
peer-to-peer contracts, or to use the principal-agent model
in the context of computer networking.

2. Modeling Hidden Action

The term hidden action is used when, in a two party
transaction, the actions of one of the parties (usually regard-
ing contract compliance or lack thereof) are hidden from
the other. One model for these cases is the principal-agent
model, where an economic actor (the principal) trusts an-
other one (the agent) to perform a task. However, the ac-
tions that the agent takes (or fails to take) in the context
of the task are not completely verifiable by the principal.
Thus, the agent has the power to impose, through its ac-
tions, an externality on the principal. To transfer some of
this risk back to the agent, the principal will usually require
a contract by which the value that the the agent obtains from
the transaction will depend on the observable consequences
of its actions. This contract is designed to transfer at least
part of the externality back to the agent. Additionally, this
contract creates an “audit point” where the principal is able
to assess the actions of the agent, and respond accordingly.

In the case of peer-to-peer QoS overlays, the client plays
the part of the principal and the server plays the part of the
agent: the client trusts the server to provide its advertised
effort, but the experienced QoS of the interaction will also
depend on the variability of the network on which the ser-
vice takes place. Thus, the server will have some degree of
plausible deniability if its service is unsatisfactory, as degra-
dation might be indicative of fluctuating network conditions
and not lack of effort on its side.

In order to use the principal-agent model, we must as-
sume the existence of a market and currency system M.
The role of M includes informing all peers of the effort
guarantees advertised by other peers, communicating pric-
ing and resource availability information, securely main-
taining the amount of currency that peers possess, and ex-

ecuting currency transfers between peers. Thus, M is the
open market on which peers advertise their resources and
formalize transactions. We assume that services are found,
purchased and paid for using currency and procedures de-
fined in M.

There is a vast body of research regarding the distributed
implementation of M using either structured or unstruc-
tured overlays [32, 34, 6, 31, 15, 36, 30, 38, 2], and our
technique can be easily adapted to be used on any one of
these systems1. Instead of proposing our own implementa-
tion of M, we propose an open model applicable to a wide
range of possible M implementations, and leave its precise
modeling and analysis outside the scope of this paper.

Through M, clients search for prospective servers ac-
cording to the QoS characteristics that the servers them-
selves advertise. This takes the form of either a distributed
hash table (DHT) query, or directed broadcast on an un-
structured overlay. Of course, servers will only truthfully
reveal their true QoS capabilities if the benefit they can ob-
tain if they do so is greater that the benefit they can obtain
if they lie. We will explore this issue in Section 3.

A peer i with a server role will only provide a service
to a client j if the utility that a transaction with j offers is
at least as large as the average utility that i could obtain
from a transaction with any other peer k. Thus, if we define
Ur as the average utility that a peer can expect as a result
of a transaction, we have that the minimum utility that i
will accept from an interaction with j is Ur (we call this
the rationality condition).We assume that peers can query
M to learn Ur, and that Ur is updated by M with every
successful transaction.

Once i has accepted a request from j, it has to determine
the treatment it will give to it: imight give different priority
to different requests, or it might have other local processes
competing for scarce CPU or upload bandwidth resources.
Thus, i can respond to the request from j with various lev-
els of effort φ ∈ R≥0. The service quality q ∈ R≥0 that j
experiences as an outcome of the transaction will be contin-
gent on φ: higher values of q are positively correlated with
higher values of φ.2

However, we assume that the client is unable to observe
φ - this is private information of the server. Additionally,
we assume that there is uncertainty in QoS outcomes: due
to varying delay and throughput conditions in the network,
it is impossible for j to infer φ directly from the observed
transaction QoS q. Thus, an unobservable decision by i (its
choice of φ) has an effect on the utility experienced by j,

1We assume that peers have reliable identities, and thus we do not ad-
dress Sybil or whitewashing attacks [8, 14].

2We are deliberately vague in the definition of φ and q, as they are
application-dependent. For some overlays φ and q might be defined in
terms of delay, while for others they might be better defined in terms of
jitter and average throughput. We provide a specific mapping of φ and q to
time-sensitive chunk transfer on Section 3.

2



φ Level of effort by the server
Us Utility function for the server
Uc Utility function for the client
q QoS enjoyed by the client
ψ Payment given by the client to the server
p Probability of the client getting high qual-

ity service as a function of the effort by the
server.

Ur Reservation utility for the server

Table 1. Principal-Agent model notation

and we have a situation where the principal-agent model
applies [22]. The client is unable to unambiguously infer
the behavior of the server from the observation of the trans-
action outcome, and thus is vulnerable to exploitation by it.
Thus, the server needs to be given an incentive (in the form
of an outcome-dependent payment ψ ∈ R≥0 measured in
the currency units ofM) to give its best effort by assimilat-
ing some of the risk associated with the network conditions
that might affect the transaction outcome. These variables
are summarized in Table 1.

2.1. The Principal-Agent Model

The objective of the model is to obtain the payments that
the client needs to offer the server as a function of the qual-
ity of service it receives, in order to ensure that the server
puts maximal effort into maintaining its advertised effort
levels. The client thus calculates payments as a function of
the server-advertised effort (and the estimated condition of
the overlay network link between them) and creates a con-
tract for the server. The server can either accept the contract
as it stands, or reject it immediately.

If the server is able to maintain the effort commitments
that it advertised in M, it is considered to have devoted
high effort to the transaction, and φ = φ+. On the other
hand, if the server is unable to maintain its advertised effort,
it is considered to have devoted low effort, and φ = φ−.
Of course, low levels of effort increase the chance of the
outcome having low QoS, and we seek to create an incentive
mechanism against them3.

A transaction is defined to have failed if the quality that
the client experiences is lower than the minimum quality
that the client is willing to tolerate, as set in the initial client-
server contract. Thus, for any successful transaction, the
outcome for the client can be either high QoS (and q = q+)
or low QoS (with q = q−). We address transaction failure
in Section 3.1.

The outcome of the transaction (the service quality ex-

3The mapping between φ+, φ−, q+ and q− and observable parameters
for an example peer-to-peer streaming application is analyzed in Section 3

perienced by the client) depends probabilistically upon the
level of effort of the server:

P [q = q+|φ = φ+] = p+

P [q = q−|φ = φ+] = 1− p+

P [q = q+|φ = φ−] = p−

P [q = q−|φ = φ−] = 1− p−

We denote with ψ the payment that the server will re-
ceive after the transaction is completed. The client will pay
the server a differentiated amount, according to the QoS that
it experiences. Thus, the client will pay the server ψ = ψ+

if the outcome is high QoS, a smaller amount ψ− if the out-
come is low QoS, and nothing if the transaction fails. As
stated, φ+ > φ−, ψ+ > ψ− and q+ > q−.

We continue the derivation of the optimal contract pay-
ments by defining the following utility function for the
client:

Uc(q, ψ) = qβ − ψ

where β ∈ (0, 1). Let U+
c be the expected utility for the

client if φ = φ+, and U−c the expected utility for the client
if φ = φ−. Then, we have that:

U+
c = p+Uc(q+, ψ+) + (1− p+)Uc(q−, ψ−)

U−c = p−Uc(q+, ψ+) + (1− p−)Uc(q−, ψ−)

The client wishes the server to put high effort in the transac-
tion, and thus to calculate ψ+ and ψ− to maximize U+

c (we
shall not consider optimizing U−c ). We define the following
utility function for the server:

Us(ψ, φ) = ψα − φ

where α ∈ (0, 1)4. Then, the expected utility for the server
as a function of its effort and payment is:

U+
s = p+Us(ψ+, φ+) + (1− p+)Us(ψ−, φ+)

U−s = p−Us(ψ+, φ−) + (1− p−)Us(ψ−, φ−)

We seek to ensure that the server obtains a higher utility by
exerting φ+ than by exerting φ− (we call this the incentive
compatibility constraint). Thus, we must find the ψ+ and
ψ− that solve the following optimization problem:

Maximize: U+
c (1)

Subject to: U+
s ≥ Ur (rationality)

And: U+
s ≥ U−s (incentive compatibility)

4α and β are external parameters that can be used to fit these functions
to experimental measurements. For the rest of this paper, we consider them
external parameters that are given.

3



It can be shown (see Appendix A) that the optimal pay-
ments for the outcome-dependent QoS contract are:

ψ− =
(
Ur +

p+φ− − p−φ+

p+ − p−

) 1
α

(2)

ψ+ =
(
Ur +

(1− p−)φ+ − (1− p+)φ−
p+ − p−

) 1
α

(3)

3. Case study: Delay-sensitive chunk transfer
in streaming systems

In this section, we focus on modeling hidden action in
a mesh-based, pull-oriented peer-to-peer media streaming
system. In mesh-based systems, the media stream is divided
in constant-sized chunks at its source, and each one of these
is transported through the overlay in a more or less inde-
pendent fashion. In pull-oriented systems, every chunk is
negotiated in individual interactions where a request for an
specific chunk is issued. We call each of these interactions
a transaction. A transaction consists of a peer (the client)
issuing a request to another peer (the server) for a chunk,
and the server responding with either the chunk in question
or a message refusing the request. Of course, we require no
asymmetrical restriction in roles: peers can be simultane-
ously clients and servers to other peers. Additionally, peers
freely select which peers to upload to and download from,
and each chunk is individually requested through a logically
separate operation. Examples of these include DONet [37],
PULSE [26] or Bullet [20].

In order to simplify the analysis, we assume that signal-
ing and stream traffic is exchanged using TCP over already
open connections5.

We assume that the servers advertise, using M, the ef-
fort levels that they are willing to commit to. Finally, we
assume that peers need to schedule chunk downloads from
other peers in a predictable manner in order to be able to
maximize their QoS. Thus, each client peer is assumed to
solve an optimization problem to decide which servers to
ask for which chunks as a function of the effort parame-
ters that they advertise, and its local codec play-out require-
ments. Our problem is then to design an incentives system
that ensures that the server peers respond according to their
advertised effort levels.

We model a transaction as shown in Fig. 1 (the variables
therein are explained in Table 2). The total delay that a

5We choose TCP only for analytical convenience. Extending the model
to use other transport protocols, such as RTP [28] or TFRC [17], would
require more explicit consideration of the channel loss probability, but is
otherwise a simple matter. The performance of TCP for media streaming,
however, has been analytically studied and found to be good if the achiev-
able throughput is roughly twice the media bit-rate [35].

client experiences on a transaction is:

D = tRTT +
Sr

Tc
+ tP +

NsSc

Ts
(4)

}

}

}
tP

NsSc

Ts

Sr/Tc

client server

}D

Figure 1. Transaction delay components

Clearly, the variables in Table 2 fall into two kinds: those
under the control of the server (tP and Ns) and those that
are a property of the protocol specification or the TCP con-
nection between the client and the server (tRTT , Sr, Tc and
Ts). Thus, it is tP and Ns that constitute the “advertised
effort levels” that are disseminated through M.

We model the effort put by the server on a given transac-
tion by defining two deadlines: the first one, t+, denotes the
maximum transaction resolution time if the server actually
delivers its advertised effort. The second deadline, t−, is
the absolute maximum delay that the client is willing to tol-
erate for the transaction. If a transaction was not rejected by
the server immediately after its request, the elapsing of t−
without the client having fully received the requested chunk
will be interpreted by the client as deviation from a socially
enforced rule, triggering penalties for the server (as detailed
in Section 3.1).

In order to fully characterize the behavior of the client,
we also define a time tc during which the server has the
opportunity to reject the transaction. If the client does
not receive a rejection message before tc elapses, it will
silently assume that the server has accepted the request and
it will deliver a chunk with the effort level that it advertised
through M.

Thus, we have defined a two-tier differentiated service
scheme: if the observed delay D of the transaction is lower
than or equal to t+ (that has been calculated to be consistent
with the server-advertised parameters), the outcome quality
q = q+ is considered to belong to the high QoS tier and
ψ = ψ+. On the other hand, if t+ < D < t−, the outcome
quality q = q− is considered to belong to the low QoS tier
and ψ = ψ−. Finally, if D > t− the transaction is consid-
ered to have failed, and the server is penalized.

In order to apply the model in Section 2.1 (and thus ob-
tain the optimum contract prices ψ− and ψ+), peers need

4



D Chunk delivery delay
tRTT Layer 3 RTT
Sr Request message size
Tc Client to server throughput
Sc Chunk Size
Ts Server to client throughput
tP Request processing time at the server
Ns Number of peers amongst which the server

upload is shared

Table 2. Transaction delay components

Sp Packet size at layer 3
pL Packet loss probability at layer 3
tRTO Retransmission timeout

Table 3. TCP Channel model parameters

to estimate p+, p−, φ+ and φ− as a function of the pre-
vailing network conditions and the desired deadline for the
transaction, t+.6

To accomplish this, we require a model linking the
transaction-level delay (the process that defines the QoS re-
ceived by clients) with the packet-level delay (the varying
network conditions). Thus, we seek to express the distribu-
tion the transaction delay in terms of the relevant parame-
ters of the round trip packet delay and the model (4) (Figure
1). To do this, we note that the RTT delays can be mod-
eled using a shifted gamma distribution [24, 4], so that the
two shape parameters of the gamma distribution (θ and k),
along with a shift parameter ∆ can be fit from data on the
prevailing characteristics of the RTT delay on the link. We
can thus express the RTT delay PDF as:

f(x) =
1

θkΓ (k)
(x−∆)k−1e−

x−∆
θ (5)

By transforming f in (5) according to (4) and introduc-
ing a simple model for TCP throughput as parametrized by
RTT [25], we find that the transaction-level delay distribu-
tion g is (see Appendix B):

g(y) =
1

(ξ1θ)kΓ (k)
(y−tP −ξ2−ξ1∆)k−1e−

y−tP−ξ2−ξ1∆

ξ1θ

(6)
Where:

ξ1 = 1 +

√
2pL

3
Sr +N∗

s Sc

Sp

ξ2 = tRTO(3

√
3pL

8
)pL(1 + 32p2

L)
Sr +N∗

s Sc

Sp

6Peers define t− in a completely private fashion.

(see Tables 2 and 3 for nomenclature). The derivation of
this result can be found in Appendix B.

For the rest of the parameters in the model, we define the
following mapping between the observable variables and φ
and q:7

φ = κ1

(
1

NstP

)ε

q = κ2
1
Dη

(7)

where κ1 ∈ R≥0, κ2 ∈ R≥0, η ∈ (0, 1), γ ∈ (0, 1), ε ∈
(0, 1). For φ+ and q+, the server is assumed to have oper-
ated according to its advertised parameters, and:

φ+ = κ1

(
1

N+
s t

+
P

)ε

q+ = κ2
1
Dη

+

To calculate t+, the client queries M for the server-
advertised t+P and N+

s and defines a target p+ that repre-
sents the tolerance that the client is willing to give to the
server (1 − p+ is the probability that the transaction will
conclude after t+ even though the server upholds its adver-
tised t+P and N+

s , and thus also measures the risk involved
for the server). From (5), and referring to Figure 2, we see
that t+ is found by solving:

Γ (k)p+ = γ

(
k,
t+ − t+P − ξ2 − ξ1∆

θξ1

)
(8)

where γ(k, x) is the incomplete gamma function (See Ap-
pendix B).

We now model the two classes of service related to the
effort levels φ+ and φ−. We refer the reader to Figure 2 for
a graphical representation of the time intervals and proba-
bilities related to the following discussion.

t
+

P

p+

p
−

f
−

f+

D

Dt
−

P

ψ+ ψ
−

t+ t
−

ξ1∆ + ξ2

ξ1∆ + ξ2

kθξ1

kθξ1

pe

Figure 2. Determination of t+P and t−P

5



The transaction delay distribution f+ associated with
high-QoS can be obtained from (5) by setting tP = t+P .
In order to obtain f−, we propose that if the server fails
to uphold t+P and N+

s , it will choose an alternative effort
level defined by t−P and N−

s in which it attempts to put as
little effort as possible, while trying to maintain high pay-
ment ψ+. For the purpose of this paper, we assume that the
server reveals Ns truthfully in all circumstances, and thus
N−

s = N+
s . Thus, for φ−, the server will decrease its effort

by increasing its processing delay so that tP = t−P < t+P ,
and it will calculate t−P so that the expected value of f− is
equal to t+, thus selecting the lowest effort that, in expecta-
tion, still leads to a high paying outcome. This means that
the client chooses the t−P that makes the following expres-
sion hold (see Figure 2):

ξ1∆+ ξ2 + t−P + kθξ1 = t+ (9)

Clearly, the service level defined by (t−P , N
+
s ) is signif-

icantly worse than that one implied by (t+P , N
+
s ), as nor-

mally the expected transaction resolution time if the server
upholds t+P is smaller than t+. Once that t−P is defined, we
calculate p− by setting tP = t−P in (6) and finding the inte-
gral up to t+. Equivalently:

p− =
γ

(
k,

t+−t−P−ξ2−ξ1∆

θξ1

)
Γ (k)

=
γ(k, k)
Γ (k)

For φ− and q−, since the client assumes that the server
has actually tried to deliver as low quality of service as it
can get away with, we have that:

φ− = κ1

(
1

N+
s t

−
P

)ε

q− = κ2
1
Dη
−

Clearly, it is in the best interest of the server to minimize
its probability of being paid ψ−. Thus, the server will only
accept contracts for which it can deliver high values for p+,
which in turn gives it an incentive to truthfully reveal the
effort level that it is willing and able to maintain.

Depending on the the value that the client assigns to t−,
there might be a possibility that the transaction could exceed
t−, with no malicious intent by the server. If this probabil-
ity, pe (see Figure 2) presents an undesirably high risk, the
server can choose to reject the contract and refuse service.
the same considerations apply if p+ is too low.

In Figure 3 we see a graphical representation of expres-
sions (2) and (3) in the context of the model presented in
this section. Figure 3 shows the payments ψ+ that a client
would offer to a server as a function of its advertised effort,
for an scenario with parameters as shown in Table 4. Thus,

7κ1, κ2, γ, ε and η are external parameters that can be used to fit these
functions to experimental measurements. For the rest of this paper, we
consider them external parameters that are given.

102

104

!
+ (A

rb
itr

ar
y 

un
its

)

High!QoS Payments

 

 

tP (msec) 102

103

104

Low!QoS Payments

tP (msec)

!
! (A

rb
itr

ar
y 

un
its

)

 

 

1
2
3
4
5

1
2
3
4
5

Figure 3. ψ+ and ψ− for the simulation run of
Table 4 (the legend in both graphs shows dif-
ferent values of Ns, the number of clients that
the server is serving simultaneously).

Mean tRTT 110 msec
k 3
θ 3
Sr 200 bytes
Sc 64 kbyte
Sp 1500 bytes
pL 10−3

tRTO 100 msec

Table 4. Simulation parameters

a server peer that advertises in M that it is able to commit
to an effort level corresponding to N+

s = 5 and t+P = 30
msec. can expect to be offered by a prospective client a
contract where ψ+ ≈ 13500 and ψ− ≈ 370 in M currency
units. Thus, the contract would be drafted with these two
payment values. Following the outcome of the transaction,
the server will receive ψ+ if the transaction is successful
with high QoS, ψ− if the transaction is successful with low
QoS, and nothing if the transaction is unsuccessful.

The nonlinear behavior of ψ− near the origin is a prod-
uct of the sensitivity of our definition for φ to very small
decreases of tP in the vicinity of zero, as it is clear from
(7).

3.1. Contract Enforcement

The model in Section 2.1 assumes that the contract is en-
forceable, as it often the case in economics (usually through

6



Server Server
Cooperate Defect

Client Cooperate (U+
c , Ur) (−τ, 0)

Client Defect (Ud
c ,−φ+) (−τ, 0)

Table 5. Repeated game, normal form

reliance on a legal framework). However, in the case of
peer-to-peer overlay networks, such enforcement is difficult
to provide because peers can lie about transaction outcomes,
and this can be exploited to execute denial of service at-
tacks against particular peers, greatly increasing the polic-
ing costs associated with each transaction. The application
of well-known techniques of community enforcement [18]
is complicated by the fact that peer interactions are unob-
servable beyond the relevant actors for the transaction, and
thus open to slander attacks. Instead, we propose a scheme
based on the creation of social capital [7] by directly con-
trolling the interaction graph of the peers. We model this
peer-based enforcement as reciprocity-based trigger strate-
gies on a repeated game.

If peers follow the algorithm in Section 2.1 for the cre-
ation of contracts, but these contracts are not enforceable
and thus are susceptible to moral hazard8, we can model
this as a repeated game where each stage game has the nor-
mal form shown in Table 5, where Ud

c , the defection utility,
corresponds to:

Ud
c = p+q+ + (1− p+)q−

and τ is a measure of time lost to the client waiting for a
server response before timeout.

We model each transaction as a stage in a repeated game.
We assume peers to have two strategies: adherence to the
protocol, or selfish utility maximization. Following the
usual nomenclature for the Prisoner’s Dilemma, we call ad-
herence to the protocol cooperation and deviation from it
(failure to uphold contractual obligations) as defection.

If M ensures that peers maintain a relatively stable re-
lationship, so that the probability of peers interacting with
each other remains under its control, it is possible to ensure
that it is nonprofitable for the peers to fail to uphold their
contracts.

To guide the Nash equilibrium of this repeated game,
M explicitly modifies the information that it provides to
the peers in order to ensure a minimum probability of re-
peated interaction δ (usually called the discount parame-
ter in game theory). By forcing the δ between peers to the
value where deviation from the protocol becomes unprof-
itable, we can ensure that only irrational peers will deviate.

8In situations with moral hazard, agents modify their behavior toward
risky activities depending on whether the consequences of these risks apply
to themselves or to other agents.

We explore two possible trigger strategies for contract en-
forcement: Grim Trigger and Tit-for-Tat [3].

3.1.1 Grim Trigger Enforcement

As usual, in this strategy a given peer i follows the proto-
col towards another peer j as long as j follows the protocol
towards it. If j deviates, however, i retaliates by follow-
ing a strategy of continuous defections from then onwards.
thus, any protocol deviation receives the harshest punish-
ment possible, and there is no possibility for “forgiveness”
and re-introduction of a possible cooperative regime. In this
case, M must ensure that (see Appendix C):

δG ≥ p+ψ+ + (1− p+)ψ−
p+q

β
+ + (1− p+)qβ

− + τ

3.1.2 Tit-for-Tat Enforcement

In this strategy a given peer i at a stage t applies the strategy
that its partner j applied at a stage t − 1. In this case, we
have that M must ensure that (see Appendix D):

δT ≥
p+ψ+ + (1− p+)ψ−

p+(qβ
+ − ψ+) + (1− p+)(qβ

− − ψ−) + τ

4. Related Work

Most of the work focusing in the strategic elements of
QoS on overlay networks assume that clients are able to
equate server effort with the experienced QoS. Thus, al-
though the strategic quality of QoS is widely recognized,
the fact that it might be impossible to measure it directly
has not received nearly as much attention.

There have been several attempts to model contracts in
the context of peer-to-peer systems. In [16], the authors pro-
pose a system where peers agree to a contract when joining
the network. This contract specifies the amount of resources
that they will be required to contribute to the system in or-
der to gain access to its services. The authors cast the op-
timal contract calculation as a dynamic programming prob-
lem that seeks to assign to incoming peers a set of oblig-
atory resource donations that is mutually beneficial for the
peer and the network (both their utilities increase). As a
particular example of this, in [19] the authors consider a
peer-to-peer file sharing system where each download must
be offset by uploading it up to N times within a maximum
time interval T .

With respect to the modeling of hidden action in net-
working scenarios, there have been several attempts to use
the principal-agent model in routing and peer-t-peer sys-
tems. In [12, 11], the authors propose a system where rout-
ing is analyzed using a principal-agent model. The end-
points of the flow (the sender and the receiver) are mod-
eled as the principal, and the forwarding nodes as agents.

7



The authors derive expressions for optimal contracts that
can be used to elicit high effort on the part of the agents,
while minimizing investment by the principal. Furthermore,
the authors find that the usefulness of information regard-
ing outcomes at intermediate stages in the routing process
is contingent on the network topology, and that contracts
can be implemented both directly (between the principal
and each agent) or recursively (between every node and its
downstream partner).

In [23], the author analyzes hidden action from the stand-
points of market theory and communitarian resource alloca-
tion. Based on qualitative arguments, he posits that by con-
straining the overlay network topology to consist of fully
connected cliques interconnected through a smaller num-
ber of stable, long lived channels. Thus, the author posits,
peers would be forced to have longer lived interactions with
a smaller number of peers, making reciprocative strategies
more effective.

5. Conclusions

In this paper we develop a model for the design and ver-
ification of QoS contracts in peer-to-peer overlays imple-
mented over best-effort networks, and apply it to a spe-
cific case: a mesh-based, pull-oriented streaming system
with low delay requirements. We treat each transfer of a
delay-sensitive chunk as a hidden action situation where
server peers can force negative externalities upon client
peers, and we propose a contract drafting procedure that al-
lows peers to deploy incentives to counter hidden action.
This is an early step in the analytic treatment of QoS as
a strategic peer behavior, and towards a general theory of
service level agreements among strategic peers. We show
that the construction of optimal contracts through the use of
the principal-agent model can be used to ensure predictable
QoS behavior, even with utility-maximizing rational peers
whose service differentiation processes are unobservable.
We do this by requiring the server peer to accept part of
the externality that would have been exclusively endured by
the client.

Additionally to the solved general model, we also
present its application to a chunk transfer scenario where
transaction delay is the main QoS indicator. In this case,
we show how to estimate the model parameters from truth-
fully revealed values and the analysis of observable network
conditions.

Finally, we study the enforcement of these contracts as
a repeated game, and show that a centralized entity can de-
fine the resulting Nash equilibrium to be a cooperative one
by specifying the minimum probability of pairwise repeated
interaction (discount parameter).

References

[1] E. Adar and B. Huberman. Free riding on gnutella. Techni-
cal report, Xerox PARC, August 2000.

[2] K. G. Anagnostakis and M. B. Greenwald. Exchange-
based incentive mechanisms for peer-to-peer file sharing. In
ICDCS ’04: Proceedings of the 24th International Confer-
ence on Distributed Computing Systems (ICDCS’04), pages
524–533, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[3] R. Axelrod and W. D. Hamilton. The evolution of coopera-
tion. Science, 211, March 1981.

[4] J.-C. Bolot. End-to-end packet delay and loss behavior in
the internet. In SIGCOMM ’93: Conference proceedings on
Communications architectures, protocols and applications,
pages 289–298, New York, NY, USA, 1993. ACM.

[5] S. C. Choi and R. Wette. Maximum likelihood estimation
of the parameters of the gamma distribution and their bias.
Technometrics, 11(4):683–690, November 1969.

[6] B. Chun, Y. Fu, and A. Vahdat. Bootstrapping a distributed
computational economy. In Workshop on Economics of
Peer-to-Peer Systems, 2003.

[7] J. S. Coleman. Social capital in the creation of human cap-
ital. The American Journal of Sociology, 94:S95–S120,
1988.

[8] J. R. Douceur. The sybil attack. In IPTPS ’01: Revised
Papers from the First International Workshop on Peer-to-
Peer Systems, pages 251–260, London, UK, 2002. Springer-
Verlag.

[9] J. Feigenbaum and S. Shenker. Distributed algorithmic
mechanism design: recent results and future directions. In
DIALM ’02: Proceedings of the 6th international workshop
on Discrete algorithms and methods for mobile computing
and communications, pages 1–13, New York, NY, USA,
2002. ACM Press.

[10] M. Feldman and J. Chuang. Overcoming free-riding behav-
ior in peer-to-peer systems. SIGecom Exch., 5(4):41–50,
2005.

[11] M. Feldman, J. Chuang, I. Stoica, and S. Shenker. Hidden-
action in multi-hop routing. In EC ’05: Proceedings of the
6th ACM conference on Electronic commerce, pages 117–
126. ACM, 2005.

[12] M. Feldman, J. Chuang, I. Stoica, and S. Shenker. Hidden-
action in network routing. Selected Areas in Communica-
tions, IEEE Journal on, 25(6):1161–1172, August 2007.

[13] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust in-
centive techniques for peer-to-peer networks. In EC ’04:
Proceedings of the 5th ACM conference on Electronic com-
merce, pages 102–111, New York, NY, USA, 2004. ACM.

[14] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica.
Free-riding and whitewashing in peer-to-peer systems. In
PINS ’04: Proceedings of the ACM SIGCOMM workshop
on Practice and theory of incentives in networked systems,
pages 228–236, New York, NY, USA, 2004. ACM Press.

[15] D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini.
Economic models for allocating resources in computer sys-
tems. Market-based control: a paradigm for distributed re-
source allocation, pages 156–183, 1996.

8



[16] D. Ghosal, B. K. Poon, and K. Kong. P2p contracts: a
framework for resource and service exchange. Future Gener.
Comput. Syst., 21(3):333–347, 2005.

[17] M. Handley, S. Floyd, J. Padhye, and J. Widmer. Tcp
friendly rate control (tfrc): Protocol specification, 2003.

[18] M. Kandori. Social norms and community enforcement. Re-
view of Economic Studies, 59(1):63–80, January 1992.

[19] B. Khorshadi, X. Liu, and D. Ghosal. Determining the
peer resource contributions in a p2p contract. Hot Topics
in Peer-to-Peer Systems, 2005. HOT-P2P 2005. Second In-
ternational Workshop on, pages 2–9, 21 July 2005.

[20] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
high bandwidth data dissemination using an overlay mesh.
In SOSP ’03: Proceedings of the nineteenth ACM sympo-
sium on Operating systems principles, pages 282–297, New
York, NY, USA, 2003. ACM.

[21] Z. Li and P. Mohapatra. Qron: Qos-aware routing in overlay
networks. IEEE Journal on Selected Areas in Communica-
tions, 22(1):29–40, January 2004.

[22] J. A. Mirrlees. The theory of moral hazard and unobservable
behaviour: Part i. Review of Economic Studies, 66(1):3–21,
January 1999.

[23] T. Moore. Countering hidden action attacks on networked
systems. Fourth Workshop on the Economics and Informa-
tion Security, June 2005.

[24] A. Mukherjee. On the dynamics and significance of low fre-
quency components of internet load. Internetworking: Re-
search and Experience, 5:163–205, December 1994.

[25] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
tcp throughput: a simple model and its empirical validation.
SIGCOMM Comput. Commun. Rev., 28(4):303–314, 1998.

[26] F. Pianese, J. Keller, and E. W. Biersack. Pulse, a flexible
p2p live streaming system. INFOCOM 2006. 25th IEEE In-
ternational Conference on Computer Communications. Pro-
ceedings, pages 1–6, April 2006.

[27] S. Sanghavi and B. Hajek. A new mechanism for the free-
rider problem. In P2PECON ’05: Proceeding of the 2005
ACM SIGCOMM workshop on Economics of peer-to-peer
systems, pages 122–127, New York, NY, USA, 2005. ACM
Press.

[28] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
Rtp: A transport protocol for real-time applications, 2003.

[29] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz.
Overqos: offering internet qos using overlays. In ACM SIG-
COMM CCR, volume 33, pages 11–16, January 2003.

[30] K. Tamilman, V. Pai, and A. Mohr. Swift: A system with
incentives for trading. In Proceedings of Second Workshop
of Economics in Peer-to-Peer Systems, 2004.

[31] D. A. Turner and K. W. Ross. A lightweight currency
paradigm for the P2P resource market. In 7th International
Conference on Electronic Commerce Research, June 2004.

[32] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. Karma:
A secure economic framework for p2p resource sharing. In
Proc. of Workshop on the Economics of Peer-to-Peer Sys-
tems, 2003.

[33] B. D. Vleeschauwer, F. D. Turck, B. Dhoedt, and P. De-
meester. On the construction of qos enabled overlay net-
works. Quality of Service in the Emerging Networking,
pages 164–173, September 2004.

[34] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart,
and W. S. Stornetta. Spawn: A distributed computational
economy. IEEE Trans. Software Eng., 18(2):103–117, 1992.

[35] B. Wang, J. Kurose, P. Shenoy, and D. Towsley. Multimedia
streaming via tcp: an analytic performance study. In MUL-
TIMEDIA ’04: Proceedings of the 12th annual ACM inter-
national conference on Multimedia, pages 908–915, New
York, NY, USA, 2004. ACM.

[36] W. Wang and B. Li. Market-driven bandwidth allocation in
selfish overlay networks. In INFOCOM 2005, 24th Annual
Joint Conference of the IEEE Computer and Communica-
tions Societies, pages 2578–2589. IEEE, 2005.

[37] X. Zhang, J. Liu, B. Li, and Y.-S. Yum. Coolstream-
ing/donet: a data-driven overlay network for peer-to-peer
live media streaming. INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, 3:2102–2111 vol. 3, 13-17
March 2005.

[38] Z. Zhang, S. Chen, and M. Yoon. March: A distributed in-
centive scheme for peer-to-peer networks. INFOCOM 2007.
26th IEEE International Conference on Computer Commu-
nications. IEEE, pages 1091–1099, May 2007.

A Optimal contract prices for a Hidden Ac-
tion Model

The optimization problem (1) is equivalent to:

Maximize: p+(qβ
+ − ψ+) + (1− p+)(qβ

− − ψ−)
Subject to: p+ψ

α
+ + (1− p+)ψα

− − φ+ ≥ Ur

And: p+ψ
α
+ + (1− p+)ψα

− − φ+

≥ p−ψ
α
+ + (1− p−)ψα

− − φ−

We construct the following Lagrangian:

L(ψ+, ψ−) = p+(qβ
+ − ψ+) + (1− p+)(qβ

− − ψ−)
+ λ(p+ψ

α
+ + (1− p+)ψα

− − φ+ − Ur)
+ µ((p+ − p−)(ψα

+ − ψα
−)− φ+ + φ−)

The critical point requirement ∇L = 0 yields the fol-
lowing first-order conditions:

αψ
(α−1)
+ (p+λ+ µ(p+ − p−)) = p+

αψ
(α−1)
− ((1− p+)λ+ µ(p+ − p−)) = (1− p+)

p+ψ
α
+ + (1− p+)ψα

− = Ur + φ+ (10)

(p+ − p−)(ψα
+ − ψα

−) = φ+ − φ− (11)

By obtaining ψα
+ from (10) and substituting on (11), we

find that:

Ur + φ+ − ψα
− =

p+(φ+ − φ−)
p+ − p−

9



Thus:

ψ− =
(
Ur +

p+φ− − p−φ+

p+ − p−

) 1
α

(12)

By substituting (12) on (11) we find that:

ψ+ =
(
Ur +

(1− p−)φ+ − (1− p+)φ−
p+ − p−

) 1
α

B Transaction time distribution model

We require a model linking the strategic behavior of the
server and the expected behavior of the network. If we as-
sume that tRTT is constant for the entirety of the transac-
tion, and identical TCP stack configurations in the client
and the server, and that TCP sharing is approximately fair
amongst flows in the server, we have that (From [25], using
the nomenclature in Tables 2 and 3):

Tc = Ts =
Sp

tRTT

√
2pL

3 + tRTO(3
√

3pL

8 )pL(1 + 32p2
L)

Thus, substituting in (4) we have that:

D = ξ1tRTT + tP + ξ2

Where

ξ1 = 1 +

√
2pL

3
Sr + Sc

Sp

ξ2 = tRTO(3

√
3pL

8
)pL(1 + 32p2

L)
Sr +NsSc

Sp

It is well known that if a random variable X has a probabil-
ity density function f(x), then Y = h(x) as the following
PDF:

g(y) = f(h−1(y))
∣∣∣∣∂(h−1(y))

∂y

∣∣∣∣
Thus, if we set h(x) = ξ1tRTT + x + ξ2 we have the fol-
lowing result for the distribution of total transaction delays:

g(y) =
1

Γ (k)θξ1

(
y − tP − ξ2 − ξ1∆

θξ1

)k−1

e
−

“
y−tP−ξ2−ξ1∆

θξ1

”

The shape parameters∆, θ and k can then be obtained from
RTT measurements using maximum likelihood estimation
[5]. For the CDF we have that P (y < t) =

∫ t

0
g(y)dy and

we have:

P (y < t) =
γ

(
k, t−tP−ξ2−ξ1∆

θξ1

)
Γ (k)

where γ(k, x) is the incomplete gamma function.

C Contract Enforcement: Grim Trigger

From the game normal form, it is clear that only the
client has an incentive to defect. Without loss of general-
ity, we consider the case where the client defects on the first
round, and the server retaliates by defecting from then on.
If we take into account the discount parameter δ defined by
M as the probability that i and j will meet again to play the
game, we have the following expected utility for the client:

Ug = Ud
c −

δ

1− δ
τ

By considering the requirement that Ug < U+
c , we have

that:

p+q
β
+(1− δ) + (1− p+)qβ

−(1− δ)− δτ

≤ p+(qβ
+ − ψ+) + (1− p+)(qβ

− − ψ−)

Simplifying, we find that:

δ(p+q
β
+ + (1 − p+)qβ

− + τ) ≥ p+ψ+ + (1 − p+)ψ−

And thus:

δ ≥ p+ψ+ + (1− p+)ψ−
p+q

β
+ + (1− p+)qβ

− + τ

D Contract Enforcement: Tit-for-Tat

In this case, the first defection from the client starts a
series of alternating cooperation-defection episodes. For the
expected utility for the client we have:

U t = Ud
c − δτ + δ2Ud

c − δ3τ + . . .

= (1 + δ2 + δ4 + . . .)(Ud
c − δτ)

Again, by considering the requirement that U t < U+
c ,

we have that:

1
1− δ

U+
c ≥ 1

1− δ2
(U t − δτ)

Simplifying, we find that:

δ ≥ U t − U+
c

U+
c + τ

And thus:

δ ≥ p+ψ+ + (1− p+)ψ−
p+(qβ

+ − ψ+) + (1− p+)(qβ
− − ψ−) + τ

10


