
Icarus: a Caching Simulator
for Information Centric Networking (ICN)∗

Lorenzo Saino, Ioannis Psaras and George Pavlou
Department of Electrical and Electronics Engineering

University College London
London, UK

{l.saino, i.psaras, g.pavlou}@ucl.ac.uk

ABSTRACT
Information-Centric Networking (ICN) is a new networking
paradigm proposing a shift of the main network abstraction
from host identifiers to location-agnostic content identifiers.
So far, several architectures have been proposed implement-
ing this paradigm shift.

A key feature, common to all proposed architectures, is
the in-network caching capability, enabled by the location-
agnostic, explicit naming of contents. This aspect, in par-
ticular, has recently received considerable attention by the
research community.

However, despite this wide interest, there is a shortage
of publicly-available tools suitable for evaluating the perfor-
mance of caching systems effectively. In fact, all available
simulators or emulators are either bound to a specific archi-
tecture or cannot execute simulations at the scale required
and within a reasonable time-frame.

To address these issues, we present Icarus, a Python-based
caching simulator for ICN. Icarus allows users to evaluate
caching strategies for any ICN implementation and also
provides modelling tools useful for caching research.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support
Systems—Environments; D.2.2 [Software Engineering]:
Design Tools and Techniques—Software libraries

General Terms
Design, Performance, Experimentation

Keywords
ICN; caching; simulator

∗Source code and documentation of the Icarus simulator
are available at http://icarus-sim.github.io. Icarus is
released under the terms of the BSD license.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2014 March 17–19, Lisbon, Portugal.
Copyright 2014 ICST, ISBN .

1. INTRODUCTION
The Internet is witnessing a shift from a host-to-host com-

munication system to a content distribution platform. In
fact, apart from traditional applications which require strict
point-to-point (or machine-to-machine) connections (e.g., tel-
net, ssh, VoIP), the majority of current Internet traffic is
inherently host- and/or location-independent. Examples of
such traffic include Web, bulk data transfer, video distribu-
tion, but also more recent advances on social networking
platforms. To accommodate the need for a content-oriented
Internet, the research community has recently put a consid-
erable effort into rethinking Internet architecture having in
mind user-to-content traffic as the prevalent usage pattern.

This novel networking paradigm, known as Information
Centric Networking (ICN), puts content at the forefront of
any communication between any two users of the system,
ignoring concepts of location- and host-identifiers. In ICN,
contents are explicitly and uniquely named and users re-
quest contents based on those content identifiers (instead of
traditional node identifiers, i.e. IP addresses). Several dif-
ferent architectural approaches have already been proposed
to accommodate the required changes in the network archi-
tecture. Examples include CCN/NDN [19], COMET [10],
PSIRP/PURSUIT [15] and NetInf [14]. Although different
architectures have different objectives and, hence, exhibit
different operational properties, they share the following
common features.

• Request-response model. In an ICN environment
a user sends requests for explicitly named contents
to which the network replies. This is similar to HTTP

GET requests, but happens at the network-layer, rather
than at the application-layer. Furthermore, requests
and responses in ICN take place per chunk, rather than
per whole object or file.

• Location independence. Content names do not re-
flect the location (machine) where the content is stored.
Rather, content naming can be based on any, possibly
human-readable, sequence of bytes. Names, however,
in most ICN architectures are used to route requests
to contents and contents to users, hence, naming has
to follow a specific pattern depending on the route by
name approach adopted.

• In-network caching. Explicitly named chunks of
content can be cached in arbitrary locations of the net-
work and be retrieved from there once subsequently
requested. This is in stark contrast to the buffering of



IP packets, which once sent to the destination IP ad-
dress cannot be reused (unless in case of retransmission
to the same destination IP address), as their content is
unknown. Instead, an explicitly named content chunk
can be cached and reused without the need for proxies
or redirections.

In particular, in-network caching has recently received
considerable attention by the research community. Com-
pared to traditional approaches to network caching, such as
proxy-caching and hierarchical caching, which largely depend
on overlay architectures, in-network caching touches upon
more critical network operations. In-network caching vaguely
resembles P2P operations pushed at the network-layer of the
architecture. However, recent advances in this area have iden-
tified several challenges that warrant deeper investigation.
For example, ICN caching takes place at network routers and
is therefore happening at line-speed. Line-speed operation,
in turn, raises scalability and efficiency concerns, but it also
prohibits co-operative techniques between caches themselves,
or between caches and the control plane.

Several techniques have been proposed already to tackle
these peculiar characteristics of in-network caching opera-
tions (see for example, [6], [9], [24], [26], [28]), which are
substantially different to past Web- and hierarchical-caching
[7], [11], [16] requirements. This new field of research has also
triggered efforts towards the development of new simulation
software (e.g., [3], [4], [13]) to assess the performance and
viability of the new networking paradigm.

These new simulation tools attempt to incorporate ICN
functionalities, which are missing from traditional network
simulators. However, all ICN simulators currently available
are not suitable for efficiently evaluating the specific aspect
of in-network caching. In fact, all of them present one or
more of the following fundamental limitations.

• Support for only a specific architecture. Most
ICN simulators available have been built to evaluate
the performance of a single architectural approach and
have not been designed to be extensible to support
other architectures.

• Poor scalability. Caching nodes may converge very
slowly to their steady state, depending on traffic pat-
terns. For this reason, simulations may require from
few hundred thousands to tens of millions of requests
to yield reliable results. Most ICN simulators have
been designed focusing on other aspects, such as pro-
tocol interoperability and congestion control, which
can be generally evaluated with far smaller simulations.
As a result, they been implemented with a consider-
ably lower level of abstraction than what required for
caching, which makes them unable to run large scale
simulations within a reasonable time-frame.

• Inability to run trace-driven simulations. The
use of trace-driven simulations is necessary to produce
reliable caching results. In fact, synthetic stationary
workloads fail to capture real-world phenomena impact-
ing caching performance, such as flash-crowd effects,
geographic diversity and more generally temporal and
geographical locality patterns. No ICN simulators cur-
rently support this feature.

As a consequence, most research papers regarding ICN
caching present results generated either by running small
scale experiments using publicly available simulators or by
using custom built simulators which are not made available
to the community. Clearly, the lack of publicly available
simulators suitable for this purpose can strongly affect the
reliability of research results.

To address all these issues, we present Icarus, a simula-
tor specifically designed for evaluating the performance of
caching systems in the context of Information Centric Net-
working. Icarus implements all required features that are
missing from other simulators.

In designing Icarus, we focused on satisfying two key non-
functional requirements.

• Scalability. This requirement has been identified be-
cause, as mentioned earlier, reliable caching results may
require experiments encompassing millions of simulated
content requests. This is required to reach steady state
in all caching nodes. As a result, Icarus has been imple-
mented to run experiments of that size in a reasonable
time-frame. As we will show more in detail in sec-
tion 5, Icarus is capable of simulating several hundred
thousand requests per minute per core on commod-
ity hardware. As a result, it could easily complete
simulations consisting of millions of requests in few
minutes.

• Extensibility. This requirement is fundamental to
ease the adoption of this simulator by the community.
In fact, since caching research is currently very active,
simulators’ requirements are also changing very fast.
As a result, by focusing on achieving extensibility, we
expect this tool to serve the purpose of a larger user
base. We also expect that making this tool publicly-
available will improve reliability and reproducibility
of research results. As a matter of fact, Icarus has
already been used in ICN caching research to generate
the results presented in [9], [24] and [28].

The remainder of this paper is organized as follows. Section
2 provides an overview of the related work in the area, as
well as the motivation for this work. Section 3 describes the
implementation of the Icarus simulator. Section 4 describes
the modelling tools provided by Icarus. Section 5 evaluates
the performance of the Icarus simulator in terms of CPU
and memory utilization. Finally, conclusions are drawn in
section 6.

2. RELATED WORK
The need for simulation software for the new Information-

Centric Networking paradigm has already attracted research
efforts. Different projects in the area have built their own
simulation or emulation software to test the performance
of their architectures (e.g., [1], [2]). Related to the Named
Data Networking (NDN) [4] project, there already exist three
different simulation/emulation software platforms (CCNx [2],
ndnSIM [4] and ccnSim [13]).

CCNx [2] is an emulation testbed, which incorporates most
of the operations included in the CCN proposal [19]. These
operations focus heavily on security issues, as well as end-
node and router design. As CCN proposes changes in the
traditional OSI layer architecture of the Internet, CCNx is
focusing on the interoperability of these new layers in a real



simulation testbed, while it is paying less attention to trans-
port and caching operations. Due to this reason, alternative
simulation software has been developed to focus on transport
and caching operations of the architecture. In particular,
ndnSIM [4] builds on top of ns-3 [18] and provides all the
required hooks to evaluate mainly the transport behaviour
of the new networking paradigm under CCN. However, the
structure of ndnSIM is not suitable for easy extension and
evaluation of in-network caching strategies, although it does
support router caching.

ccnSim [13] has been built to focus mainly on the caching
behaviour of the architecture proposed in [19]. ccnSim is a
packet-level simulator based on Omnet++ [30] and is the
one closer to our work presented in this paper. Although
ccnSim [13] supports simulation of large catalogue and cache
sizes and it is shown to scale to simulations of millions of
requests, its implementation is bound to the on the design
of the NDN/CCN architecture. As a consequence, it is not
suitable for evaluating the performance of caching systems
in architectures different from CCN. For example, ccnSim
does not allow asymmetric routing of request and content
packets because not supported by the CCN architecture. In
addition, it does not support the execution of trace-driven
simulations, which is a feature of primary importance for
caching research.

We argue that Icarus comes to fill a gap in the simulation
software for ICN research, as it provides features that apply
to the more general context of ICN, without being tied to
a specific architecture or approach only. Furthermore, the
easy extensibility of its Python-based implementation (as
discussed in the next section) allows for easy implementation
of new features and strategies, as well as for scalable and
fast large-scale simulation experiments.

3. IMPLEMENTATION

3.1 Architecture and design
As already mentioned earlier, Icarus has been designed to

satisfy two main non-functional requirements: extensibility
and scalability.

We addressed the extensibility requirement with a number
of design decisions.

First of all, we selected Python as programming language.
This provides several advantages. For example, its high-level
syntax which can be learned with a little learning curve. In
addition, the availability of scientific, simulation and network
modelling libraries such as NumPy/SciPy [20], NetworkX
[17] and FNSS [27] further simplifies the implementation of
new functionalities by its users.

Extensibility has also been achieved by adopting appropri-
ate design patterns providing good modularity.

For example, in implementing components most likely to
be replaced and extended in the future (e.g. cache eviction
policies, routing strategies and so on) we used a proxy design
pattern together with a plug-in registration system.

We illustrate how this system works by showing how a
new replacement policy can be added to Icarus (see snippet
below). In this case, a user simply needs to implement the
new policy in a class extending the Cache class and over-
riding relevant methods to implement the desired behavior.
On top of the class implementation, the decorator regis-

ter_cache_policy is invoked to register this implementation
to the cache policy registry under the name FOO_POLICY. This

registration makes the implementation discoverable and us-
able by the simulator.

@register_cache_policy(’FOO_POLICY’)

class FooCache(Cache):

...

def get(self, k):

...

def put(self, k):

...

At this point, to run experiments using this policy, the user
only needs to specify it in the configuration file, as shown
here below.

...

policies = [’LRU’, ’LFU’, ’FOO_POLICY’]

...

The scalability requirement instead has been addressed
mainly by selecting appropriate network abstractions that
provide a good tradeoff between realism and simplicity. As
a result, Icarus operates with flow-level granularity, whereby
the lowest-level event is the download of a content object.
The flow-level abstraction would make Icarus inaccurate
for simulating other aspects of ICN architectures, such as
congestion control and protocol interoperability. However,
these functionalities are outside the scope of this work and,
anyway, they are already satisfactorily addressed by existing
simulators. In addition, scalability has also been addressed by
using highly optimized implementations of complex routines
provided by the Scipy package and by the optimization of
the code through extensive profiling.

The Icarus simulator implements the workflow depicted
in Fig. 1. Accordingly, the program execution is carried out
following these four sequential steps:

Figure 1: Icarus workflow

• Scenario generation: This stage comprises all the
steps required to set up a fully configured network topo-
logy and a random event generator for the simulation.
The scenario generation is based on the FNSS toolchain
[27], as explained in more detail in section 3.2.

• Experiment orchestration: In this stage, the simu-
lator reads from a configuration file the range of param-
eters that the user desires to simulate (e.g. cache sizes,
cache policies, content popularity distribution) and sets
up experiments with all combinations of parameters
required. It then schedules the parallel execution of
experiments over a pool of processes.

• Experiment execution: This stage consists in the
actual execution of the experiment. An instance of a
simulation engine is provided with a scenario descrip-
tion (i.e. a network topology and an event generator).
The engine reads events from the generator and dis-
patches them to the relevant handler. One or more



data collectors measure various user-specified metrics
and, at the end of the experiment, return results to
the engine which will then pass them on to a results
aggregator.

• Results collection and analysis: After each exper-
iment terminates, results are collected by an object
which aggregates them and allows users to calculate
confidence intervals, plot results or serialise data in
various formats for subsequent processing.

In line with our objective to make Icarus extensible, all
these four subsystems have been designed to be very loosely-
coupled among each others. This has been achieved by using
a façade design pattern to hide the internal implementation of
each subsystem to other components and to use a simplified
interface for interactions among them.

The following sections will describe more in detail how the
stages presented above are implemented.

3.2 Scenario generation
A simulation scenario is modelled as a tuple of two objects:

a network topology and a request generator.
The network topology is an instance of an FNSS Topology

class [27], which extends the NetworkX Graph class [17]. All
network configuration (e.g. cache and source placement,
link delays and capacities) are embedded in the Topology

object as annotations of edges and nodes. The modelling of a
network using an FNSS Topology object allows users to easily
generate synthetic topologies or import them from various
datasets using the functions provided by FNSS. In addition,
since the FNSS Topology class extends the NetworkX Graph

class, it is possible to use all functions provided by NetworkX,
such as calculation of shortest path, centrality metrics and
network diameters, all of which are required by various cache
placement and request-to-cache routing algorithms.

The event generator is a Python generator (i.e. an iterator)
whose items are a tuple containing:

• the timestamp at which the event occurs,

• a dictionary containing all the parameters describing
the event (e.g. node issuing a request, content requested
and so on).

This generator is simply an interface provided to the sim-
ulation engine. The internal implementation can be easily
modified or new implementations can be added without
modifying any other component. Currently, Icarus provides
functions to create request schedules in the following ways.

• Synthentically, with content requests generated follow-
ing a Poisson distribution with Zipf-distributed content
popularity.

• By parsing requests from Squid proxy1 log files (which
is also the format in which traffic traces provided by the
IRCache project2 are available) or from the Wikibench
dataset [29].

• By importing complex synthetic workloads generated
by GlobeTraff [21].

1http://www.squid-cache.org/
2http://www.ircache.net

3.3 Experiment orchestration
The experiment orchestration subsystem is responsible for

(i) parsing configuration parameters, (ii) obtaining relevant
topologies and event generators from the scenario genera-
tion subsystem and (iii) dispatching them to the experiment
execution subsystem.

The configuration is parsed from a Python-formatted file
that is provided by the user as a command line parameter
when Icarus is launched. The configuration file contains,
among other attributes, the ranges of parameters for which
experiments must be repeated, as well as the number of repeti-
tions to run for each combination of parameters. Examples of
customisable parameters include number of requests, cache
size, content population, content popularity distribution,
cache eviction policies and caching and routing strategies.

The decision of formatting the configuration file as a
Python source file simplifies the implementation of the parser.
In addition, it allows users to use powerful Python features,
such as list comprehension, to easily specify complex ranges
and combinations of parameters.

After parsing the configuration, the subsystem computes
all combinations of parameters to be evaluated. For each
combination, it first retrieves the relevant scenario from the
scenario generation subsystem and then passes it to a process
running an instance of the experiment execution subsystem.

Icarus supports the parallel execution of experiments to
exploit the capabilities of multi-core machines. However, it
should be noted that it does not run a single experiment
on multiple cores as in Parallel Discrete Event Simulations
(PDES). Differently, Icarus allocates a single experiment
to one core and parallel execution is achieved by running
different experiments simultaneously on different cores.

The rationale behind this decision is that in caching re-
search it is extremely rare to carry out performance evalua-
tions with a single experiment. Instead, several experiments
are executed using different combinations of parameters to
evaluate results sensitivity against various factors or repeated
several times to obtain statistically significant results. There-
fore, as we show in more detail in section 5, in a normal
simulation campaign comprising several experiments, we can
achieve a nearly linear speedup without PDES mechanisms.

3.4 Experiment execution
The experiment execution subsystem is responsible for

running a single experiment and collecting results.

Figure 2: Experiment execution sequence diagram

As shown in Fig. 2, this subsystem comprises the following
four components:

• Engine: it is in charge of instantiating a caching and
routing strategy for the experiment to which all events
will be dispatched as they are read from a request



schedule. Once an experiment is terminated, the engine
is in charge of receiving results to pass to the results
collection and analysis subsystem.

• Strategy: it implements the logic according to which
requests and contents are routed and cached in the
network. Strategy in reality is an abstract class, which
can be extended by a concrete class implementing a
caching and routing strategy. Icarus already provides
implementations for the most common strategies (see
sec. 3.6). However, it is possible to easily implement
a new strategy by overriding methods of the Strategy

class without any modification to the rest of the code.

• Network: this component models the simulated network
on which the Strategy component operates.

It is implemented using a Model-View-Controller (MVC)
design pattern. Accordingly, a strategy executes opera-
tions on the network exclusively by calling methods of
the NetworkController object. The controller updates
the state of the NetworkModel object, which maintains
the current state of the simulated network. In turn,
the model updates the NetworkView, which provides
the strategy with an up-to-date view of the network.

The Network also reports events to a data collector
for gathering results. By doing so, it abstracts the
complexity of data collection from strategy implemen-
tations. This largely simplifies the implementation of
new strategies, which we reckon will be a popular use
case of our simulator, since research in request rout-
ing and content placement techniques is currently very
active.

• DataCollector: it receives notifications about every
event occurring in the network. The DataCollector

component, however, does not collect data itself. On
the contrary, it dispatches events to various data col-
lectors, each in charge of measuring a specific metric.
The list of data collectors to which data is dispatched
is specified by the user in the configuration file.

Icarus provides collectors for measuring cache hit ratio,
latency, link utilization and path stretch. Similarly to
the case of caching strategies, further data collectors
can be implemented without any change to the rest of
the code using a dedicated plug-in registration system.

Once an experiment is terminated, the engine queries
the data collector for a summary of results. The lat-
ter gathers results from the various collectors and ag-
gregates them in a dictionary, where each key is the
identifier of the collector which gathered the data. Re-
sults are then passed back to the engine which passes
them to the results collection and analysis subsystem.
Finally, the analysis subsystem aggregates results from
various experiments.

It should be noticed that the experiment execution subsys-
tem communicates with the experiment orchestration and
results collection subsystem only via the Engine component.
This is an implementation of the façade design pattern, where
the Engine acts as an interface to other subsystems. This
design decouples all other components of the experiment
execution subsystem from the rest of the code.

3.5 Results collection and analysis
The main functionalities of the results collection and analy-

sis subsystem are to collect data from the various experiments,
aggregate them and then process them. The aggregated re-
sults are stored using a list of pairs. In each item of the list,
the first element is a dictionary storing all the parameters of
the experiment and the second element is another dictionary
storing the results of the experiment.

The results set can be serialised and saved in a file for fur-
ther processing. Icarus supports serialization into a Python
pickle file. However, the format of the code handling serializa-
tion is loosely coupled to the rest of the simulator. Therefore,
serialization in different formats, such as JSON or CSV files
could be easily implemented with localized changes.

Finally, this subsystem is responsible for analysing and
plotting data. This subsystem automatically calculates the
confidence interval of data sets, where relevant, and plots
graphs with results of various metrics and various combina-
tions of parameters. The automatic calculation of confidence
intervals is in our opinion a fundamental feature contributing
to the production of reliable results. This, in particular, is
one of the objectives the motivated this work.

3.6 Caching and routing strategies
The caching strategy defines the replication algorithm

used to spread copies of the content in the network of caches.
Replication algorithms have two dimensions: i) content-based
replication, which is based on the characteristics of the con-
tent and makes caching decisions according to that, e.g.,
choose popular contents to cache and ignore unpopular, and
ii) cache- or node-based replication, which is based on the
characteristics of the topology, e.g., choose more “important”
nodes to cache contents. Both content-based and node-based
replication are resource optimization approaches, as they
both try to allocate caching space in a way that will return
the most benefit (cache hits in this case).

The replication algorithms investigated in the context of
ICN research are all cache- or node-based, since content-
based algorithms can hardly operate at Internet scale. The
replication spectrum in this case is bounded by two extremes,
namely, the ubiquitous caching approach, where contents are
replicated at every node the content is traversing (denoted
as “Leave Copy Everywhere” below) and the “no caching”
approach, where no node is implementing caches. The latter
approach is similar to an end-to-end IP path, where nodes
are buffering incoming contents and ones the contents are
inserted in the link they are discarded from the memory.

Icarus supports the following strategies:

• Leave Copy Everywhere (LCE) [19]: According
to this strategy, a copy of every content requested and
delivered to the user is replicated at every router the
content is traversing on its way to the user. Clearly,
this strategy is causing caching redundancy, as different
caches along the path are consuming cache resources
to hold identical items. On the other hand, LCE is a
good choice in case of flash-crowd events.

• Leave Copy Down (LCD) [23]: LCD was proposed
for hierarchical Web-caching systems and builds on the
following concept: whenever there is a cache hit for a
particular content at some point along the path, the
content is replicated one level down the cache hierarchy
or path towards the user. This way, the content is



gradually replicated towards the edge of the network,
given that the content is popular enough to receive a
cache hit, before it is evicted from the cache.

• Bernoulli random caching: This simple strategy
randomly caches a content item at each node it is
traversing with a fixed probability p.

• Random choice caching: It caches a content item
at only one randomly selected node along the delivery
path.

• Probabilistic Caching (ProbCache) [24]: Prob-
Cache has been recently proposed as a resource man-
agement approach to in-network caching. ProbCache
is trying to reduce redundancy between network caches,
that is, maximise the number of distinct content items
cached along a delivery path. This way, subsequent
requests for contents have higher probability of finding
contents along the path.

• Centrality-based caching [9]: According to this
strategy, content objects are cached only once along the
path, specifically in the node with the greatest between-
ness centrality (i.e. the node with the greatest number
of shortest paths traversing it). If more than one node
has the maximum value of betweenness centrality, then
the content is stored in the node closer to the user. If
this strategy is deployed on very dynamic networks (e.g.
ad-hoc mobile networks) where it is challenging for a
node to learn its betweenness centrality value, then
caching decisions can be made based on the between-
ness centrality of its ego-network, i.e. the subnetwork
composed of all nodes directly connected to the caching
node with an edge.

• Hash-routing [28]: While the above six caching strate-
gies are focusing on on-path caching, that is, content
items are replicated and cached on the delivery path
from the server to the user, hash-routing schemes have
been recently proposed as off-path caching strategies.
According to these schemes, edge nodes receiving a
content request compute a hash function mapping the
content identifier to a specific caching node and forward
the request to that specific node. If the cache holds the
requested content, it is returned to the user, otherwise
it is forwarded to the original source. Similarly, when
a content is delivered to the requesting user, it can
be cached only by the caching node associated to the
content identifier by the hash function.

The advantage of the hash-routing schemes is that if the
content is to be found in a cache, this cache is indicated
by the hash function. Therefore, the available cache
space within the domain is allocated optimally (i.e.,
there is no caching redundancy). In [28] we investigate
five different hash-routing schemes to identify the ideal
behaviour in terms of both cache hits and path stretch.
The Icarus simulator implements all of them.

3.7 Cache eviction policies
Caching nodes can be configured to operate according to

one of the following well-known cache eviction policies:

• Least Recently Used (LRU): It is the most well-
known and most widely used replacement policy. When

a new item needs to inserted into the cache, it evicts
the least recently requested one. This eviction policy is
efficient for line speed operations because both search
and replacement tasks can be performed in constant
time (O(1)). This policy has been shown to perform
well in the presence of temporal locality in the request
pattern. However, its performance drops under the In-
dependent Reference Model (IRM) assumption (i.e. the
probability that an item is requested is not dependent
on previous requests).

• Least Frequently Used (LFU): The LFU replace-
ment policy keeps a counter associated each item. Such
counters are increased when the associated item is re-
quested. Upon insertion of a new item, the cache evicts
the one which was requested the least times in the past,
i.e. the one whose associated value has the smallest
value. In contrast to LRU, LFU has been shown to
perform optimally under IRM demands. However, its
implementation is computationally expensive since it
cannot be implemented in such a way that both search
and replacement tasks can be executed in constant time.
This makes it particularly unfit for large caches and
line speed operations. For this reason, in the context
of ICN, the LFU replacement policy is mainly used as
a theoretical benchmark.

• First In First Out (FIFO): According to the FIFO
policy, when a new item is inserted, the evicted item
is the first one inserted in the cache. The behavior of
this policy differs from LRU only when an item already
present in the cache is requested. In fact, while in LRU
this item would be pushed to the top of the cache, in
FIFO no movement is performed. The FIFO policy has
a slightly simpler implementation in comparison to the
LRU policy but yields worse performance.

• Random (RAND): This caching policy randomly
selects the item to evicts when a new one is inserted. It
generally yields poor performance in terms of cache hits
but is sometimes used as baseline and for this reason
it has been implemented here.

Table 1 reports the computational complexity of the search
and replacement tasks of the policies listed above with respect
to their Icarus implementation. The parameter c reported in
the table refers to the size of the cache. As it can be noticed
from the table, while LRU, FIFO and RAND replacement
policies can perform both operations in constant time, the
complexity of LFU replacement operation grows linearly
with the cache size c. As shown in section 5, this greater
complexity of the LFU cache results in slower execution of
experiments in comparison to other replacement policies,
especially when large caches are used.

Policy Search Replacement
LRU O(1) O(1)
LFU O(1) O(c)
FIFO O(1) O(1)

RAND O(1) O(1)

Table 1: Average computational cost of search and
replacement operations for various cache replace-
ment policies



4. MODELLING TOOLS
In addition to all the functionalities required for simulating

networks of caches, Icarus also provides a set of modelling
tools useful for caching research.

4.1 Modelling of caching performance
Apart from the practical considerations about in-network

caching (e.g., line-speed operation), the research community
has also focused on the theoretical modelling of the system
behaviour as a means to drive its design. Several recent
studies have tried to model the behaviour of cache networks
taking into account the characteristics of an ICN environ-
ment [5], [8], [25]. Given the rich literature on caching, the
research community has also tried to evaluate whether past
analytical models apply also to the case of in-network caching.
Examples of such past studies that have attracted attention
are [12] and [23]. Icarus includes implementations of some
of these models, in order to cater for easy evaluation of their
properties under different network conditions. We provide a
brief summary of these models below.

4.1.1 Che’s approximation
In [12], the authors propose a model that approximates

the hit ratio of an LRU cache. This model works under the
Independent Reference Model (IRM) condition. Assuming
that the probability that a specific item i ∈ (1, N) is requested
is equal to pi, then the cache hit ratio for the item i is
approximately equal to:

hi ≈ 1− e−piri (1)

where ri is known as the characteristic time of the cache
for item i and is calculated by solving the following equation
numerically:

N∑
i=1

(1− e−piri) = C. (2)

The overall cache hit ratio h can then be calculated as the
mean of all per-item hit ratios weighted by the probability
of the associated item being requested, i.e.:

h =

N∑
i=1

pihi ≈
N∑
i=1

pi
(
1− e−piri

)
(3)

The following snippet shows how to use this method to
estimate the cache hit ratio of an LRU cache with 100 slots
under stationary Zipf demand with coefficient α = 0.8 and
content catalogue of 1000 items.

>>> from icarus import *

>>> che_cache_hit_ratio(

TruncatedZipfDist(alpha=0.8, n=1000).pdf,

100)

0.36482948293429832

4.1.2 Laoutaris approximation
Icarus also provides an implementation of a method pro-

posed by Laoutaris [22] to approximate the cache hit ratio
of LRU caches under generalized power-law demand.

This method provides a closed-form approximation of the
cache hit ratio by modifying some steps of the Che’s ap-
proximation. More specifically, Laoutaris approximates the

characteristic times associated to each item with their mean
r. It then approximates the cache hit ratio by replacing the
exponential form epir with its Taylor expansion in terms of
the variable r around point C (i.e. the cache size).

This approximation yields good results if the content pop-
ularity has reduced skewness (i.e. low Zipf α coefficient) or
if the ratio between cache and catalogue size is small.

The following snippet shows how to use this method to
estimate the cache hit ratio of an LRU cache with 100 slots
under stationary Zipf demand with coefficient α = 0.8 and
content catalogue of 1000 items.

>>> from icarus import *

>>> laoutaris_cache_hit_ratio(0.8, 1000, 100)

0.35934820920359255

4.1.3 Numeric steady-state cache hit ratio
Finally, Icarus provides a function for estimating the

steady-state cache hit ratio of a cache numerically.
Differently from the methods presented above, which can

be used only with LRU caches, this method can be used with
any cache implementation. In fact, it could be used with the
cache replacement policies already provided (LFU, FIFO and
RAND) or with a newly designed cache replacement policy.

This method is useful for two purposes. First, to evaluate
the cache hit ratio of a new cache replacement policy. Second,
as a benchmark for a new cache hit ratio approximation of
known cache replacement policies.

This function calculates the steady-state cache hit ratio
by calculating a moving average of the cache hit ratio and
monitoring its standard deviation among adjacent windows.
When the standard deviation falls below a predefined thresh-
old, this is perceived as a signal that the cache is reaching
steady state. At this point, the function returns the cache
hit ratio computed over the last window.

The following snippet shows how to use this method to
calculate the cache hit ratio of an LRU cache with 100 slots
under stationary Zipf demand with coefficient α = 0.8 and
content catalogue of 1000 items.

>>> from icarus import *

>>> numeric_cache_hit_ratio(

TruncatedZipfDist(alpha=0.8, n=1000).pdf,

LruCache(100))

0.37861264056574684

4.2 Analysis of content request traces

4.2.1 Estimation of content popularity skewness
Icarus provides a function to verify whether a given content

request trace follows a Zipf distribution and to estimate what
value of the Zipf coefficient (α) fits the trace best.

The estimation of the Zipf coefficient is carried out using
the Maximum Likelihood Estimation (MLE) method. Once
the α parameter is estimated, a χ2 test is executed between
the expected distribution with the estimated coefficient and
the data.

The following snippet shows how to use this function to
estimate the α parameter from a known Zipf distribution.
The result is a tuple whose first item is the estimated α
coefficient and second item is the p value that the given
distribution actually follows a Zipf distribution with the
estimated coefficient.



>>> from icarus import *

>>> zipf_fit(TruncatedZipfDist(0.8, 1000).pdf)

(0.79999999999571758, 1.0)

4.2.2 Trace parsers
Finally, Icarus provides a set of functions allowing users to

parse content traces from the most common datasets. These
traces can then be used to feed a request generator and be
used in simulations or can be analysed to identify specific
patterns.

Icarus supports parsing from two data formats.
First, it supports the parsing of logs generated by a Squid

proxy server. This is one of the most common open-source
HTTP proxies available. This is also the format in which the
traces provided by the IRCache project are made available.

Second, it supports parsing requests from the Wikibench
dataset [29]. This is a dataset of requests received by all
Wikimedia websites over a period of time between 2007 and
2008.

5. PERFORMANCE EVALUATION
In order to assess the scalability of the Icarus simulator

and to validate its fitness for running large scale caching
simulations, we evaluate its performance in terms of both
CPU and memory utilization under varying conditions.

In particular, our analysis focuses on measuring the mem-
ory and processing footprint against various catalogue sizes
and the speedup achieved when experiments are run in par-
allel on multiple cores.

5.1 Performance vs catalogue size
The first set of experiments run, whose results are reported

in Fig. 3 and 4, have been carried out to evaluate the
sensitivity of execution time and memory utilization against
variations in sizes of caches and content catalogue. We
report that we calculated the 95% confidence interval of
those results using the replications method, but did not plot
the related error bars because they were too small to be
easily distinguishable from point markers.

These results have been gathered by running a set of sim-
ulations each consisting of 500 thousand requests, generated
following a Poisson distribution. Content popularity has
been modelled as a Zipf distribution with coefficient α = 0.7.
The simulation scenario comprised a binary tree network
topology with depth equal to 5 in which the root node was
assigned as content source, the leaves as content receivers
and all intermediate nodes as caches. In summary, such a
topology comprises 63 nodes of which one is a source, 30 are
caches and 32 are receivers. Routing and caching decisions
have been taken according to the LCE strategy. Cache space
has been assigned uniformly to all caching nodes. The cu-
mulative size of caches in the network was equal to 10% of
the content catalogue.

Experiments have been run with all cache evictions cur-
rently supported by Icarus (LRU, LFU, FIFO and RAND)
as well as with no caches (NULL). We evaluate performance
in a range of content catalogue sizes from 103 to 107. It
should be noted that since the ratio between cumulative
cache size and content catalogue is fixed, a scenario with
greater content catalogue also has greater cache sizes.

Fig. 3 shows the wall clock time elapsed between the be-
ginning and the end of the experiment. As it can be noticed
from the graph, the execution time increases proportionally

103 104 105 106 107

Catalogue size

100

101

102

103

104

W
al

lc
lo

ck
tim

e
(s

)

LRU
RAND
FIFO
LFU
NULL

Figure 3: Wall clock time vs. content catalogue size

to the size of the content catalogue (and of the caches). This
is caused mainly by the fact that in order to generate a
random content identifier following a Zipf distribution, it is
necessary to run a binary search in an array storing the cumu-
lative density function of the content popularity distribution.
Although this routine has been implemented using the highly-
optimized NumPy’s searchsorted routine, such operation
has still a O(log(n)) complexity (with n being the size of
the content catalogue). The computational cost of these
search tasks becomes considerably greater than the computa-
tional cost of LRU, FIFO and RAND caches operations for
increasing content catalogues. This is evidenced by the fact
that the execution time without caches (NULL) approaches
those of LRU, FIFO and RAND policies when the catalogue
size increases. In addition, while LRU, RAND and FIFO
replacement policies yield comparable performance for all
sizes of content catalogues investigated, the performance of
LFU policy degrades worse as the cache sizes increase. This
is caused by the fact that while other replacement policies
have a O(1) cost for both search and replacement operations,
LFU policy has a replacement cost of O(n).

From the graph of Fig. 3, it is also interesting noticing
the absolute time required to run these simulations, each
consisting of 500 thousand requests. For example, in the case
of a content catalogue of 105 items and LRU eviction policy
the mean execution time is nearly equal to 60 seconds, i.e.
one minute. These results, collected using dated hardware
(CPU AMD Opteron 2347 with 1 GHz clock frequency), show
that Icarus can actually scale very well and run realistic
simulation scenarios with millions of requests in few minutes,
even on modest hardware.

With respect to RAM utilization, whose results are de-
picted in Fig. 4, we also notice an increase proportionally
to catalogue and cache size. This is caused by the memory
occupied by the objects modelling caches and by the data
structure which maps content identifiers to server locations.
The latter is needed to route requests to a persistent content
repository. In particular, in this case analysed, where overall
cache space accounts for 10% of the content catalogue, this
data structure is responsible for a much greater memory
consumption than caches. In fact, the line plot of memory
consumption in the case of no caches (NULL) almost overlaps
those representing cases where caches are used. It should be
noticed that the superlinear increase of memory utilization
is caused by the widespread use of hashmaps (or dictionaries



103 104 105 106 107

Catalogue size

101

102

103
Pe

ak
R

A
M

ut
ili

za
tio

n
(M

B
)

LRU
RAND
FIFO
LFU
NULL

Figure 4: Peak RAM utilization vs. content cata-
logue size

in Python terminology) to implement caches and also the
content-server map. In fact, Python dictionaries have been
adopted because they yield O(1) search cost but do so at the
cost of a superlinear memory utilization.

Anyway, despite such superlinear increase in memory foot-
print, even in the largest scenario considered (i.e. a catalogue
of 10 million contents and caches for 1 million contents), the
total RAM utilization is still below 1 GB. As a result, on
most commodity machines currently available, it would be
possible to run parallel experiments on all CPU cores without
exhausting all available RAM. This memory footprint could
be reduced and traded off with CPU utilization by using
a hash function to map content identifiers to source loca-
tions on-the-fly as opposed to using a precomputed hashmap.
However, since in the current implementation performance
is normally CPU-bound, such alternative implementation
would further increase the load on CPU resulting in a per-
formance drop. Therefore, it is reasonable to maintain the
current implementation.

5.2 Parallel execution speedup
We mentioned in section 3.3 that in the design of Icarus we

decided not to employ any PDES mechanism to parallelize
the execution of experiments. Instead we assumed that, since
in caching research experiments are generally repeated with
different parameters, we speculated that the parallel execu-
tion of separate experiments would yield satisfactory speedup
performance in normal usage conditions. We also showed
in section 5.1 that even with very large caches and content
catalogues, the RAM required to run a single experiment is
small enough to effectively enable the execution of parallel
simulations on the same machine.

In this section we validate these assumption by running
a combination of heterogeneous experiments using different
number of cores and analyse the performance achieved in
terms of speedup. We calculate the speedup as the ratio
between the average wall clock time elapsed between the
start of the first experiment and the end of the last experi-
ment using a single core and the time required by the same
workload using multiple cores.

The set of simulations executed consisted in 1280 distinct
experiments, which have been generated from a combination
of four different real topologies with variable sizes (parsed
from publicly available datasets), four cache sizes, ten con-

tent popularity distributions and eight caching and routing
strategies. Experiments have been designed to be as heteroge-
neous as possible and by selecting variable topology sizes and
cache sizes in order to ensure that they would have different
execution times. All experiments have been configured to
have a content population of 107 object in order to increase
the load on the RAM.

These experiments have been executed on a server equipped
with two Quad-Core AMD Opteron processors (i.e. 8 cores)
and 32GB of RAM and repeated using a variable number of
cores from 1 to 8.

1 2 3 4 5 6 7 8
Number of cores

1

2

3

4

5

6

7

8

S
pe

ed
up

Ideal speedup
Actual speedup

Figure 5: Parallel execution speedup

The results, depicted in figure 5 show an almost linear
speedup for the entire range considered. Moreover, even in
the case of eight simultaneous experiments running, perfor-
mance has always been CPU-bound and never reached the
level required to consume all the available RAM. In summary,
this experiment validates the soundness of our design deci-
sion to implement parallel execution with a per-experiments
granularity only.

6. SUMMARY AND CONCLUSIONS
In this paper we presented Icarus, a caching simulator spe-

cifically designed for Information-Centric Networking (ICN).
Icarus has been designed to address all shortcomings of cur-
rently available simulators which made them unsuitable for
simulating in-network caching systems.

With this objective in mind, Icarus has been designed to
be extensible and scalable.

The extensibility objective is of fundamental importance
to facilitate its fast adoption by the research community. We
addressed this requirement by appropriately using design
patterns to effectively decouple the various components of
the system.

The scalability objective is also fundamental for ensuring
that the simulator is capable of running large scale simula-
tions (which are required for producing statistically signif-
icant caching evaluations) in a reasonable timeframe. We
show in our evaluations that Icarus scales well and is able
to handle large content catalogues and caches with modest
RAM and CPU utilization.

In conclusion, Icarus provides a set of utilities for modelling
the performance of cache replacement policies and to analyse
content request traces from widely used datasets. To the
best of our knowledge, such functionalities are not provided
by any other publicly available software library.



Acknowledgments
The research leading to these results was funded by the
EU-Japan initiative under European Commission FP7 grant
agreement no. 608518 and NICT contract no. 167 (the
GreenICN project) and by the UK Engineering and Phys-
ical Sciences Research Council (EPSRC) under grant no.
EP/K019589/1 (COMIT).

7. REFERENCES
[1] Blackadder.

https://github.com/fp7-pursuit/blackadder.

[2] CCNx. http://www.ccnx.org/.

[3] Content-Centric Networking Packet Level Simulator.
https://code.google.com/p/ccnpl-sim/.

[4] A. Afanasyev, I. Moiseenko, and L. Zhang. ndnSIM:
NDN simulator for NS-3. Technical Report NDN-0005,
NDN, October 2012.

[5] J. Ardelius, B. Grönvall, L. Westberg, and
A. Arvidsson. On the effects of caching in access
aggregation networks. In Proceedings of the second
edition of the ICN workshop on Information-centric
networking, ICN ’12, New York, NY, USA, 2012. ACM.

[6] S. Arianfar, P. Nikander, and J. Ott. On
content-centric router design and implications. In
ReArch Workshop, volume 9, page 5. ACM, 2010.

[7] L. Breslau and et al. Web caching and zipf-like
distributions: Evidence and implications. In In
INFOCOM, pages 126–134, 1999.

[8] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino.
Modeling data transfer in content-centric networking.
In Proceedings of the 23rd International Teletraffic
Congress, ITC ’11, pages 111–118. ITCP, 2011.

[9] W. K. Chai, D. He, I. Psaras, and G. Pavlou. Cache
less for more in information-centric networks (extended
version). Computer Communications, 36(7):758 – 770,
2013.

[10] W. K. Chai, N. Wang, I. Psaras, G. Pavlou, C. Wang,
G. de Blas, F. Ramon-Salguero, L. Liang, S. Spirou,
A. Beben, and E. Hadjioannou. Curling:
Content-ubiquitous resolution and delivery
infrastructure for next-generation services.
Communications Magazine, IEEE, 49(3):112 –120,
march 2011.

[11] A. Chankhunthod and et al. A hierarchical internet
object cache. In Proceedings of USENIX, 1996.

[12] H. Che, Y. Tung, and Z. Wang. Hierarchical web
caching systems: modeling, design and experimental
results. Selected Areas in Communications, IEEE
Journal on, 20(7):1305–1314, 2002.

[13] R. Chiocchetti, D. Rossi, and G. Rossini. ccnsim: an
highly scalable ccn simulator. In IEEE International
Conference on Communications 2013 (ICC’13)’,
Budapest, Hungary, jun 2013.

[14] S. Farrell, E. Davies, and D. Kutscher. The netinf
protocol. 2013.

[15] N. Fotiou, D. Trossen, and G. Polyzos. Illustrating a
publish-subscribe internet architecture.
Telecommunication Systems, 51(4):233–245, 2012.

[16] N. Fujita, Y. Ishikawa, A. Iwata, and R. Izmailov.
Coarse-grain replica management strategies for

dynamic replication of web contents. Comput. Netw.,
45(1), 2004.

[17] A. A. Hagberg, D. A. Schult, and P. J. Swart.
Exploring network structure, dynamics, and function
using NetworkX. In Proceedings of the 7th Python in
Science Conference (SciPy2008), Pasadena, CA USA,
Aug. 2008.

[18] T. Henderson, S. Roy, S. Floyd, and G. Riley. ns-3
project goals. In Proceeding from the 2006 workshop on
ns-2: the IP network simulator, page 13. ACM, 2006.

[19] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.
Plass, N. H. Briggs, and R. L. Braynard. Networking
named content. In Proceedings of the 5th international
conference on Emerging networking experiments and
technologies, CoNEXT ’09, pages 1–12, New York, NY,
USA, 2009. ACM.

[20] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open
source scientific tools for Python, 2001–.

[21] K. V. Katsaros, G. Xylomenos, and G. C. Polyzos.
Globetraff: A traffic workload generator for the
performance evaluation of future internet architectures.
In NTMS, pages 1–5. IEEE, 2012.

[22] N. Laoutaris. A Closed-Form Method for LRU
Replacement under Generalized Power-Law Demand.
ArXiv e-prints, May 2007.

[23] N. Laoutaris, H. Che, and I. Stavrakakis. The lcd
interconnection of lru caches and its analysis.
Performance Evaluation, 63:609–634, 2006.

[24] I. Psaras, W. K. Chai, and G. Pavlou. Probabilistic
in-network caching for information-centric networks. In
Proceedings of the second edition of the ICN workshop
on Information-centric networking, ICN ’12, pages
55–60, New York, NY, USA, 2012. ACM.

[25] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and
G. Pavlou. Modelling and evaluation of CCN-caching
trees. In Proceedings of the 10th international IFIP TC
6 conference on Networking - Volume Part I,
NETWORKING’11, Berlin, Heidelberg, 2011.
Springer-Verlag.

[26] D. Rossi and G. Rossini. On sizing CCN content stores
by exploiting topological information. In IEEE
NOMEN Workshop, 2012.

[27] L. Saino, C. Cocora, and G. Pavlou. A toolchain for
simplifying network simulation setup. In Proceedings of
the 6th International ICST Conference on Simulation
Tools and Techniques (SIMUTools ’13), pages 82–91,
2013.

[28] L. Saino, I. Psaras, and G. Pavlou. Hash-routing
schemes for information centric networking. In 3rd
ACM SIGCOMM workshop on Information-Centric
Networking (ICN’13), Hong Kong, China, Aug. 2013.

[29] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia
workload analysis for decentralized hosting. Elsevier
Computer Networks, 53(11):1830–1845, July 2009.

[30] A. Varga and R. Hornig. An overview of the omnet++
simulation environment. In Proceedings of the 1st
international conference on Simulation tools and
techniques for communications, networks and systems
(SIMUTools’08), pages 1–10, 2008.


