
1

Enabling Context-aware HTTP
with Mobile Edge Hint

Peng Qian, Ning Wang, Gerry Foster, Rahim Tafazolli
Institute for Communication Systems, University of Surrey,

Guildford GU2 7XH, UK. Email: {p.qian, n.wang, g.foster, r.tafazolli}@surrey.ac.uk

Abstract—Due to dynamic wireless network conditions and
heterogeneous mobile web content complexities, web-based con-
tent services in mobile network environments always suffer from
long loading time. The new HTTP/2.0 protocol only adopts one
single TCP connection, but recent research reveals that in real
mobile environments, web downloading using single connection
will experience long idle time and low bandwidth utilization,
in particular with dynamic network conditions and web page
characteristics. In this paper, by leveraging the Mobile Edge
Computing (MEC) technique, we present the framework of
Mobile Edge Hint (MEH), in order to enhance mobile web
downloading performances. Specifically, the mobile edge collects
and caches the meta-data of frequently visited web pages and
also keeps monitoring the network conditions. Upon receiving
requests on these popular webpages, the MEC server is able
to hint back to the HTTP/2.0 clients on the optimized number
of TCP connections that should be established for downloading
the content. From the test results on real LTE testbed equipped
with MEH, we observed up to 34.5% time reduction and in the
median case the improvement is 20.5% compared to the plain
over-the-top (OTT) HTTP/2.0 protocol.

I. INTRODUCTION

Today, the HTTP-based web page content applications often
suffer from poor web page loading performances in mobile
network environments [1], [2]. In recent years, substantial
efforts have been invested on improving the load time per-
formance from different perspectives. On the one hand, the
next generation of HTTP protocol 2.0 is able to tackle the
existing limitations such as Head-of-Line (HOL) blocking at
the application layer [3]. On the other hand, various HTTP
proxy-based approaches break the end-to-end connection in
order to enable web content pre-fetching, caching, offloading
and compression to enhance user experiences [4]–[6]. Never-
theless, till now noticeable performance gains cannot always
be achieved under different network conditions and web page
characteristics [7], [8].

To overcome the inefficiency of repeating TCP handshaking
and also the HOL issue, the HTTP/2.0 protocol multiplexes
all the web content objects contained in a webpage to be
delivered through one single TCP connection [3]. This single
connection is expected to fast ramp up the available bandwidth
because the initial congestion window of a TCP connection has
been suggested to increase to 10 [9]. However, recent exper-
iments have shown that under certain conditions HTTP/2.0 is
only able to achieve marginal improvement when compared
to its predecessor HTTP/1.0 [1], [7], [10]. Specifically, this

single short-lived TCP connection may experience high idle
or waiting time during the slow start phase [2], [11], and
the complex object dependency within a page also aggravates
the idle time [7], [12]. This idle time varies according to
different content sizes, bandwidth and end-to-end delay [10],
thus limiting the bandwidth utilization and affecting the page
load time.

In addition to the over-the-top (OTT) HTTP/2.0 protocol
evolution, another thread of research is towards intelligent
mobile content access with the assistance of network functions,
typically through web content proxies. Current proxy-based
techniques applied in mobile network environments share two
common features [4]–[6]: (1) Splitting end-to-end connections
between wireless and wired parts, and (2) Employing various
network operations such as content prefetching and caching
for mobile users. However, again these widely deployed
proxies are unable to comprehensively achieve improvements
according to different context conditions [5], [8], [13]. In
addition, splitting of end-to-end connections encounters issues
like unexpected timeout [14] or marginal improvement [8] in
real mobile networks.

Considering above challenges, we propose a new scheme
of HTTP with context awareness based on the emerging
Mobile Edge Computing (MEC) concept [15]. In the context
of designing future 5G networks, MEC has been proposed as
an advanced technique that allows smart network functions
embedded at the mobile network edge for enhancing OTT
application performances. One typical example on supporting
adaptive video streaming applications is for the MEC server
to provide just-in-time feedback on radio access network
conditions towards the original video source in order for the
latter to perform necessary adaptations [15]. Taking the MEC
principle as the starting point, we aim to further tackle the
issue of suboptimal web content downloading performances.
The target is to reduce the page load time in mobile networks
by taking into account specific context conditions, not only
including dynamic network conditions but also distinct web
page complexities. The proposed framework is called context
aware HTTP with Mobile Edge Hint (MEH). Different from
the majority of existing work where the mobile network
proxy acts as a man-in-the-middle in terms of web content
acceleration [4], [6], [16] , our approach strives to maintain
end-to-end connectivity where necessary (especially for in-
band downloading of web objects), while having the mobile
edge to provide necessary hint back to the clients. Based on
the hinted information, a client will execute a local algorithm



2

to select an optimal connection number to overcome the idle
time for this specific page complexity and current network
condition, thus leading towards reduced page downloading
time. Note that different form long-lived application likes video
streaming, the variation of network condition during a single
page loading is minor because the short-lived web page loading
only lasts for very few seconds. Therefore the edge hint and
the client-side algorithm only need to be executed once at the
starting phase when user requests to a new page.

In the rest of the paper, we will discuss on the following
topics. In section II, we present the detailed design of the
MEH framework. Based on this, a numerical study of the
impact of webpage complexity and network conditions will
be elaborated in section III, followed by a plug-and-play
algorithm which determines the optimized number of parallel
end- to-end connections against dynamic conditions. In section
IV, we describe the prototype implementation of the proposed
MEH framework, based on which we present our final results
obtained from experiments in a real LTE network. Then we
conclude our work in section V.

II. DESIGN OF MOBILE EDGE HINT FRAMEWORK

In this section we first describe our basic design rationale
by briefly explaining why webpage downloading performance
can be enhanced through adaptive number of parallel TCP
connections according to specific webpage complexities and
network conditions. Then we formally introduce the MEH
framework together with the necessary signaling mechanism
to enable web clients to select the optimized number of
connections according to the hinted context information from
the mobile edge. Such a framework will be further detailed
according to the mobile edge side and the client side, and
finally in this section we discuss some practicality issues
relating to MEH.

Adaptive Parallel Connections
As previously mentioned, HTTP/2.0 only adopts one single
TCP connection. However, this single TCP connection experi-
ences idle time during its slow start phase and also leads to low
bandwidth utilization in mobile networks [2], [11]. Increasing
the initial congestion window is a typical way to overcome
such an idle time issue. The evaluations in [17], [18] reveal that
for different network Bandwidth-Delay Production (BDP) and
webpage content sizes, the effect originating from increasing
congestion window can be significantly different. That is to
say, depending on the characteristics of the webpage being
requested and also the current network conditions including
latency and bandwidth availability, it is beneficial to launch
different number of TCP connections in downloading all the
content objects contained in a webpage. To this end, we design
an algorithm at client side to adaptively select and open parallel
connections to aggregate the initial congestion window size
according to the aforementioned context information. This al-
gorithm is able to identify the idle time of the target page under
specific network condition and adaptively select an optimal
connection number for webpage downloading operations. We
leave the details and numerical analysis of this algorithm in

section 3, but first focus on the general MEH framework
with the focus on how the mobile edge is able to provide
information hints on the necessary context information to the
client side in order for the latter to make optimized decisions
on the number of connections.

Fig. 1. Overview of Mobile Edge Hint HTTP framework

Framework of HTTP/2.0 with Mobile Edge Hint:
The architecture of proposed framework is based on the
MEC concept (see Fig. 1). Holding the optimization algorithm
locally, a mobile client utilizes the monitoring and meta-
data storage capability at the MEC server to obtain context-
aware information as the input parameters to the optimization
algorithm. Such inputs include: (1) page meta-data (embedded
URLs and page size) and (2) network condition including the
end-to-end latency and bandwidth availability. Conventionally,
a client cannot understand the meta-data of the embedded
content objects until they are fully downloaded and in general
the webpages always have high variance on page sizes and
embedded object sizes [19]. Similarly, to determine the end-
to-end BDP associated with the path to external server, the
challenge in today’s mobile network is that the latency at wired
part may dominant the end-to-end latency [20] and due to this,
contacting the external network entity leads to a waste of time
and jeopardizes the page loading time. To this end, the ability
of direct network monitoring and maintenance of (relatively
static) web content meta data at MEC server located at the
mobile edge (e.g. eNodeB) can be utilized to provide necessary
hints on the required context information on the client side.
Moreover, due to its close proximity to mobile user, these
metrics can be online delivered to mobile user through the
query Application Program Interface (API) without incurring
latency to external server.
We describe the detail of the intelligence at mobile edge and
client side as follows:
Intelligence at mobile edge: Collection of content-aware
information (offline) and fast hints (online)
The intelligence at the mobile edge includes both offline
operation (meta-data trace and network monitoring), and
online operations (fast hints back to mobile clients upon their
webpage requests). (See Fig. 1 and the dash line in Fig. 2.)
(1) Capturing (popular) web content meta-data trace. The
meta-data trace application periodically loads the target page,
extracts the meta-data of each object from the response



3

Fig. 2. Work process of the proposed framework

headers and caches them at local meta-data cache repository.
This meta-data includes information of each embedded object,
such as object size, object URL, object type, last update time
etc. It is worth mentioning that for scalability purposes this
operation only targets at popular webpages that are frequently
visited by local mobile users, and such popularity can be
monitored by the network through specific mechanisms [21].
(2) Network measurement service. The network measurement
application also periodically measures the end-to-end latency
from the base station to web server and caches them. We do
not measure the bandwidth at wired network part because
according to existing performance test in cellular network, the
available bandwidth is still much smaller than that in wired
part [2], [11].
(3) Fast mobile hints. Upon an incoming request for a popular
webpage for which the corresponding meta-data has been
maintained locally, the MEC server will be able to provide
hints back to the client in order for the latter to make its own
decisions on the total number of connections that should be
established in order to optimize the downloading performance.
Such hints effectively include latency at the wired part (based
on network monitoring), and also the meta-data about the
webpage being requested. In our framework, the MEC server
also contains a local DNS component which has already
been proposed in ETSI. Therefore the hint packets can be
delivered along with the DNS response message through an
API. Figure 2 shows the detailed operation procedure on how
the MEC server gathers necessary context information and
provides fast hints back to webpage content clients.

Intelligence at client side: Cooperating with mobile edge,
the HTTP 2.0 client sends requests to all embedded URLs
on parallel connections
The solid line in Fig. 2 shows the online work process at
the client side. Before sending a request on a webpage, the
client first sends a DNS query which can be handled by a

local DNS function embedded inside the MEC server, and a
meta-data query message is also sent along with this DNS
query message. Upon receiving the query, the MEC server is
able to immediately send back the meta-data of the webpage
and the context information about the network condition.
Upon receiving this edge hint, the client will execute its local
optimization according to the following steps: (1) It reads and
rebuilds the meta-data information of each embedded object in
the webpage, checks its local cache information and compares
with the meta-data in order to determine the URLs and size of
pending page (obtained by adding up the size of each object)
to be requested. (2) It measures the latency and bandwidth for
the cellular wireless network part and binds these values with
the external network condition (i.e. from the mobile edge to
the external content server) in order to determine the BDP on
the end-to-end path. As discussed before, since it is widely
believed that the bandwidth at the wireless cellular link is
always the bottleneck along the end-to-end path [2], in the
rest of this paper, we assume the BDP equals to bandwidth
in the wireless cellular link multiplied with the concatenation
of wired and wireless latency. (3) It uses the end-to-end BDP
and the pending page size as inputs, and executes the local
optimization algorithm to determine the number of parallel
connections to destination web server. Such an algorithm at
the client side is effectively a plug-and-play function, and we
will introduce one representative algorithm in the next section
together with the analysis of the corresponding performance.
Once the total number of connections is determined, the
client will directly send object requests through these parallel
connections. In addition, in order to keep the load balance
between these parallel connections, since the client understands
the size of each object, it can allocate objects with same
aggregated size on each connection. Effectively, the page
loading time experienced at the client side can be reduced
because the network idle time during TCP slow start can be
overcame by aggregating the congestion window of parallel
TCP connections.

Practicality considerations
Considering the practical realization of MEH, existing works

like [4]–[6] also leverage different measurement tools to trace
the page meta-data or network condition as the input to their
algorithms. We select the Chrome browser with chrome-har-
capturer [22] tool to periodically load and trace the target
web page. The HTTP response headers of each embedded
object are local maintained to build up the meta-data cache
of traced page. For other objects dynamically executed by
user, we believe prior approaches [6], [23] have been able
to address such issues, and therefore we directly borrow their
methods in our framework. Note that there are also valuable
work in the literature which achieves early object dependency
awareness and corresponding object re-scheduling [23], [24],
these approaches can be complementarily embedded in our
framework in order to complementarily tackle the advanced
object dependency issue. Regarding the network condition
measurement, a Channel Quality Indicator (CQI) based ap-
proach proposed in [25] can be used to estimate available
bandwidth at client side. The latency on the wireless cellular



4

part can be obtained by the exchanged query messages between
client side and the MEC server.

III. NUMERICAL ANALYSIS OF HTTP/2.0 IDLE TIME

In this section, we give a numerical analysis of TCP idle
time during a HTTP/2.0 page loading and introduce an adap-
tive parallel connection algorithm to determine the number of
parallel connections.

A. Impact of idle time under varying network condition and
page size

In HTTP/2.0, the idle time on the single TCP connection ses-
sion consists of two parts: (1) the idle time caused by parsing
of object dependency [7], [12] and (2) the idle time caused
by TCP slow start [17], [26]. For the former, recent efforts
have been invested to break the ’download-parse-download’
dependency based on early-stage URL awareness [4], [27]. In
this case, the early known URLs can be concurrently requested
and downloaded on the TCP connection, thus the idle time
caused by object dependency parsing can be minimal. To keep
pace with these latest approaches, we also assume that this type
of idle time can be ignored. In contrast, due to the increasing
trend of web content size and rapid evolution of network
condition, idle time caused by TCP slow start can frequently
take place in LTE network for short-live application [2], [11],
although the initial congestion window has already been to
promoted to 10 [9], [18]. In the following parts, we mainly
focus on the idle time caused by TCP slow start.

Considering the completion time model of this single TCP
connection, existing works such as [17], [26], [28] provide
sufficient works. The completion time THTTP can be obtained
as:

THTTP = 2RTT+
Spage

µ
+γ

[
RTT+

Smss

µ

]
−2(1.5γ−1)

IW∗Smss

µ

where

γ = min

{⌊
log1.5

(
1+

RTT

2IW∗Smss/µ

)
+1

⌋
,

⌈
log1.5

(
Spage

IW∗Smss

)
+1

⌉
−1

}
,

(1)

The notation γ denotes the number of rounds that the
congestion window exponentially increases during the slow
start phase, RTT refers to the round-trip time, IW is the
initial congestion window which equals to 10, µ indicates
the available bandwidth, Spage and Smss are the size of a web
page and a TCP packet, respectively. The constant 1.5 in this
equation indicates that the delayed-ack is enabled and this is
the default setting in today’s Linux system.

We also follow the same assumptions in [17], [26], [28] that
the exponentially increasing congestion window is not limited
by the TCP sshthreshold and when the congestion window
increases to full pipe size during slow start phase, the rest part
of content will be transferred with the full rate µ.

To assess the effect of idle time, we first calculate Tidle (see
in equation 2) and then focus on its proportion of the total
completion time as Tidle/THTTP. We vary the page size from
small to large by following the Fig. 3. Figure 3 shows the
Cumulative Distribution Function (CDF) of size of top 200

Fig. 3. Size of web page (mobile version, screen size 6′′ and 10′′)

websites in the Internet. Since our scenario is webpage down-
loading via mobile network infrastructures, the webpage size is
measured from mobile version pages with the median value of
page size is 756KB (screen size 10′′) and 663KB (screen size
6′′), respectively. These long-tailed curves also present higher
average value (1.39MB and 1.08MB, respectively) due to the
existence of some large pages which has no mobile version.
We also vary the network condition by changing the BDP value
from low to high. These values are referred from [2], [11], [20].
For simplicity, we fix bandwidth and change RTT to emulate
the BDP range.

Tidle = γ

[
RTT+

Smss

µ

]
−2(1.5γ−1)

IW∗Smss

µ
(2)

Fig. 4. Percentage of idle time in total page load time

Figure 4 depicts the percentage of idle time in total page
loading time for varying varied page sizes and network con-
ditions. In terms of different web pages, the increasing of
page size leads to a reduction of the proportional idle time.
For instance, when network BDP is low (e.g. with 20Mbps
bandwidth and 50ms latency), a 400KBytes page suffered from
52.3% idle time while a 3600KBytes page only experiences
15.9% idle time. This is because the most part of large page
are transmitted during full BDP period, which alleviates the
effect of idle time. Similarly, regarding the impact of network
conditions, large BDP extends the time that a connection stays
at exponentially increasing period during the slow start phase.



5

Therefore a noticeable increment on idle time can be observed
when latency increases from 50ms to 150ms. For example, the
idle time rises from 52.3% to 80.1% for a 400KBytes page and
for a web page which of 3600K Bytes size, this same trend can
also be observed (its idle time increases from 15.9% to 40.8%).
These above observations indicate that the idle time on one
single TCP connection can significantly affect the page loading
time under today’s page load context, and this negative effect
varies according to different page size and network conditions.

B. Connection selection algorithm

Since opening parallel connections is able to achieve higher
congestion windows, the idle time can be reduced by the aggre-
gated congestion windows according to [17]. Note that parallel
TCP connections has already been investigated for aggregating
more bandwidth, but our algorithm differs from them in the
following aspects: (1) Some approaches only use fix number
of TCP connection [16] which misses the consideration of
content size and network condition. (2) For the approaches
which use dynamic number of TCP connections [29], they
only consider one of slow start or steady state phase. But as
discussed before, takes into account today’s mobile web page
size, the TCP congestion window of mobile version web pages
will first experience the exponential increasing period and then
stays at the full BDP until the page completes.

Algorithm 1 Algorithm for select number of parallel connec-
tions n

ConnectionNumbermax=min(ceil(BDP/(IW ∗
MSS)),ceil(Spage/(IW ∗MSS)))
i = 2, C(i)=1/ConnectionNumbermax,
G(i)= (THTTP(i− 1)-THTTP(i))/THTTP(1)
while true do

if G(i) >= C(i) then
i=i+1;

else
break;

end if
end while
n = i-1;

In order to decide an optimized connection number, our al-
gorithm evaluates the gain and cost of increasing each one con-
nection. (See Algorithm 1). Considering a network with fixed
BDP, for the page whose size is not less than the BDP, the max-
imum number of connections to fully utilize this given BDP
pipe is fixed as ConnectionNumbermax = ceil(BDP/(IW ∗
MSS)), or for page whose size is less than the BDP size, the
maximum connection number equals ConnectionNumbermax
=ceil(Spage/(IW ∗ MSS)). Assuming the cost is the TCP
connection, then cost of each increased connection can be
normalized to C(n) = 1/ConnectionNumbermax, which in-
dicates the cost caused by increasing connection number from
(n − 1) to n connections. Similarly, the gain caused by
increasing connection number from (n− 1) to n connections
can be defined as G(n) =(THTTP(n-1)-THTTP(n))/THTTP(1).

Then to determine the connection number, the client iteratively
compares gain and cost per each increased connection until the
cost is larger than gain.

Fig. 5. Reduction of page load time with proposed algorithm

Figure 5 and Table I depicts the numerical results of
page loading time reduction and corresponding number of
connections by varying the size of page from 400KBytes to
3600KBytes and end-to-end RTT from 50ms to 150ms. In
terms of the horizontal trend, as the network BDP increases,
the page can experience more load time reduction and more
connections can be opened. For example, when RTT is 50ms,
the maximum improvement can be seen on 400KB page (only
17.9%) and pages no smaller than 1600KB experience no
improvement. By contrast, when RTT increases to 150ms,
the minimum time reduction across all pages is 19.5%. Sim-
ilarly, regarding the impact of page size in the figure, more
significant improvement can be observed for smaller pages.
For example, smaller pages (less than 1200KBytes) can be
optimized up to 33.5% across all network conditions. In
contrast, time reduction of larger page is relatively smaller
(from 9.2% to 26.3% when BDP reaches 20Mbps∗150ms).
Regarding the cost, which is number of parallel connections,
more connections will be opened for smaller page or larger
network BDP (ranging from 1 to 4). This range is still less
than the typical parallel number adopted by HTTP 1.1/1.0
(6 parallel connections). These above observations indicate
that our algorithm can be adaptive according the varying page
load context and achieve a proper trade-off between time load
reduction and the number of connections. We also observed
that for the case that a client still selects one single connection
(e.g. if page size is 3600KB, the available bandwidth is
20Mbps and the RTT is less than 100ms), the determination
of establishing one single connection is based on the page
load context, which means for specific page size and network
condition, single connection is the better choice than any other
number of connections.

IV. PROTOTYPE IMPLEMENTATION AND VALIDATION IN
EMULATED AND REAL LTE NETWORK

In this section, we describe the prototype implementation of
our framework and its performance in a local LTE network.



6

TABLE I. PAGE LOAD TIME REDUCTION

Fig. 6. Test Environment Setup

A. Prototype implementation and Environment setup
Figure 6 depicts the test-bed environment based on which

the experiments were carried out. We modified the nghttp [30]
proxy to enable adaptive connection numbers and embedded
a meta-data query module which sends meta-data query to
the MEC server along with the DNS query. This proxy is
locally deployed at ubuntu 14.04.04 laptop to works as local
proxy to the Google Chrome 47.0 Browser. Therefore all the
HTTP/2.0 messages originated from the Chrome Browser will
be intercepted by this local nghttp proxy. The nghttp content
server is deployed behind the core network. The connection
between server and client side proxy is configured as clear
text HTTP 2.0, which is one of the two modes (h2 and h2c)
in RFC 7540 [3]. Different from existing work like [4], [6],
[16], our prototype only needs application and socket API
level modification and still maintains the end-to-end service
logic between mobile user and content provider, which leads
to a low deployment cost and also being friendly to mobile
operator. In our local LTE network, the average RTT is 65ms
and average bandwidth is 32Mbps. We use tcpdump to trace
the packet at client side in order to measure the page load time
which is defined as the time from first handshake message sent
to the arrive timestamp of the last data packet.

B. Performance test and Framework validation
We first evaluate our proposed scheme with random 15

pages selected from Top 200 websites in the Internet. Since
we specifically focus on the performance in mobile network,
we select its mobile version. The size of these pages ranges
from 346KB to 3686KB and the number of objects ranges
from 21 to 87. Considering the varying network conditions,
we conduct back-to-back run of a page with and without
our framework and each page was loaded 30 times. Figure 7
depicts the CDF plot of traced page loading time. It is apparent
that our MEH framework significantly improves the overall
page download time. In the median case, page loading time by
standard HTTP/2.0 is 2.38s and it is reduced to 1.89s (reduced

Fig. 7. Performance comparison of HTTP 2.0 without and with proposed
framework in LTE network

by 20.5%) with MEH. In addition, page loading time less than
2s occupies 38.4% without optimization and in contrast, 61.8%
page load samples with optimization are finished within 2s.
However, the improvement for large pages is not substantial.
Similar percentages can be observed for the pages which need
more than 3.5s to be loaded in both cases, which are 9.5%
for standard HTTP/2.0 and 6.7% for optimized HTTP/2.0.
This is because according to our algorithm, larger webpages
experience low idle time during page load time therefore its
improvement is much less than small pages. We also provide
a detail comparison for 3 selected pages in box plot format in
Fig. 8. Page 1 is 622KB with 32 objects, Page 2 is 1412KB
with 72 objects and Page 3 is 3648Kb with 46 objects. From
the plot box figure we can see that: (1) For small pages like
Page 1 and Page 2, in the median case the performance gain
are relatively higher (34.5% and 24.3%) while for larger page
size (Page 3), the improvement is only marginal (6.03%). (2)
we also observed that our algorithm leads to a small range of
page load times for smaller pages (e.g pages 1 and page 2).
This is because when the RTT increases, the page load time
will increase. However, since the corresponding network BDP
also rises, according to the analysis in section 3, our algorithm
can help the client to select more connections to overcome the
longer latency.

Fig. 8. Box plot of page load time without and with proposed framework

we also calculated the average size of mobile edge hint



7

packets of top 200 mobile websites. Since we use gzip to
compact the data and only selected fields are included in
the packets, we observe that 89.8% of the edge hint are less
than 1KB, which means compared to the total page size, the
overhead and latency caused by these packets are minimal.

V. CONCLUSION

In this work, based on the idle time analysis of today’s
mobile webpage and mobile network condition, we present
the framework of Mobile Edge Hint (MEH) to improve the
page loading time. In this MEC-based framework, the MEC
server which stands at the edge of network offline collects
and maintains the context-aware metrics like external network
latency and meta-data of popular web pages. Upon receiving
requests on these popular web pages, the mobile edge is able to
hint back to the HTTP/2.0 clients and the clients will execute
a local algorithm to dynamically determine an optimal parallel
connection number to download all objects embedded in the
page, according to the hinted knowledge on page meta-data and
the current network condition. These parallel connections can
reduce the idle time during TCP slow start and the experiment
results in a real LTE network show that the page load time
can be improved up to 34.5% and in the median case, the
improvement is 20.5%.

ACKNOWLEDGMENT

This work is funded by HEFCE Innovation Gateway project.
The authors would also like to acknowledge the support
of the University of Surrey’s 5G Innovation Centre (5GIC)
(http://www.surrey.ac.uk/5gic) members for this work.

REFERENCES

[1] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan,
“Towards a SPDYier mobile web?” IEEE/ACM Transactions on Net-
working, vol. 23, no. 6, pp. 2010–2023, 2015.

[2] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen,
and O. Spatscheck, “An in-depth study of LTE: effect of network
protocol and application behavior on performance,” in ACM SIGCOMM
Computer Communication Review, 2013.

[3] M. Belshe, R. P. M. Thomson, and E. Mozilla, “Hypertext Transfer
Protocol Version 2 (HTTP/2),” RFC 7540, 2015.

[4] A. Sivakumar, S. Puzhavakath Narayanan, V. Gopalakrishnan, S. Lee,
S. Rao, and S. Sen, “PARCEL: Proxy assisted browsing in cellular
networks for energy and latency reduction,” in ACM on emerging
Networking Experiments and Technologies, 2014.

[5] S. Singh, H. V. Madhyastha, S. V. Krishnamurthy, and R. Govindan,
“FlexiWeb: Network-aware compaction for accelerating mobile web
transfers,” in MobiCom, 2015.

[6] A. Sehati and M. Ghaderi, “Webpro: A proxy-based approach for low
latency web browsing on mobile devices,” in IEEE IWQoS, 2015.

[7] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“How Speedy is SPDY?” in USENIX Conference on Networked Systems
Design and Implementation, 2014.

[8] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and R. Govin-
dan, “Investigating transparent web proxies in cellular networks,” in
Passive and Active Measurement, 2015.

[9] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s Initial
Window,” RFC 3390, 2002.

[10] Y. Elkhatib, G. Tyson, and M. Welzl, “Can SPDY really make the web
faster?” in IFIP Networking Conference, 2014.

[11] J. Garcia, S. Alfredsson, and A. Brunstrom, “A measurement based
study of TCP protocol efficiency in cellular networks,” in Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
2014.

[12] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“Demystifying page load performance with wprof,” in USENIX on
Networked Systems Design and Implementation, 2013.

[13] A. Sivakumar, V. Gopalakrishnan, S. Lee, S. Rao, S. Sen, and
O. Spatscheck, “Cloud is not a silver bullet: A case study of cloud-based
mobile browsing,” in Mobile Computing Systems and Applications,
2014.

[14] N. Becker, A. Rizk, and M. Fidler, “A measurement study on the
application-level performance of LTE,” in IFIP Networking Conference,
2014.

[15] “Mobile edge computing a key technology towards 5G,” White Paper,
ETSI, 2015.

[16] F. Qian, V. Gopalakrishnan, E. Halepovic, S. Sen, and O. Spatscheck,
“TM3: Flexible transport-layer multi-pipe multiplexing middlebox with-
out head-of-line blocking,” in ACM CoNEXT, 2015.

[17] M. Scharf, “Comparison of end-to-end and network-supported fast
startup congestion control schemes,” Computer Networks, vol. 55, no. 8,
pp. 1921–1940, 2011.

[18] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,
A. Jain, and N. Sutin, “An argument for increasing TCP’s initial
congestion window.” SIGCOMM Comput. Commun. Rev., vol. 40, no. 3,
pp. 26–33, 2010.

[19] M. Butkiewicz, H. V. Madhyastha, and V. Sekar, “Characterizing
web page complexity and its impact,” IEEE/ACM Transactions on
Networking, vol. 22, no. 3, pp. 943–956, 2014.

[20] V. Gabale and D. Krishnaswamy, “Mobinsight: On improving the
performance of mobile apps in cellular networks,” in International
Conference on World Wide Web, 2015.

[21] P. Blasco and D. Gunduz, “Learning-based optimization of cache
content in a small cell base station,” in IEEE ICC, 2014.

[22] chrome-har-capturer. [Online]. Available: https://github.com/cyrus-
and/chrome-har-capturer

[23] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar,
“KLOTSKI: Reprioritizing web content to improve user experience on
mobile devices,” in USENIX Conference on Networked Systems Design
and Implementation, 2015.

[24] R. Netravali, A. Goyal, J. Mickens, and H. Balakrishnan, “Polaris:
Faster Page Loads Using Fine-grained Dependency Tracking,” in
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2016.

[25] F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren, and A. Terzis,
“CQIC: Revisiting cross-layer congestion control for cellular networks,”
in Mobile Computing Systems and Applications (HotMobile), 2015.

[26] J. Heidemann, K. Obraczka, and J. Touch, “Modeling the performance
of HTTP over several transport protocols,” IEEE/ACM Transactions on
Networking, vol. 5, no. 5, pp. 616–630, 1997.

[27] B. Han, S. Hao, and F. Qian, “Metapush: Cellular-friendly server
push for http/2,” in Workshop on All Things Cellular: Operations,
Applications and Challenges, 2015.

[28] Y.-J. Lee and M. Atiquzzaman, “HTTP transfer latency over SCTP and
TCP in slow start phase,” in IEEE ICC, 2007.

[29] E. Altman, D. Barman, B. Tuffin, and M. Vojnovic, “Parallel tcp sockets:
Simple model, throughput and validation,” in IEEE INFOCOM, 2006.

[30] NGHTTP. [Online]. Available: https://nghttp2.org/


