
Real-Time QoE Estimation of DASH-based Mobile
Video Applications through Edge Computing

Chang Ge, Ning Wang
5GIC, Institute for Communication Systems

University of Surrey, Guildford, UK
Email: {C.Ge, N.Wang}@surrey.ac.uk

Abstract—Video applications using MPEG-DASH (Dynamic
Adaptive Streaming over HTTP, such as YouTube and Netflix)
have been dominating the Internet traffic in recent years. It is
increasingly acknowledged that in order to provide video clients
with better Quality-of-Experience (QoE), both content service
providers and network operators need to be aware of clients’
QoE in the first place. In this paper, we present a novel real-
time QoE estimation system through edge computing, which has
been implemented and deployed at a real LTE-A network edge.
When equipped with such a system, any virtual network function
(VNF) deployed in a mobile network will be able to infer all
DASH clients’ QoE under its coverage in real time, where no
feedback from clients are needed. Furthermore, our scheme is
able to work robustly in busy network environments involving air
interface where packet errors frequently occur. The significance
of such a scheme is the availability of accurate and real-time
knowledge on user QoE through a very lightweight mechanism
at the mobile edge, which can be instantaneously used for various
content manipulation or resource adaptation operations in order
to assure user QoE in dynamic conditions. Through experiments
in a real LTE-A network, we demonstrate that our scheme is
able to estimate DASH clients’ QoE with very high accuracy
with very low CPU and RAM footprint.

I. INTRODUCTION

In recent years, the MPEG-DASH (Dynamic Adaptive
Streaming over HTTP) paradigm has been well adopted by
content service providers such as YouTube and Netflix to serve
videos over the Internet. Its flexibility in terms of letting clients
adjust video quality on-the-fly, as well its easy implementation
over existing HTTP infrastructure (e.g., Content Delivery
Network, or CDN), have contributed to its wide adoption in
the video streaming industry.

As videos are increasingly streamed on mobile phones or
tablets, it is common that the end-to-end content delivery
path involves Radio Access Network (RAN) over the air.
Since the RAN condition (e.g., latency, packet error, number
of users) fluctuates significantly due to its nature, the user-
experienced downlink throughput also fluctuates as a result
of TCP’s congestion control mechanism [5]. Furthermore,
since most DASH clients choose video qualities based on its
knowledge on their experienced downlink throughput and/or
their buffer level, it is easy for clients to experience either
rebuffering (due to overestimating RAN resource availability)
or switching video quality frequently. Both cases will lead
to suboptimal QoE. Therefore, it is envisaged that if the
knowledge of clients’ QoE can be obtained in real time during
a DASH session, intelligent operations can be performed at the

mobile network edge to maintain or improve their QoE. For
example, if a DASH client is experiencing poor QoE (e.g.,
through real-time knowledge on its rebuffering events), or if
it is predicted to be experiencing poor QoE (e.g., through
real-time knowledge on its video buffer), the mobile network
operator (MNO) may adapt its RAN resource allocation so that
such a client get more radio resource [12]. Also, the content
service provider may adjust its adaptation/caching/prefetching
policies or perform TCP congestion window optimization in
favor of such a client [3].

Since direct QoE feedback is not implemented in any major
DASH client like dash.js1 or libdash2, the best option to gain
knowledge on clients’ QoE is to perform in-network QoE
estimation at the network edge. While schemes have been
proposed for offline reconstruction of QoE [9], it is not a
trivial task to perform QoE estimation in real time, especially
where RAN is involved. Specifically, real-time QoE estimation
means that the start and finish time of each video segment
download need to be learned in real time. In a RAN where
packet errors such as duplicate ACKs and out-of-order packets
frequently take place, the network is not always able to capture
all packets. Furthermore, network address translation (NAT)
is often used in mobile networks to protect clients’ identities
through hiding their IP addresses, which makes it difficult to
distinguish DASH sessions from each other.

In this paper, we present a novel QoE estimation scheme
that is enabled by edge computing. More specifically, our
scheme is packaged into a virtual network function (VNF)
and is deployed at a Multi-Access Edge Computing (MEC)
server, which is in line with the MEC paradigm advocated
by ETSI in recent years [4]. Our scheme is able to estimate
all 4 major QoE metrics for video applications in real time,
including initial playout delay, video buffer, rebuffering events
(occurrence and duration) as well as video quality switching
statistics. Furthermore, it is able to work robustly where
RAN is involved in a content delivery path, which means
its functionalities do not rely on any key packet and are not
affected by packet errors in the network. It is also able to
identify different DASH sessions from each other, even when
NAT is used and all DASH clients are exposed with the same
IP address.

1https://github.com/Dash-Industry-Forum/dash.js
2https://github.com/bitmovin/libdash



It is worth noting that when packaged into a VNF, our
scheme can be deployed/operated by different stakeholders.
On one hand, it can be operated by the MNO within its own
infrastructure to estimate its subscribers’ video QoE. On the
other hand, it can be deployed within the MNO network and is
operated by the content service provider. This is feasible since
the content service provider can rent computing and storage
resources within an MNO infrastructure and deploy its service
capability and intelligence (e.g., QoE estimation) there [2].

To the best of our knowledge, our key contributions in this
paper are as follows:

• Our proposed MEC-enabled QoE estimation scheme is
the first that works robustly in a RAN environment in
real time (where packet errors frequently occur) with high
accuracy and low CPU and RAM footprint.

• Our scheme is the first of its kind to be packaged
into a VNF and deployed in a real LTE-A network
infrastructure, which serves as a use case for the MEC
paradigm. Furthermore, the detailed descriptions on its
implementation provide important practical guidelines in
realizing QoE awareness at mobile network edge.

II. BACKGROUND REVIEW

When a video is disseminated under the MPEG-DASH
standard [7], it is encoded/compressed into different repre-
sentations (i.e., video qualities) with different bitrates. Each
representation is then divided into multiple segments with
identical length in seconds. The metadata about a video’s
representations and their segments (e.g., URLs) are stored
in a manifest file named media presentation description, or
MPD file. When a client streams a video, its MPD manifest
is first requested so that the client can understand the video’s
available representations and their structures. Afterwards, the
client makes decision on which representation to stream on a
per-segment basis. There are 4 main metrics that govern the
QoE in a DASH session [8]:

• Video buffer: the available video buffer at a client.
• Initial playout delay: the time duration between when a

client clicks on “play” and when the video starts playing
at the client.

• Rebuffering: the number and duration of rebuffering (i.e.,
playback freezing) events during a session.

• Video quality switching statistics: the quality (bitrate)
of the segments consumed in a DASH session, and the
number of events where video quality switches between
segments.

In order to obtain the knowledge of a DASH client’s QoE,
the existing techniques in the literature can be classified into
3 categories: 1) direct client feedback; 2) in-network QoE
estimation and 3) mapping QoS parameters (e.g., bandwidth,
latency etc.) to QoE in Mean Opinion Score (MOS) [8]. In
this paper, we focus on the second category, which consists
of real-time in-network QoE estimation techniques [10] and
offline techniques [11] [9].

We specifically review the technique in [9], because even
though it works in offline timescale, it is the only technique

that is able to estimate all 4 QoE metrics above, which is
done through analyzing packet sniffing traces from within
the network. Specifically, every time a client downloads a
video segment, this technique utilizes 3 key packets during
the download to estimate the client’s QoE. These key packets
contain the segment’s HTTP GET request, HTTP 200 OK
response and the last packet containing the requested segment
data respectively. When used in an offline analysis, due to
the complete context in the packet trace, these packets can
be easily identified and used to accurately reconstruct the
start and finish of each segment download, which are further
used to calculate the client’s buffer conditions and whether
any rebuffering event has occurred. However, in order to
achieve the same objective in real time, especially when RAN
is involved in the content delivery path, there are multiple
challenges that need to be tackled.

First, in order to estimate a client’s buffer level on-the-fly,
the QoE estimation function needs to capture the start and
finish time of each video segment download in real time.
This means the QoE estimation algorithm needs to be very
lightweight so that it not only analyzes packets fast enough,
but also has low CPU and RAM footprint so that it can operate
in a stable manner over long term.

Second, in a RAN where out-of-order packets, duplicate
ACKs and TCP retransmissions take place frequently, the QoE
estimation algorithm needs to be able to handle these events
while processing captured packets. Furthermore, in a very busy
network, packets may get dropped by kernel and are not 100%
captured. Therefore, the algorithm needs to work robustly and
should not rely on any key packet to perform QoE estimation.

Third, in an MNO infrastructure, NAT is often deployed
to hide the client’s IP addresses and protect their identities.
In this case, the QoE estimation function needs to be able to
distinguish clients from each other, even when all clients share
the same IP address in packet traces.

III. SYSTEM OVERVIEW

The system architecture is illustrated in Figure 1. Specifi-
cally, we consider the scenario where a DASH client streams
a video from a content source (owned by content provider) via
an LTE network infrastructure (owned by MNO), and a MEC
server is deployed within the MNO infrastructure. Note that
we use the LTE architecture as an example only - the proposed
technique can be applied to any access network technology.
As shown in the figure, when our QoE estimation VNF is
deployed at a MEC server, it consists of 4 functional blocks:

HTTP proxy is responsible for handling incoming DASH
requests by e.g., resolving them to an appropriate video source.
It provides input to the QoE estimation algorithm in terms of
incoming requests’ URL and timestamp. Our scheme works
for both forward (transparent) and reverse (non-transparent)
proxies when the DASH session is unencrypted. However, if
the session is encrypted, our scheme works only on reverse
proxies since the requests’ URLs need to be decrypted at
an SSL/TLS connection’s termination point. A reverse proxy



UE

MEC

Video 

SourceMNO Infrastructure

HTTP 

Proxy

Packet 

Sniffer

QoE 

Estimation 

Algorithm

User QoE 

Repository

Fig. 1. System Architecture

can be operated by either the MNO or the content provider,
depending on their business models.

Packet sniffer captures packets on transport layer and
identifies all DASH-related ones. It then pre-processes each
packet’s information into an efficient one-line format, which
includes timestamp, TCP port number, SEQ/ACK number etc.
(more details are shown in Section IV). The information is
then passed to the QoE estimation algorithm as inputs. Note
that our algorithm needs packets’ information at up to transport
layer only - it does not need any information from the HTTP
layer. This means it works for both unencrypted (http) and
encrypted (https) sessions.

We use tcpdump to perform packet sniffing in our QoE
estimation scheme, since it is crucial that the packet sniffer
captures packets as fast as possible in a lightweight manner,
so that it does not fall behind the actual packet flow. Although
tshark/wireshark is able to automatically detect TCP retrans-
missions and out-of-order packets etc., the fact that it stores
historic packet states means it is slower than stateless packet
sniffers like tcpdump. Also, this causes its RAM usage to
keep increasing indefinitely. In contrast, when using tcpdump,
all it needs to do is to identify and capture DASH-related
packets and offload the task of identifying packet errors to
the QoE estimation algorithm. Furthermore, its kernel buffer-
based mechanism means its RAM usage is capped.

QoE estimation algorithm processes the inputs from the
HTTP proxy and the packet sniffer, and estimates all 4 QoE
metrics mentioned earlier of all DASH clients covered by the
MEC server (more details on the algorithm are described in
Section IV). It also deposits the estimated QoE knowledge into
a user QoE repository.

User QoE repository stores all DASH clients’ current and
historic QoE knowledge, which can be used by MNO and/or
content service provider to perform QoE-driven optimizations
as discussed in Section I.

Also, the physical location of the QoE estimation VNF is
flexible within the MNO infrastructure - it can be deployed
anywhere between a base station and the P-GW, as long as
there is the capability to host such a function.

IV. QOE ESTIMATION ALGORITHM

A. DASH Session Identification

When the HTTP proxy receives a video segment request, the
QoE estimation algorithm needs to first identify which DASH
session this request belongs to. Similarly, when the packet
sniffer captures a packet, the algorithm also needs to 1) check
if this is a DASH-relevant packet; and 2) if yes, which DASH
session does it belong to. In order to perform such a task, the
QoE estimation algorithm maintains a list of all DASH clients,
where each client contains a list of DASH video sessions (VS),
where a VS instance is created every time an MPD manifest
request is sent from the client. Furthermore, each VS contains
a list of video segment download sessions (SDS), where an
SDS instance is created every time a segment request is sent
from the client.

When the HTTP proxy receives a segment request, its
belonging client is identified based on its source IP address.
It is then assigned to a VS instance within that client based
on the following criteria. Note that any VS that has already
finished playback are not considered - a VS is set to finished
when its last video segment has been delivered to the client.

• The VS whose last request’s segment ID and source TCP
port are the closest to the incoming request’s segment ID
and source TCP port.

• The VS whose video’s name matches the requested
video’s name. This does not apply to those URLs which
do not contain video’s name.

When the packet sniffer captures a packet, its belonging
DASH client is first identified based on its source /destination
IP address. Its VS instance is then identified based on its
source/destination TCP port number in the same way as
criteria #1 above. The other criteria is not applicable since
the packet sniffer does not use the URL information. In order
to identify the packet’s belonging SDS instance, we use the
timestamp when the HTTP proxy receives an HTTP GET
request of a segment, named “REQ”, to mark the beginning of
an SDS in the packet trace. All packets that belong to the same
DASH client and VS instances are captured after an SDS’s
REQ timestamp are assigned to that SDS. Such a strategy is
based on the fact that the packet containing the GET request
may not always be captured, may arrive out-of-order, or may
be duplicated. By adopting a key timestamp-based strategy,
these packets errors are effectively ruled out.

It is worth mentioning that the DASH client/VS/SDS iden-
tification mechanism above works when a client has multiple
ongoing DASH sessions. Therefore, it works if the client is
a computer streaming multiple videos at the same time (e.g.,
through multiple web browser tabs). Furthermore, it works if
the actual clients are behind NAT, which means they all share
the same IP address (i.e., the NAT gateway’s). This signifi-
cantly improves its practicality in real-world applications.

B. Video Quality Estimation

In order to estimate a DASH client’s experienced video
quality, the algorithm needs to know the exact URL that the



client requested for each segment, which is then mapped into
specific representations as follows. At the beginning of each
DASH session, the video’s MPD manifest is requested by the
client. When the MPD file is sent from the video source to
the client, the HTTP proxy keeps a copy of the file and parses
the URL of each representation’s each segment and generates
a look-up table. Later on, every time the client requests a
segment, the HTTP proxy is able to map the URL contained
in the HTTP GET request into a specific segment ID and
representation. Hence, the video quality and switching events
are captured with 100% accuracy on a per-segment basis.

We use the HTTP proxy (instead of using the packet sniffer)
to obtain the knowledge on requested URLs. This is because if
the DASH session is encrypted, due to how modern encryption
schemes like TLS v1.2 work [6], the packet sniffer will not
be able to decrypt the URL contained in the GET request on-
the-fly. On the other hand, the HTTP proxy is able to decrypt
the request because it is an SSL/TLS termination point as
explained earlier.

C. DASH Client Video Buffer Estimation

In order to estimate a DASH client’s video buffer in real
time, the algorithm needs to detect the following 2 key
timestamps within each SDS. They need to be identified as
soon as possible as the packet flow passes the packet sniffer.
Note that both initial playout delay and rebuffering events are
estimated with real-time knowledge of a client’s video buffer.

The first key timestamp, LAST SENT, marks the point
when the last packet containing data of the requested segment
is sent towards the client. When an SDS’s REQ timestamp is
identified, a counter is started to record how many bytes have
been sent towards the client within this SDS. A SENT packet
is identified to contain a requested segment’s data sent towards
the client if the following criteria are met:

• It has been identified to belong to the same DASH client,
VS and SDS instances.

• Its destination IP address and TCP port number match
the GET request’s source address and port number.

• Its TCP PUSH flag has been set.
Every time a SENT packet is identified, its TCP SEQ

number is used to update the above counter. When the counter
reaches the size of the requested video segment (which the
HTTP reverse proxy knows by design), the latest SENT
packet’s timestamp is identified as the SDS’s LAST SENT.
Until when the next REQ is identified, all subsequent SENT
packets are ignored since they are considered to be duplicate
or out-of-order. Note that we do not simply use the packet’s
length to update the counter, since that would include out-
of-order packets and especially TCP retransmissions, which
would produce inaccurate results.

The second key timestamp, LAST ACK, marks the point
when the HTTP proxy receives the last ACK sent from
the client, hence acknowledging it has received the entire
requested video segment. An ACK packet is identified to
contain a client’s ACK response while downloading a video
segment if the following criteria are met:

• It has been identified to belong to the same DASH client,
VS and SDS instances.

• It has the same source IP address and TCP port number
as the GET request’s source IP address and TCP port
number.

Since an ACK packet is always captured after its SENT
counterpart, the identification of an SDS’s LAST ACK starts
after when its LAST SENT has been identified. Specifically,
an SDS’s LAST ACK is identified to be the timestamp of
the ACK packet whose TCP ACK number is equal to the
LAST SENT packet’s SEQ number.

We now explain how these 2 key timestamps are used to
estimate a DASH client’s video buffer in Algorithm 1 below.

Algorithm 1: Video Buffer Estimation Algorithm

Input: sdsList: a list containing all SDS whose both
key timestamps have been identified

currTime: current timestamp
Output: buffer: the VS’s current video buffer in s

rebufferDur: the VS’s rebuffering duration in s
rebufferCount: the VS’s rebuffering occurences

1: begin
2: buffer, rebufferDur, rebufferCount ← 0
3: prevDS ← null
4: for each SDS in the list
5: currSDS ← currently SDS in iteration
6: currSDSFinishTime ←

(currSDS’s LAST SENT + LAST ACK)/2
7: if currSDS’s segment ID > 1
8: buffer -= (currSDSFinishTime - prevSDSFinishTime)
9: if buffer < 0

10: rebufferDur += buffer × -1
11: rebufferCount += 1
12: buffer ← 0
13: end if
14: end if
15: if this is the last SDS in sdsList
16: buffer -= (currTime - currSDSFinishTime)
17: end if
18: buffer += currSDS’s length
19: prevSDS ← currSDS
20: end for
21: if buffer < 0
22: rebufferDur += buffer × -1
23: rebufferCount += 1
24: buffer ← 0
25: end

Algorithm 1 is executed periodically on each VS of each
DASH client to estimate its current buffer by iterating through
its sdsList. An SDS is added to sdsList as soon as both of its
key timestamps are identified. Specifically, at line 6, it esti-
mates the actual time when the client has received all packets
of the SDS, which is the mid-point between LAST SENT and
LAST ACK of the SDS (assuming similar uplink / downlink
latencies). At lines 7-14, it calculates the buffer value on



Video 

Source

MEC with 

QoE estimation 

VNF

UE

Fig. 2. Experiment setup

a rolling basis. It also updates the VS’s rebuffering metrics
between any 2 SDSs, because if the buffer result turns out to
be negative, it means rebuffering has occurred. At lines 15-
17, it deducts the gap between the current time and the last
SDS’s finish time from the buffer. At line 18, it adds the last
finished SDS’s length to the buffer. Finally, at lines 21-25, it
updates the VS’s rebuffering statistics if the final buffer result
is negative after iterating through all SDSs in the list.

Both the DASH client/VS/SDS identification mechanism in
Section IV-A and Algorithm 1 runs in linear time and space
complexity, which is determined by the number of active VSs
present. In the next section, we demonstrate that the proposed
QoE estimation algorithm can achieve very high accuracy
while consuming very low CPU and RAM resources.

V. PERFORMANCE EVALUATION

A. Experiment Setup

In order to evaluate the proposed QoE estimation scheme’s
performance, we conduct experiments in a real LTE-A network
testbed (hosted by the 5G Innovation Centre at University of
Surrey, UK). We use a PC running Ubuntu 16.04, Google
Chrome browser v62 and dash.js v2.6.3 as the DASH client,
which is connected to an LTE Band 41 small cell via a Huawei
Nexus 6P mobile phone through USB tethering. The client
streams a video with 246.08s length that is first compressed
into 1 single representation with H.264 at 15Mbps, and then
divided into DASH segments of 2s length each.

The QoE estimation scheme is implemented and packaged
into a VNF and deployed onto a MEC server, which is
deployed next to the Packet Gateway (P-GW) in the LTE-
A core network. More specifically, the HTTP reverse proxy
is implemented using Jetty3; the packet sniffer uses tcpdump
to capture packets; the QoE estimation algorithm itself is im-
plemented with Java; and the QoE repository is implemented
using MySQL.

B. Evaluation of Buffer Estimation Accuracy

In order to evaluate the accuracy of the proposed QoE
estimation algorithm under various network conditions, we
conducted experiments under 3 scenarios with different back-
haul latency (20ms, 150ms and 300ms) and packet error rate
(0%, 0.05% and 0.1%) between the MEC server and the
video source. The RAN conditions are the same among the
3 scenarios. In these experiments, we extract the JavaScript

3eclipse.org/jetty

TABLE I
COMPARISON BETWEEN REAL AND ESTIMATED QOE STATISTICS

Initial
Delay

Playback
Duration

Rebuffering
Count / Time

(a)
Real 0.663s 246.786s 0 / 0s

Estimated 0.512s 246.52s 0 / 0s

(b)
Real 2.699s 248.696s 0 / 0s

Estimated 2.557s 248.704s 0 / 0s

(c)
Real 2.99s 252.965s 7 / 3.875s

Estimated 2.84s 252.79s 8 / 3.85s

console logs from the Chrome browser to reconstruct the
real buffer conditions every 0.5s as a benchmark. These logs
record the start and finish time of each segment download
with 1ms precision, which accurately reflects the actual buffer
condition at the DASH client. Our QoE estimation algorithm
was also configured to output its inferred buffer values to the
QoE repository every 0.5s, which are exported afterwards for
comparison. Note that we do not evaluate the accuracy of
estimated video quality, since it is always 100% accurate via
URL matching in the MPD manifest.

The comparison between the real and estimated buffer
length are shown in Figure 3. It is observed that the blue
(estimated) and red (real) lines are very close to each other
under all 3 scenarios. We further show the statistics of real and
inferred QoE metrics in Table I. It is shown that the proposed
algorithm achieved very high accuracy when estimating initial
playout delay, playback duration and rebuffering duration.
Specifically, the estimation error on the initial delay, playback
duration and rebuffering duration are up to 0.151s, 0.266s and
0.025s respectively, which are up to 0.1% of the video length.

Note that in scenario (c), the algorithm inferred one more
rebuffering event than the real situation between around 210s
and 230s. This took place because the QoE estimation al-
gorithm runs every 0.5s in the experiments. Therefore, if a
segment download finished right after the algorithm, it will
not be included in the buffer calculation process for up to
another 0.5s. Hence, if the buffer is already lower than 0.5s
and the algorithm just “missed” a finished segment download,
it would create a false rebuffering event which will correct
itself in the next iteration. Nevertheless, the very-high accuracy
of the proposed algorithm on the other QoE metrics has been
validated through these experiments.

C. Evaluation of CPU and RAM usage

In order to evaluate the proposed QoE estimation scheme’s
CPU and RAM usage, we follow the same setup in Figure 2
and used 10 Huawei Nexus 6P phones to continuously stream
10 different videos at 15Mbps each, and these 10 concurrent
DASH sessions are maintained over a 24-hour period. Note
that while the aggregated 150Mbps traffic may not seem high,
a MEC server is typically expected to cover a small area and
hence a small number of users that streams 4K video [1].

The results on CPU and RAM usages are plotted in Figure
4. It is shown that the CPU usage is maintained at a low



0 50 100 150 200 250

Playback time (s)

0

5

10

15

20

25

30

V
id

e
o
 B

u
ff
e
r 

(s
)

(a)

0 50 100 150 200 250

Playback time (s)

0

5

10

15

20

25

30

(b)

0 50 100 150 200 250

Playback time (s)

0

5

10

15

20

25

30

(c)

Estimated

Real

Fig. 3. Comparison between estimated and real buffer length under (a) ideal; (b) fluctuating and (c) poor network conditions

0 2 4 6 8 10 12 14 16 18 20 22 24

Experiment Time (hour)

0

20

40

60

80

100

H
e

a
p

 m
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

0

1

2

3

4

5

C
P

U
 u

s
a

g
e

 (
%

)

Memory usage

CPU usage

Fig. 4. CPU and RAM usage over 24 hours

level with an average of 0.32%. Regarding the RAM usage,
it is higher in the beginning due to program initialization that
occupies more memory, which are eventually released through
Garbage Collection. After the initial period, it reduces to a
lower level and stays steady with an average of 36.87MB.
These results validate our early analysis that the proposed
algorithm’s time and space complexity are linear to the number
of active DASH sessions. They also validate that the proposed
scheme is capable of operating in a lightweight and stable
manner over long term.

VI. CONCLUSION

In this paper, we have proposed a novel scheme that
estimates DASH video applications’ QoE in real time through
edge computing. Unlike existing schemes in the literature, its
algorithm does not rely on capturing any key packet in a
DASH session. Furthermore, it is capable of ruling out packet
errors (e.g., out-of-order or duplicate packets) by inspecting
TCP and IP headers only, which means it works robustly in
a RAN environment where packet error frequently occur. It is
also capable of distinguishing video sessions behind NAT.

Through experiments in a real LTE-A network testbed,
we have demonstrated that our proposed scheme is capable
of estimating initial playout delay and rebuffering duration

while achieving an accuracy within up to 0.266s. Furthermore,
we have validated that its CPU and RAM usage are both
very low and steady over a 24-hour experiment. As the first
QoE estimation VNF that has been packaged and deployed
in a real MEC server, we are confident that our work not
only serves as a use case for the MEC paradigm, but also
provides practical guidelines towards realizing QoE awareness
in mobile networks.

VII. ACKNOWLEDGMENTS

This work is funded by EPSRC KCN project (EP/L026120
/1). The authors would also like to acknowledge the support
of the University of Surrey’s 5G Innovation Centre (5GIC)
(http://www.surrey.ac.uk/5gic) members for this work.

REFERENCES

[1] Mobile Edge Computing - a key technology towards 5G.
[2] Akamai Technologies. Akamai introduces predictive video

over cellular capabilities (press release). Available at
https://www.akamai.com/uk/en/about/news/press/2015-press/
akamai-introduces-predictive-video-over-cellular-capabilities.jsp.

[3] A. E. Essaili, D. Schroeder, E. Steinbach, D. Staehle, and M. Shehada.
QoE-based traffic and resource management for adaptive HTTP video
delivery in LTE. IEEE Transactions on Circuits and Systems for Video
Technology, 25(6):988–1001, June 2015.

[4] ETSI. Mobile Edge Computing: A key technology towards 5G (Whitepa-
per). Available at http://www.etsi.org/images/files/ETSIWhitePapers/
etsi wp11 mec a key technology towards 5g.pdf.

[5] C. Ge, N. Wang, G. Foster, and M. Wilson. Toward QoE-assured
4K video-on-demand delivery through mobile edge virtualization with
adaptive prefetching. IEEE Transactions on Multimedia, 19(10):2222–
2237, Oct 2017.

[6] IETF. RFC5246 - the transport layer security (TLS) protocol version
1.2, 2008.

[7] ISO. ISO/IEC 23009-1:2014 dynamic adaptive streaming over HTTP
(DASH) – Part 1: Media presentation description and segment formats.

[8] P. Juluri, V. Tamarapalli, and D. Medhi. Measurement of quality of ex-
perience of video-on-demand services: A survey. IEEE Communications
Surveys & Tutorials, 18(1):401–418, Firstquarter 2016.

[9] R. Huysegems et al. Session reconstruction for HTTP adaptive stream-
ing: Laying the foundation for network-based QoE monitoring. In Proc.
IWQoS. IEEE, June 2012.

[10] S. Latré et al. On-line estimation of the QoE of progressive download
services in multimedia access networks. In Proc. ICOMP, pages 181–
187, 2008.

[11] R. Schatz, T. Hosfeld, and P. Casas. Passive YouTube QoE monitoring
for ISPs. In Proc. IMIS, pages 358–364. IEEE, July 2012.

[12] S. Thakolsri, W. Kellerer, and E. Steinbach. QoE-based cross-layer
optimization of wireless video with unperceivable temporal video quality
fluctuation. In Proc. ICC. IEEE, June 2011.


