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Abstract—Traffic engineering (TE) functionality aims to con-
trol and fine-tune the routing configuration and bandwidth
allocation in order to optimize the use of network resources
and avoid the build-up of congestion. The performance of a
given TE scheme is, however, strongly influenced by the degree
of flexibility offered in distributing the traffic load. Multipath
routing coupled with arbitrary traffic splitting are two essential
ingredients for achieving the desired flexibility. Current proposals
for multipath routing in OpenFlow have mostly focused on equal
splitting solutions, which impose limitations in terms of the level
of control that can be achieved. In this paper, we investigate
a new approach, which exploits the properties of bit-masking
operations to enable flexible TE in OpenFlow networks. The
proposed solution relies on the matching entry feature and the
multiple table pipeline capability of OpenFlow, and as such, is in
line with the current standard. Based on empirical evaluation, we
illustrate the influence of the considered masking parameters and
how these can be configured to achieve the desired traffic splitting
ratios. The results demonstrate that our solution can achieve a
similar level of splitting accuracy as the one obtained with a
hash-based approach. However, in contrast to current proposals,
it does not require complex extensions to the OpenFlow protocol
and can be easily implemented in an OpenFlow environment.

Index Terms—Software Defined Networking, OpenFlow, Re-
source Management

I. INTRODUCTION

Over the last few years, significant efforts have been in-
vested in the development of Software-Defined Networking
(SDN) solutions, which are seen as enablers for reducing the
management complexity of today’s networks. One of the key
features of such solutions is the ability to re-program the
data plane through a well-defined interface and automatically
configure it to meet resource management objectives. In the
SDN paradigm, OpenFlow [1] has progressively become the de
facto standard to realize the southbound interface between the
control and data planes. The current version of the OpenFlow
protocol, however, has limitations when it comes to imple-
menting the functionality of flexible traffic engineering (TE)
applications (e.g. for traffic load-balancing [2] [3], energy
management [4], etc.), which require multipath routing and
unequal traffic splitting capability.

In an early proposal for multipath forwarding support in
OpenFlow [5], the authors discussed the use of the group
option defined in the OpenFlow protocol to enable equal
traffic splitting. For unequal splitting, however, the number
of rules required to achieve the desired splitting proportions
may become excessive, thus incurring scalability limitations.
To overcome this issue, the alternative solution discussed in
the proposal concerns the use of hashing functions. Hash-
based traffic splitting mechanisms have been widely used in

The authors are with the Department of Electronic and Electrical Engineer-
ing, University College London, London WC1E 7JE, UK.

the TE literature (e.g. [2] [6]) as they provide the ability to
split the load at a fine level of granularity. The decision on
which outgoing interface to forward each incoming packet is
based on the result of a hashing function applied to the value
of some of the fields extracted from the packet header.

Despite these advantages, we believe that the choice of
implementing hash-based schemes as features of OpenFlow
switches is not in line with the main principle of the protocol.
As shown in previous work [6] [7], using a direct mapping
between the hashed values and the outgoing interfaces is in
general not sufficient to achieve a good level of splitting
accuracy. A table-based hashing approach implementing a
two-level mapping should be used instead. In this case, the
traffic flows are first split into a set of bins based on the hashed
value of flow parameters and the bins are then mapped to
the outgoing interfaces based on an allocation table. Such an
approach however involves a number of challenges in practice.
To control the traffic load distribution, a mechanism is required
to configure the allocation table (i.e. mapping of the bins to
the outgoing interfaces). Not only does this presuppose the
availability of a programming language to define and configure
the mapping, it also requires a run-time engine to execute the
code, which are not trivial issues. In addition, this may en-
courage different vendors to implement their own proprietary
hash-based schemes (i.e. traffic splitting and load allocation
strategies1), forcing the protocol to be bound to specific vendor
implementations and making it difficult for network operators
to have control over the functionality implemented in the
physical devices.

In this paper, we investigate an alternative approach which
exploits the properties of bit mask operations and matching
functions to enable flexible traffic splitting in OpenFlow and,
as such, facilitate the implementation of resource management
applications in an OpenFlow enabled-network. The proposed
solution builds upon the basic primitives of networking and
matching features of OpenFlow switches to decide how to
partition incoming traffic flows into multiple sets of arbitrary
size. More specifically, in our approach, partitioning is realized
by logically grouping the flows based on their destination
IP address, so that one flow set is defined per outgoing
interface. At the switch level, this involves implementing a
set of matching entries in a multi-entry table, where each
entry corresponds to a specific address pattern. Compared
to traditional longest prefix match operations employed in
IP routing, a more flexible matching function, which relies
on a combination of two masks, is used to perform packet
matching. To be supported, our approach requires some small
extensions to the current protocol (i.e. ability to express

1It is worth highlighting that the choice of the hashing function itself is
not the main issue here. As long as the functions have high-quality hashing
properties [8], they will achieve similar splitting performance.



matching field in a more flexible and generic way and to
select matching operations, in particular). However, in contrast
to previous proposals, these extensions are in line with the
current standard and can easily be implemented. In addition,
our approach also follows recent research initiatives which call
for programmable and flexible protocol-independent packet
processing functionality [10] [11].

The main contributions of this work are as follows. We
first elaborate on the types of masking operations and struc-
tures required to perform unequal traffic splitting. We then
demonstrate the capability of the proposed traffic partitioning
mechanism based both on theoretical analysis and empirical
evaluation of its performance with respect to the level of
control it can achieve over the splitting of incoming flows.
In addition, we explain how the proposed scheme can be
practically implemented in an OpenFlow switch to achieve the
objective of realistic load-balancing applications. The results
of the evaluation show that, by configuring the masking
parameters, it is possible to control the proportion according to
which traffic can be split, and, as such, perform flexible load-
balancing. Comparison to a table-based hashing scheme [6], in
terms of splitting accuracy performance, further demonstrates
that the proposed solution constitutes a promising alternative
for traffic splitting in an OpenFlow environment.

The remainder of this paper is organized as follows. Section
II provides background information. Section III presents the
proposed traffic partitioning approach. Section IV describes
how this can be implemented in an OpenFlow switch. The
results of the empirical evaluation are presented in Section
V and further discussed in Section VI. Section VII presents
related work. Finally, conclusions are provided in Section VIII.

II. BACKGROUND

In this section, we provide background information on
multipath TE and on the current proposal for multipath for-
warding with OpenFlow. We also review the main principles
of masking operations in networking.

A. Multipath Traffic Engineering

Over the years, there have been significant research efforts
focusing on the development of TE approaches that exploit
the features of multipath routing to adapt the distribution of
traffic load in the network according to changing conditions,
e.g. [12] [13]. Based on the configuration of n paths, the
traffic demand between any source-destination (S-D) pair of
nodes is logically partitioned into n independent sets at the
source node. Each traffic set is then assigned to one of the
n paths and routed accordingly. In the proposed approaches,
the volume of traffic on each path is driven by splitting ratios
that are precomputed according to the traffic demand in order
to optimize the utilization of network resources. Solutions for
multipath TE have been proposed both in the context of MPLS
networks [14] [13] and ordinary IP environments [2] [12],
exploiting in particular the features of Multi-Topology Routing
(MTR), e.g. [15] [31] [3].

To avoid issues associated with out-of-order packet delivery,
most of the TE approaches proposed in the literature have

focused on flow-level traffic splitting, which is also the case in
this paper. With this approach, packets that belong to the same
TCP flow are always assigned to the same path and no further
adjustments are permitted along the route. The implications of
flow-level traffic splitting are further discussed in Section VI.

B. Multipath Forwarding with OpenFlow

A proposal for multipath routing, which relies on the group
option defined in the OpenFlow protocol, has been presented
in [5]. This builds upon the existing features of OpenFlow
which provide the ability to force one port to point to a set of
other ports. In the case of multipath forwarding, this involves
sending incoming packets to one port selected out of a group
of available ports. The mechanism used to choose the relevant
port depends on the type of selection to apply. The case
where each of the ports is selected with equal probability (i.e.
equal splitting) can easily be achieved based on a round-robin
mechanism. In the case of non-equal cost multipath splitting,
however, an approach that allows a finer level of control is
required. One of the most practical options discussed in the
proposal relies on the use of hashing functions. This implies
that a hashing scheme such as, for example, the one proposed
by Cao et al. in [6], should be implemented in the switch
and parametrized for each traffic flow. Although employing a
hashing scheme may have the advantage of providing control
at a fine level of granularity, we believe that such a design
choice is not in line with the general principles of OpenFlow.
First, this assumes the availability of a mechanism to program
the hashing scheme at run time (i.e. a programming language),
which is not a trivial issue. In addition, the protocol may be
bound to specific vendor implementations, as vendors may opt
for implementing their own proprietary hashing schemes and
their own language. In contrast, the OpenFlow paradigm calls
for open control functionality, which can provide flexibility,
scalability and adaptability.

C. Masking Operations

In network engineering, masking operations are traditionally
used to check if a given vector of bits V exhibits a particular
pattern. The input vector V is compared to a second vector M
(usually referred to as the mask), which represents the consid-
ered pattern, based on bitwise operations. The outcome of the
comparison is positive if V follows the pattern represented by
M, in which case V is said to match M.

Masking operations are used in traditional IP routing, where
the destination addresses extracted from incoming packets
are compared against prefix entries maintained in the rout-
ing tables. Let’s consider the IP address 144.82.111.20 of
the URL www.ucl.ac.uk as an example. In binary form,
this is expressed as 10010000-01010010-01101111-00010100.
Let’s also consider the netmask of length 16, i.e. 11111111-
11111111-00000000-00000000. The result of the masking
operation between the considered address and netmask gives
the prefix 10010000-01010010-00000000-00000000, which
represents the subnet 144.82.0.0.

Packet processing operations implemented in OpenFlow
switches also rely on masking. In this case, values extracted



from the header of incoming packets are compared against
matching fields of the entries maintained in the flow tables. In
both cases, a match between the input data and the existing
entries is defined as a perfect match, i.e. the input sequence
strictly follows the considered pattern. While this has the
advantage of enabling strict control on the required bit pattern,
the rigidity of a perfect match makes it inadequate as a
splitting solution for TE purposes. In this paper, we show how
alternative, more flexible, matching functions can be used to
realize unequal traffic splitting.

III. TRAFFIC PARTITIONING

As described in Section II-B, the ability to perform unequal
splitting relies on the availability of a mechanism which can
logically partition the incoming flows into sets of arbitrary
size. In this paper, we investigate a splitting approach based
on the IP addresses of the traffic flows, which exploits the
properties of masking operations. In this section, we demon-
strate the principles of the proposed mechanism based on the
destination IP address. It is worth noting that our approach
can also work with source IP addresses.

A. Definitions

We first define formally some key principles that were used
to develop the proposed splitting approach.

1) IP address: Each IP address2 is represented as a 32-bit
vector X =< xi >i∈[1,32] where each element i indicates the
value of the i− th bit in the address3, i.e.

∀i ∈ [1,32], xi ∈ {0;1}

We denote X as the set of all IP addresses.

2) Mask: We define the mask of parameter r > 0 as the 32-
bit vector M =< mi >i∈[1,32] where r is the number of bits set
to 1, while all other bits are equal to 0. We define parameter
r as the masking range and we denote Mr as the set of all
masks of masking range r. Formally, this can be formulated
as follows:

M ∈Mr iff
32

∑
i=1

mi = r.

An example mask with masking range r = 3 is 00001011-
00000000-00000000-00000000.

3) Matching function: The main idea of the splitting ap-
proach proposed in this paper is to group the incoming traffic
flows based on the bit pattern exhibited by their destination
IP address. This can be achieved by comparing the input
addresses to a set of masks M based on a matching function.
To enable unequal traffic splitting, however, it is essential to
have flexibility in configuring the operations performed by the
matching function (i.e. bitwise operations and comparison).

2We focus on IPv4 addresses only in this paper.
3Based on mathematical conventions, we index the bit positions from 1 to

32.

Given a bitwise operator O and a test condition T, we
define the matching function fO,T as the function of two 32-bit
vectors V1 and V2 which applies the operator O between V1
and V2 and compares the outcome based on test condition T.
Bitwise operators can be of any type (e.g. AND, OR, XOR,
NOT etc. [9]) and typical examples of test conditions include
equality/non-equality. The configuration of the matching func-
tion can be used to control how strict the match between
an input address and a mask should be. To support flexible
partitioning, we consider the function f&,!=0 with O being the
“AND” operator (denoted &) and T the test condition defined
as “not equal to zero” (denoted ! = 0).

Definition 1. For all IP addresses X in X , X is said to match
mask M inMr with respect to matching function f&,!=0 if and
only if X & M != 0.

Based on the vector representation, this can be formalized
by the following equation:

32

∑
i=1

xi ·mi 6= 0. (1)

According to the function f&,!=0, a match between an
address and a mask occurs if only a subset of the bits at the
position of the r masking bits are equal to 1 in the address.
This relaxes the constraint on the bit pattern which needs to
be exhibited by the address.

B. Direct Masking Approach

We first consider a masking approach which build upon the
mask range to partition incoming traffic flows. To illustrate
the property of such an approach, we consider a hypothetical
scenario where the range of destination IP addresses of the
incoming flows received at a given OpenFlow switch covers
the entire address space. Furthermore, we assume that the
flow size, as well as the rate and frequency at which traffic
flows are received, follow a uniform distribution. Under these
assumptions, we can represent each traffic flow by its desti-
nation IP address. It is worth noting that in a real scenario,
traffic flows are unlikely to follow a uniform distribution (i.e.
elephant vs. mice flows [32]). This assumption is used here to
simplify the demonstration; the implications of non-uniform
traffic distribution are discussed in detail in Section V.

Let qM(r) be the proportions of IP addresses X in X so
that X matches mask M in Mr according to Definition 1.
Under the assumption of uniform distribution, we can show
that the proportion of IP addresses matching an arbitrary mask
of masking range r with respect to the function f&,!=0 is
independent of the position of the r masking bits in the mask.
For all r ∈ [1,32], we have the following property:

Property 1. ∀M ∈Mr, qM(r) = q(r)

Proof: The property can easily be shown from Eq. 1
which states that a successful match is obtained when the
outcome of the masking operation is strictly positive4.

4Although, strictly speaking, Eq. 1 states that the sum needs to be non-
equal to zero, this can easily be translated into “strictly positive" given that
both xi and mi are always either equal to 0 or 1.
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Fig. 1. Proportion of matching addresses according to the masking range r.

Based on Property 1, we can determine the theoretical
proportion of matching addresses q(r), and, by extension,
matching flows, based on the following equation.

Proposition 1.

∀r ∈ [1;32], q(r) = 1− 1
2r . (2)

Proof: To get a match, at least one of the bits at the
position of the r masking bits in the mask needs to be set
to 1 in the input IP addresses. The number of possible com-
binations of bits satisfying this constraint is 2r− 1 (the case
with all considered bits set to 0 needs to be disregarded). For
each combination, the number of corresponding IP addresses
is 232−r. The total number of matching addresses is therefore
(2r − 1) · 232−r. Since the size of the address space is 232,
the percentage of matching addresses is equal to (2r−1)·232−r

232 ,
which reduces to q(r) after simplification.

The evolution of the function q(r) is depicted in Fig. 1 (the
values are shown as percentages). The figure shows that only
a small set of values ranging from 50% to 100% are available
to partition the addresses into different sets. The granularity at
which splitting can be realized is therefore very limited. As can
be observed, the proportion of matching addresses increases
as the value of r increases. The higher the number of bits
set to 1 in the mask, the better the chances for a match with
an input IP address. In particular, the mask with all bits set
to 1 (i.e. r = 32) matches all the addresses, while the masks
with just one bit set to 1 (i.e. r = 1) will match 50% of the
addresses (i.e. the considered bit is either set to 0 or 1 in the
IP address).

Two main observations can be made from these results.
First, they show that by configuring a set of masks against
which the destination addresses of the incoming flows are
compared, it is possible to partition the flows in different pro-
portions. In addition, the results provide interesting insights re-
garding the partitioning granularity which can theoretically be
achieved. For example, it is not possible to find a combination
of masks based on which traffic flows can be partitioned into
four strictly independent subsets, each representing 25% of the
address space. To overcome these important limitations, in the
next subsection we investigate an alternative approach which
can enable a finer level of control in terms of partitioning
granularity.

C. Prefix Pattern Masking

The approach described in the previous subsection directly
compares each mask to all possible IP addresses. Given that
the number of matches is independent of the position of the r
masking bits, this restricts the number and size of the partitions
that can be computed. One way of increasing the range of
available partitions is to limit the number of addresses each
mask should be compared against. This can be achieved by
considering only the addresses that exhibit a pre-determined
bit pattern.

More specifically, let’s consider the IP address with the bit
pattern depicted in Fig. 2.

32 28 24 20 16 12 8 4 1
0 0 0 0 x x x x x 0 0 0 0 0 0 0 x x x x x x x x x x x x x x x x

↑ ↑ ↑
VH VL L

Fig. 2. Example bit pattern.

A bit marked as x means that it is either equal to 0 or 1
(free bit), while the bits marked as 0 are strictly equal to 0.
In other words, for an address to follow the considered bit
pattern, a set of its bits must be equal to 0, while there are no
constraints on the others (we disregard the very specific case
of address 0.0.0.0). In the example, bits in the intervals [1,16]
and [24,28] are free, while bits in the intervals [17,23] and
[29,32] are set to 0.

The position of the free bits (and conversely the non-free
ones) in the example bit pattern is defined over two non-
overlapping continuous intervals. More generally, we define
three index parameters L, VL and VH representing the bound-
aries of the bit position intervals, as depicted in Fig. 2. For each
L, VL and VH , we denote as C(L,VL,VH) the bit pattern category
so that bits in the interval [L,VL−1] and [VH +1,32] are equal
to 0, while bits in the intervals [1,L−1] and [VL,VH ] are free.
An IP address X is said to fall within category C(L,VL,VH) if
it follows the relevant bit pattern. In practice, the indexes L, VL
and VH can be used to control the bit pattern of input addresses.
The larger L and VH are, the less constrained the pattern is. In
contrast, the smaller L and VH are, the stricter the pattern is
(i.e. larger number of 0 bits). The configuration with VH = 32
and VL = L = 1 represents all possible addresses, while the
configuration with VH = 32 and VL = L ≥ 1 is equivalent
to the case of a prefix of length 32− L. Although different
approaches could be used to decide on the position of the
free/non-free bits (by varying the number of intervals), such a
four-part bit pattern offers a good trade-off between flexibility
and simplicity in controlling how constrained the pattern is
(i.e. through a limited number of index parameters).

In a similar fashion to Section III-B, we can determine,
under the assumption of uniform traffic flow distribution, the
theoretical proportion of addresses following a specific bit
pattern that match any mask of masking range r, so that
the r bits are in the interval VL and VH , with respect to the
function f&,!=0. We denote v as the difference VH−VL and l as
the difference 32−L. The proportions of matching addresses,
denoted as q(l,v,r), is given by the following equation.
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Fig. 3. Distribution of the proportion of matching addresses.

Proposition 2.

∀l ∈ [1;32], ∀v ∈ [1; l], ∀r ∈ [1;v],

q(l,v,r) =
(2r−1)
2l−v+r . (3)

Proof: As explained in the proof of Eq. 2, the number
of possible combinations which gives a match is 2r − 1. In
this case, however, the number of addresses associated with
each combination is 232−l+v−r. As such, the total number of
matching addresses in category C(L,VL,VH) with VH−VL = v
is given by (2r− 1) · 232−l+v−r. The percentage of matching
addresses compared to all possibles addresses is therefore
(2r−1)·232−l+v−r

232 , which reduces to q(l,v,r) after simplification.

The evolution of the function q(l,v,r) for all possible values
of l, v and r is depicted in Fig. 3. The tuples (l,v,r) on the
x-axis are ordered by increasing l, v and r. In contrast to the
results depicted in Fig. 1, the number of distinct proportion
values for address matching is higher and spans over a larger
interval (from 0 to 100%), which shows that partitioning can
be achieved at a finer level of granularity. In addition, the
plot exhibits a regular pattern, which indicates that identical
performance can be achieved with different combinations of
parameters.

Fig. 4 shows the influence of each parameter, by varying
one parameter at a time. Given the size of the input space,
only representative values5 are depicted. Fig. 4a shows that the
proportion of matching addresses is independent of the values
of VL (and by extension of VH ) and as such is not influenced
by the position of the r masking bits. In Fig. 4b, where l is
varied, the proportion of matching addresses decreases as the
value of l increases. As the value of l increases, the number of
bits which need to be equal to 0 in the address is larger. The
relevant address space is therefore more constrained and less
addresses can match. In Fig. 4c, where the varying parameter
is v, the proportion of matching addresses increases as v
increases. The number of free bits increases as the value of
v increases. The address space is less constrained and more
addresses can match. Finally, in Fig. 4d, where the varying
parameter is r, the proportion of matching addresses increases
as r increases. The chances of obtaining a match improve when

5The same conclusions were drawn with all other values.

the number of bits set to 1 are increased (i.e. larger masking
range).

From the results, it can be observed that multiple partitions
with a wide range of possible sizes can be computed by
configuring a set of masks. In contrast to the direct masking
approach (Section III-B), however, we show that by consid-
ering only those addresses that follow a particular bit pattern,
more flexible and finer splitting can be achieved. The results
also indicate that the partitioning degree can be controlled
through different parameters. In practice, the choice of the
parameter(s) to tune can be driven by the characteristics of
real traffic flows. We elaborate on the parameter settings in
Section V.

IV. UNEQUAL TRAFFIC SPLITTING

In the previous section on Prefix Pattern Masking, we show
that comparing an input mask with masking range r, where
the r bits set to 1 are positioned in the interval [VL,VH ], to only
a subset of the addresses that follow a specific bit pattern, can
provide more flexibility on how addresses and, by extension,
traffic flows, can be partitioned. This section describes how
this can be practically implemented.

A. Matching Procedure

Based on the Prefix Pattern Masking model presented in
Section III-C, a successful match occurs if the address follows
the required bit pattern and if it matches the considered input
mask according to Def. 1. From an implementation point of
view, the verification of the two conditions can be realized
based on two masking operations. Let’s consider the bit pattern
presented in Fig. 2.

Prefix Pattern Validation The objective of the first oper-
ation is to check whether the input address has the required
pattern. In this example, it means that bits in the intervals
[1,16] and [24,28] are free, while bits in the intervals [17,23]
and [29,32] must be equal to 0. This can be achieved by
comparing the address to a prefix pattern mask MP with respect
to the matching function f&,=0 of operator “AND” and test
condition “Equal to zero”. We refer to this operation as the
prefix pattern validation operation. The prefix pattern mask
for the example bit pattern is defined below:

28 24 17
MP: 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In this case, the address X is said to match mask MP if and
only if X & MP == 0. More generally, we define the prefix
pattern mask of a given bit pattern as the 32-bit vector so
that bits in the intervals [1,L− 1] and [VL,VH ] are set to 0,
while bits in the intervals [L,VL− 1] and [VH + 1,32] are set
to 1. This is designed to determine whether the address has at
least one of its bits set to 1 in the positions forced to 0 in the
considered masking pattern, in which case the address does
not follow the required pattern. In fact, the proposed prefix
pattern masking method can be thought as a generalization of
the prefix length matching procedure employed in traditional
routing. In contrast to the latter, which has the top N bits set
to 1, this provides more flexibility in the choice of the pattern
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Fig. 4. Distribution of the proportion of matching addresses based on different parameter combinations.

structure and, as such, it can enable finer granularity traffic
splitting.

Range-based Masking The objective of the second mask-
ing operation is to check whether the address matches the
mask with masking range r, where the r bits set to 1 are in
the interval [VL,VH ], based on the matching function presented
in Def. 1. We refer to this operation as the testing operation
and call the relevant mask the testing mask (noted MT). An
example testing mask for the considered example is depicted
below:

28 24 17
MT: 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Summary The main steps of the matching procedure can
be summarized as follows:
• Define both the prefix pattern mask and the testing mask.
• Compare the input address to the prefix pattern mask with

respect to matching function f&,=0 and to the testing mask
with respect to matching function f&,!=0.

• The outcome of the matching procedure is considered
successful if the input address satisfies both the conditions
of the prefix pattern validation and the testing operations.

To illustrate the procedure, we consider a simple exam-
ple based on the IP address presented in Section II-C, i.e.
144.82.111.20. The objective is to compare the address against
the following prefix pattern of configuration VH = 32, VL = 29,
L = 25 and testing masks with r = 2:

MP: 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MT: 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In this case, the outcome of the masking operation between
the address and the prefix pattern mask MP is equal to 0 and
between the address and the testing mask MT is not equal to
0. The matching procedure is therefore successful.

B. Traffic Engineering-based Multipath Forwarding

In this subsection, we explain how the proposed masking
operations and matching procedure can be used to realize
multipath unequal traffic splitting and, as such, support the
load-balancing objective of a traffic engineering application.

As explained in Section II-A, based on the path diversity
provided by an underlying routing/forwarding mechanism, the
traffic demand between each S-D pair of nodes is logically
partitioned between the available paths according to precom-
puted splitting ratios to optimize the utilization of network
resources.

The proposed traffic splitting solution consists of computing
a combination of 2-tuple masks (prefix pattern and testing
masks) for each S-D pair. Each 2-tuple is associated with
one of the available paths and the configuration of the mask
parameters in each tuple is driven by the relevant splitting
ratio. In an ideal scenario, masks should be configured in such
a way to avoid an input address matched by more than one
2-tuple. However, such a condition may severely constrain the
problem and may be difficult to implement in practice. To
resolve potential multiple match conflicts, we leverage the
priority rule of OpenFlow and associate each 2-tuple with
a priority. In this case, the matching tuple is defined as the
one with the highest priority. In a similar fashion, the lowest
priority tuple is used to ensure that there is always a match and
is therefore defined as a wildcard on both the prefix pattern
and testing masks.

Based on the OpenFlow principles, the prefix pattern mask
and the testing mask can be represented, at the switch level,
by a multi-entry table, where each entry is associated with a
match field, a priority and a set of instructions components
[1]. In the proposed approach, the match fields component
concerns the 2-tuple masks against which the destination
address extracted from the incoming packet is compared. In
particular, the matching operation can be logically expressed
as follows:

@ & MP == 0 && @ & MT ! = 0 (4)

where @ represents a 32-bit address, MP is the prefix pattern
mask, and MT the testing mask. In addition, & represents the
bitwise operator “AND” and && the logical “AND” condition.

The current OpenFlow specification defines only one table
type. The latest version identifies 45 match fields and matching
operations are considered as a perfect match [1]. To support
the proposed approach, extensions to the protocol are required.
First, the ability to express match fields in a more generic way
should be supported. This would enable the implementation of
different types of tables and, as such, extend packet processing
options. In addition, the protocol should allow to configure
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Fig. 5. Packet processing operations.

matching operations. This would enable the programmability
of processing operations and, as such, offer more flexibility
in controlling network resources. To be realized, basic bitwise
operators and test conditions built into the switch processor
can be used.

The packet is then forwarded to the relevant interface based
on the selected path.

C. Example Application

To illustrate the sequence of actions which need to be
performed at the switch level, we exemplify the packet pro-
cessing operations based on the MTR-based load-balancing
application that we developed in our previous work [3]. Based
on path diversity provided by configuring the MTR planes,
the objective of the management application is to balance the
traffic load in order to minimize the overall network utilization.
This is achieved by controlling the volume of traffic between
each S-D pair of nodes sent across each plane according
to splitting ratios which are periodically adjusted based on
network conditions. In [16], we developed a distributed ap-
proach to implement the proposed load-balancing application.
In this approach, load-balancing decisions are taken by a set
of managers which supervise the network edge nodes6 and
control the splitting ratios applied to incoming traffic flows.
New configurations (i.e. splitting ratios) are passed to the
relevant controllers, which are responsible for planning and
applying the required changes in the switches under their
control.

The set of operations that need to be executed at the network
level in order to achieve multipath routing and unequal traffic
splitting depends on the role of the switch. As explained in
[16], switches can operate as source or transit based on how
they process incoming packets. A switch operates as a source
for incoming packets if a) it is an edge switch, and b) packets
belong to one of the switch’s local traffic flows. A switch

6We refer to network edge nodes as the set of nodes generating and
absorbing traffic, while we call core nodes all the other nodes.

operates as a transit for incoming packets if a) it is an edge
switch but incoming packets do not belong to one of the
switch’s local traffic flows, or b) it is a core switch.

In the case of a source switch, three main actions need to
be performed: 1) Determine to which local traffic flow the
packet belongs, 2) Determine the MTR plane on which to
route the packet, and, 3) Forward the packet according to
the configuration of the selected MTR plane. In case of a
transit switch, only steps 1 and 3 are executed. In this case,
the packet is already marked with the relevant MTR plane
identifier (MT-ID). The sequence of actions is depicted in
Fig. 5. The main idea behind the proposed packet processing
mechanism relies on the multiple table pipeline feature of
OpenFlow, which enables multi-processing packet operations.
Each incoming packet is sequentially matched against multiple
tables in the pipeline so that, at each step, instructions encoded
in the matching entry of the current table are applied to the
packet. The three main actions involved are detailed below.

Step 1 - Identify the relevant source-destination pair:
Given that splitting decisions are taken for each S-D pair, the
objective of the first step is to determine to which S-D pair
the incoming packet belongs. This can easily be realized based
on standard OpenFlow packet processing operations. Source
and destination IP addresses extracted from the packet header
are matched against the matching fields of the entries of a first
flow table, which maintains information for each S-D pair (i.e.
source node and destination node IP prefixes). In this case, the
actions associated with the matching entry redirect the packet
to a second table defined for each S-D pair.

Step 2 - Identify the relevant MTR plane: The objective
of this step is to determine on which plane the packet needs to
routed. As explained in the previous subsection, this is driven
by the splitting ratios whose requirements are translated at the
switch level into a set of 2-tuples masks associated with each
path.

In this step, the instructions associated with the matching
entry consist in marking the packet header with the rele-



vant MT-ID (each entry represents a MTR plane). Although
OpenFlow does not currently support MTR tagging, the latest
version of the specifications introduces support for MPLS
labeling and VLAN tagging [1]. The VLAN identifier field, in
particular, is coded on 12 bits, which represents 4096 options.
In practice, a small number of MTR planes (4-5) is sufficient
to achieve a traffic engineering objective (e.g. [15] [3]). Two
solutions could therefore be followed to support MTR. The
protocol could either be extended to incorporate a MTR field,
or a small subset of the VLAN identifiers could be reserved
to identify the MTR planes and perform MTR tagging.

Step 3 - Forward the packet to the relevant interface:
The last step involves forwarding the packet based on the
configuration of the selected MTR plane identified by MT-ID.

V. EMPIRICAL EVALUATION

While the results presented in Section III provide interesting
insights regarding the level of control in terms of achievable
traffic splitting, their impact is limited as they rely on the
assumption of traffic uniformity. In a real environment, the
characteristics of the traffic flows are unlikely to follow a
uniform distribution. In this section, we empirically evaluate
the performance of the proposed splitting approach based on
realistic traffic flow settings.

A. Traffic Flow Generator

In the absence of real traffic flow data, we base our
evaluation on synthetically generated traces. Although some
traffic flow generators have been proposed in the literature,
we could not directly rely on those as they do not emulate
all the necessary characteristics. We have therefore developed
our own traffic flow generator.

The flow information required in this work covers two
dimensions: 1) the flow dynamics (i.e. inter-arrival time, size
and rate), and, 2) the destination IP address distribution. To
take into account both dimensions when generating the traffic
flows, we divide the flow modeling process into flow dynamics
modeling and IP address distribution modeling.

For the flow dynamics modeling part, we follow the method-
ology presented in [17]. Flow arrivals are modeled as a Poisson
process and the input load is controlled by the inter-arrival rate
parameter, which we set to 100. Flow sizes are represented
by a truncated Pareto distribution of scaling parameter 1.3
and vary between 8 Mbytes and 8 Gbytes. Finally, flow rates
are selected from three possible values 0.5Mbps, 1Mbps and
10Mbps with 30%, 60% and 10% probability, respectively. The
parameters of each distribution are selected in accordance with
the values reported in [17], in which the authors focused on
Internet Service Provider backbone networks.

The objective of the IP modeling part is to decide how
to assign a destination IP address to each generated flow.
To design the address allocation mechanism, we build upon
previous research initiatives (i.e. [18] [19] [20]), which have
analyzed the characteristics of the IPv4 prefixes maintained in
the routing tables of core networks from different perspectives.
In [18], Ganegedara et al. investigated the distribution of the
prefix length and showed that, in almost all cases, over 50%

TABLE I
EXPERIMENT SETTINGS.

Experiment
l v r VH

Index

Exp1 10 3 2 Varying

Exp2 Varying 3 2 31

Exp3 10 Varying 2 31

Exp4 10 3 Varying 31

of the prefixes have a length equal to 24 (i.e. represent class
C networks). Based on these observations, they developed a
tool to generate IPv4 prefixes. The tool can be configured
to select the percentage of class A, B and C networks to
consider (via the prefix length) and control the probability
of having a 0 or a 1 at each bit position in the prefix.
Unlike [18], the research efforts presented in [19] and [20]
have focused on the distribution of prefix popularity (i.e. how
likely is a given prefix to be hit in the routing table). The
results reported in [19] indicate that, in the considered routing
tables, 20% of the prefixes account for 80% of the traffic. The
findings were further extended in [20], which show that prefix
popularity can be represented by a Zipf distribution. With the
objective of being as close to reality as possible, based on
the above observations, we designed the IP address allocation
mechanism as follows.
• Pre-processing: We generate a list of 100,000 prefixes

based on the tool developed in [18]. Each prefix is then
randomly assigned a rank which represents its popularity.

• Runtime: For each newly created traffic flow, we select
a prefix from the pre-computed list, based on a Zipf
distribution with parameter α = 1. We then randomly
compute an IP address from the selected prefix and assign
the address to that traffic flow.

All the results presented in this section were obtained using
these mechanisms, based on a total of 1 million flows.

B. Influence of Masking Parameters

Based on four experiments, we investigate the influence of
the five masking parameters VH , VL, l, v, and r on the perfor-
mance of the traffic splitting approach. In each experiment, we
consider a scenario where the traffic flows need to be split into
two sets. Each set is represented by a 2-tuple of prefix pattern
and testing masks. The first tuple has the highest priority and
its masks are configured according to some specific parameter
settings. The second tuple has the lowest priority and is defined
as a wildcard on both the prefix pattern and testing masks
(Section IV-B). In each experiment, we vary the value of one
of the parameters of the highest priority 2-tuple. The settings
of the parameters for each experiment are reported in Table I.

In all cases, the position of each of the r masking bits is
fixed in the interval [VH − r+1;VH ]. Given the characteristics
of the generated traffic flows, we evaluate the performance in
terms of the volume of traffic flows assigned to each set. The
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results are reported in Fig. 6, where the highest priority tuple
is denoted as Mask0 and the lowest priority tuple as Mask1.

Firstly, the results demonstrate that the main conclusion
formulated in Section III-C also applies to a realistic scenario:
by configuring a set of masks, traffic flows can be split
into multiple partitions of arbitrary size. They also highlight
some differences. For example, in contrast to the theoretical
scenario, it can be observed that the volume of matching flows
depends on the value of parameters VH and VL. To explain this
result, we plot in Fig. 7, for each bit position (index varying
from 1 to 32), the percentage of prefixes which have the bit
set to 1 at the relevant position. As observed, bits are more
likely to be equal to 1 at certain positions. For example, the
bit at position 31 is set to 1 in almost 80% of the prefixes,
whereas this represents only 25% of the prefixes in the case
of the bit at position 30. As explained in Section V-A, the
percentage value obtained for each bit position depends on
the parameter settings of the IPv4 prefix generator [18]. In our
experiments, we set these parameters to represent a realistic
distribution of prefixes for core networks. Since parameters
VH and VL influence the position of the r masking bits, these
have an influence on the number of matching flows. Fig. 6b,
6c and 6d corroborate the findings of Section III-C, i.e. the
volume of matching flows increase with increasing v and r,
and decreasing l.

C. Mask Configuration

Based on the results presented in the previous subsection,
we now show how it is possible to control the traffic proportion
according to which traffic should be split by configuring the
prefix pattern and testing masks. To evaluate the splitting accu-
racy, we consider four scenarios. In the first two scenarios, the
traffic is split between two interfaces and, as such, two 2-tuple
masks Mask0 and Mask1 need to be computed. In Scenario 1,
the objective is to split the traffic flows into two sets of equal
size, i.e. splitting ratios 50% / 50%. Scenario 2 represents an
unequal split case with splitting ratios 5% / 95%. In the two
other scenarios, the traffic is split between four interfaces,
thus four 2-tuple masks Mask0 and Mask1, Mask2 and Mask3
need to be computed. In Scenario 3, traffic is split into four
sets of equal size, i.e. splitting ratios 25% / 25% / 25% / 25%,
while Scenario 4 illustrates non-equal splitting with ratios
5% / 10% / 25% / 60%. It is worth noting that the scenarios
described in this paper are chosen as illustrative examples to
present different range of splitting proportions and that similar
performance in terms of accuracy was observed with other
configurations.

In the following, we first explain how the masks are
configured for each scenario and then discuss the results.

1) Scenario 1: 50% / 50%: To ensure that a match can
always be obtained, Mask1 is configured as the wildcard on
both the prefix pattern and testing masks (it matches 100%
of the flows). To obtain a 50 / 50 distribution, Mask0 should
therefore be configured to match 50% of the traffic. Based
on Fig. 1, we know that a 50% match can be achieved with
a masking range equal to one. Mask0 is then set up with
l = 31, v = 31, r = 1, VH = 32, and VL = 0. In a non-uniform
distribution scenario, the volume of matching flows depends
on the position of the r masking bits. To maximize the chances
of a match, it is therefore better to place the masking bit at a
high bit position - we choose to set it at position 32.

2) Scenario 2: 5% / 95%: As in Scenario 1, Mask1 is
configured as the wildcard to match 100% of the traffic. For
Mask0, two approaches can be followed: to find either a
configuration that can provide a 5% match or one that can
cover 95% of the traffic. We focus on the second option,
given that, for uniform distribution, a 93.5% match can be
obtained with l = 31, v = 31, r = 4 (see Eq. 3). Although this
represents a deviation of 1.5% to the desired 95% split, the
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Fig. 8. Split proportion in terms of volume of matching addresses.

configuration can be regarded as a good candidate given the
non-uniform nature of the address distribution. In a similar
fashion to Scenario 1, we set the masking bits at the highest
positions (i.e. 29 - 30 - 31 - 32) to maximize the chances of a
match.

3) Scenario 3: 25% / 25% / 25% / 25%: In this scenario,
Mask3 is configured as the wildcard and matches 100% of
the traffic. To achieve the desired proportions, the combination
of Mask0, Mask1 and Mask2 should therefore account for
75% of the traffic. We start by configuring tuple Mask0. From
Fig. 6b, we can observe that the configuration of Experiment
2 with l = 5 is a good candidate to achieve a 25% match.
To further improve the performance and obtain a ratio closer
to 25%, we can refine the value of parameter v or r (see
Section V-B). Fig. 6d shows that the volume of matching flows
increases as r increases. We therefore increment the value of
r compared to Experiment 2 and set it to 3. For Mask1, we
start with the configuration of Experiment 2 with l = 4. From
Fig. 6b, we can observe that this can match around 40% of
the traffic. Since the position of the masking bit is maintained
constant in Experiment 2, part of the flows matching a tuple
configured with l = 5 also matches a tuple with l = 4. As such,
this would result in an actual proportion of around 15% (i.e.
40%−25%). To increase the range of masking addresses, we
therefore increment the values of v and r by 1, which gives a
configuration l = 4, v= 4, r = 4 for Mask1. Finally, for Mask2,
we select a configuration which limits the number of possible
matches (through the value of r) but does not constrain the
prefix pattern (through the value of l and v), i.e. l = 31, v = 31
and r = 1. To match a different set of addresses compared to
Mask0 and Mask1, the masking bit of Mask2 is positioned at
bit 32 so that it does not overlap with the ones used in the
two masks with higher priority.

4) Scenario 4: 5% / 10% / 25% / 60%: In this scenario, we
jointly configure the parameters of Mask0 and Mask1 by
targeting a 15% match (i.e. 5% + 10%). Based on Fig. 6b, it
can be observed that this can be achieved using a configuration
with l = 8, v = 3 and r = 2. To further partition the set of
matching addresses in 5% / 10% proportions, we adjust the
value of the parameters l, v and r, as well as the position of
the masking bits. We use the configuration l = 9, v = 5 and
r = 4 with the masking bits on the positions 26 - 27 - 28 - 30
for Mask0 and the configuration l = 9, v = 5 and r = 2 with

the masking bits at positions 29 - 31. For Mask2, we use the
same setting as in Scenario 3, i.e. l = 31, v = 31 and r = 1
with r positioned at bit 32. Finally, in a similar fashion to all
previous cases, Mask3 is configured as the wildcard.

5) Splitting Accuracy: The proportions in terms of volume
of matching addresses obtained in each scenario are shown in
Fig. 8. As can be observed, in all cases, the achieved split is
very close to the desired one. All the proportions are within
less than 1% to the expected ratios, with a maximum deviation
of 0.87% (for Scenario 1). This demonstrates the potential of
the proposed approach: it can be used to split a realistic traffic
set accurately at a fine level of granularity.

D. Comparison to a Hash-based Solution

We now compare the performance of the proposed approach
in terms of splitting accuracy to the one obtained using a
table-based hashing scheme [6], based on the four scenarios
described in the previous subsection.

Table-based hashing approaches were shown to offer very
good performance in terms of traffic splitting accuracy, e.g. [6]
[7]. In these schemes, traffic flows are first split into M bins
based on the hashed value of flow parameters (e.g. extracted
from the IP header). The bins are then mapped to the N out-
going interfaces based on an allocation table. To achieve a fine
level of splitting granularity, the number of bins M is usually
set one or two orders of magnitude larger than the number of
interfaces N [6]. In this work, we set the value of M equal to
500 ·N (following the settings used in [7]) and apply the 32-
bit Cyclic Redundancy Checksum (CRC32) algorithm to get
the hashed value of the flow characteristics. CRC32 has been
reported as one of the most widely deployed hash functions in
hardware equipment [21]. To compare the performance to the
proposed mask-based approach, the hashing function is applied
to destination IP address only. The proportions obtained for the
four scenarios are shown in Table II, which also reports the
maximum and the average deviation from the expected split.

It can first be observed that the hash-based approach
achieves very good performance in terms of splitting accuracy,
with the largest maximum deviation being 0.85% (Scenario 4).
More importantly, the results show that the proposed approach
can achieve a similar performance to that of a hash-based
scheme, which provides additional evidence to support the
viability of our solution.



TABLE II
PERFORMANCE COMPARISON.

Scenario 1 Split (%) Maximum Deviation (%) Average Deviation (%)

Hash-based splitting 50.40 49.60 0.4 0.4

Proposed approach 50.87 49.13 0.87 0.87

Scenario 2 Split (%) Maximum Deviation (%) Average Deviation (%)

Hash-based splitting 4.67 95.33 0.33 0.33

Proposed approach 5.42 94.58 0.42 0.42

Scenario 3 Split (%) Maximum Deviation (%) Average Deviation (%)

Hash-based splitting 25.05 24.39 24.76 25.80 0.8 0.425

Proposed approach 25.27 24.20 24.65 25.88 0.88 0.575

Scenario 4 Split (%) Maximum Deviation (%) Average Deviation (%)

Hash-based splitting 4.67 10.60 24.15 60.58 0.85 0.59

Proposed approach 4.33 10.74 24.65 60.28 0.74 0.51

In fact, while partitioning is the common objective of both
schemes, this is realized in two different ways. In the hash-
based approach, the hashed values of destination IP addresses
are uniformly distributed into equal size bins defined over the
whole hash space, and the desired split is realized by grouping
the bins based on the desired ratios. In contrast, partitioning
in the proposed approach is achieved by grouping addresses
with a similar pattern. To enable fine control over the size of
each group, a flexible masking approach is however required,
for instance compared to a prefix-based perfect match strategy,
which simply divides the address in two parts.

Finally, it is worth highlighting that since the splitting
accuracy of any traffic partitioning scheme depends on the
characteristics of a specific traffic set, those characteristics can
influence the results.

VI. DISCUSSION

By nature, the proposed traffic splitting approach depends
on the distribution of the IP addresses. In particular, the
results presented in Section V demonstrate that, although the
insights gained from the theoretical analysis can be useful to
decide how the masks should be configured to achieve some
expected performance, these are not sufficient. They should
be augmented with information regarding the characteristics
of the incoming traffic flows, which could be acquired from
different sources. For example, the distribution of the observed
IP addresses may depend on the type of network. The range
of addresses monitored at an edge network is likely to sig-
nificantly differ from the one observed in a core network. As
such, useful information can be provided regarding the type
of prefix patterns to expect. In addition, prediction strategies,
coupled with lightweight learning techniques, could be used
to infer the dynamics and characteristics of the observed IP
addresses. Previous research efforts (e.g. [19] [20] [22]) have
shown that relevant properties, such as the variability of heavy

hitters over time or the burstiness in the occurrence of prefixes,
could be extracted from the traffic flows and have proposed
mechanisms that take advantage of these properties.

The performance of our approach is also influenced by the
dynamics of the traffic flows themselves (i.e. size and rate),
which is a general issue with any flow-level splitting approach
and is independent of the partitioning scheme [23]. Since the
objective is to balance the traffic load over multiple paths, the
traffic dynamics can have an impact on the volume of traffic
sent over each path and, as such, on the level of load-balancing
that can be achieved. As reported by Rost et al. in [24], the
skewness in the distribution of flow rates, the grouping flex-
ibility of the mechanisms used to partition the flows and the
burstiness of traffic are key aspects that can affect the accuracy
of splitting. To address these issues, previous work (e.g. in [7])
has proposed the use of dynamic splitting algorithms that can
react to load imbalance by modifying the algorithm parameters
at runtime. Such an approach could apply to our proposal
as well. In this case, a two-level traffic management process
could be implemented in which a pro-active mechanism would
provide the initial mask configurations based on historical flow
information, while a reactive scheme would adapt to the traffic
dynamics by fine tuning the parameters l, v and/or r.

Most of the TE approaches proposed in the literature have
focused on the use of hashing schemes to enable traffic
splitting. However, as shown in [23], these schemes themselves
can have their performance significantly affected in terms
of splitting accuracy (e.g. 20% splitting error reported in
[23]). In general we believe that, in the context of SDN,
the use of such schemes - despite their flexibility - poses a
number of difficulties given that different implementations of
the hash-based splitting method are possible, which can also
be closed to vendors. Mechanisms (and associated language)
to program the partitioning scheme are currently not supported
by OpenFlow and their complexity is unknown. In contrast, the



approach proposed in this paper builds upon the basic features
and primitives of networking and, as such, requires simpler
extensions to the current protocol. Also, our solution is in line
with recent research initiatives which call for programmable
and flexible packet processing functionality [10] [11]. As
a result, although our approach is more dependent on the
characteristics of the input traffic compared to the hashing
method, we believe that, due to the inherent dynamic nature
of the traffic flows, the trade-off in terms of flexibility and
simplicity of implementation offered by the proposed solution
makes it a promising alternative.

Finally, while the proposed solution focuses on applying
the masks to the IP address, it could theoretically be extended
to any other match field that supports masking (OpenFlow
currently supports arbitrary bitmasking on IP and Ethernet
addresses [1]). A combination of fields could also be con-
sidered as long as this does not increase the complexity of the
approach.

VII. RELATED WORK

Functionality to support flexible allocation of traffic among
multiple alternative paths is currently missing from the Open-
Flow specification. Proposals have mainly focused on equal-
cost splitting solutions based on OpenFlow multipath forward-
ing groups [5]. Although these are fairly easy to implement,
they have a limited level of control over the distribution of traf-
fic and may not allow TE objectives to be effectively achieved.
The same limitation is shared by direct hashing approaches,
e.g. the Internet Checksum algorithm [25], which can only
split traffic into equal amounts. Table-based hashing schemes
on the other hand can split the load at a fine granularity, which
is defined by the ratio of bins to outgoing interfaces [6], and
have been widely used. However, as discussed in Section VI,
we believe that adding hash-based schemes as a feature of
OpenFlow may not be the best design choice.

In [26], Wang et al. have proposed an approach to en-
able unequal traffic splitting in an OpenFlow environment
by taking advantage of the wildcard rule capability offered
by the protocol. In that work, the authors focus on uniform
traffic distribution and show that, for non-uniform cases, their
approach can lead to severe load imbalance (25% deviation is
reported). This is in contrast to our solution which can achieve
accurate split even in the case of non-uniform distribution.
To improve their solution, Wang et al. suggest to refine the
wildcard rule at a finer level. However, as mentioned by the
authors themselves, this will result in an increase in the number
of rules required in each switch, which can lead to limitations
in terms of scalability. To overcome these limitations, Kang
et al. have recently presented a new version of the approach
that leverages the metadata tags available from the switch
hardware to group traffic types associated with similar splitting
ratios [33]. Compared to our solution, however, it may provide
less flexibility since the control parameters used can result to
insufficient partitioning granularity, especially in the presence
of heterogeneous addresses. In our approach, the accuracy is
not a factor of the number of mask tuples, which is only driven
by the number of paths between each S-D pair of nodes. As

shown in previous work (e.g. [12] [15] [3]), a small number
of paths is enough in practice to achieve near-optimal load-
balancing performance (typically between 3 and 5).

Although TE at the packet level [27] can achieve fine gran-
ularity splitting, packet re-ordering issues can falsely signal
network congestion. For this reason, most approaches focused
on flow-based splitting techniques (including the one proposed
in this paper) [2] [3] [13] [4]. However, due to varying flow
sizes and rates the load may not be balanced well over the
available paths, given that a flow persists on the originally
assigned path during its lifetime. FLARE [23] overcomes this
problem by operating on bursts of packets within a flow, which
are carefully chosen to avoid reordering. We plan to consider
flowlet level splitting in future extensions of this research.

Traffic engineering in the context of software-defined net-
works was investigated by [28] [29] and [30]. The authors of
[28] focused on ordinary IP networks with partial deployment
of SDN capability and have not considered how unequal
traffic splitting can be realized (ECMP is assumed). The
same shortcoming is shared by [29] in which the authors
proposed an SDN-based implementation of MPLS function-
ality where the load can be shared between multiple LSPs.
The TE approach in [30] employs a hash-based approach to
achieve unequal traffic splitting and has the implementation
shortcomings mentioned above. A survey of TE initiatives in
SDN has been recently presented in [34].

In traditional routing, the table matching entry is the one
with longest destination prefix match. In [24] the authors use
prefix matching for the purpose of balancing traffic, which has
two main drawbacks: (1) a perfect match is required, which
makes the approach rather rigid with respect to the granularity
level that can be achieved, and (2) it may not scale due to
the very long tables involved in the process. In contrast, our
solution is more flexible and can achieve finer traffic splitting
granularity. In addition, its complexity is dominated by the
number of S-D pairs and path options to consider, which, in
practice, represent a lower order of magnitude compared to
individual prefixes.

VIII. CONCLUSIONS

The SDN paradigm has emerged as a promising solu-
tion for reducing the management complexity of network
infrastructures through the creation of a unified control plane
independent of specific vendor equipment. The current version
of OpenFlow, the prevalent southbound interface, can only
support equal splitting of traffic flows between alternative
paths, which may not allow TE objectives to be successfully
met. In this paper we propose a new approach based on bit-
masking operations that can enable a fine level of control
over the splitting of incoming flows. We describe how unequal
distribution of traffic can be achieved and demonstrate through
experimentation the capabilities of the approach as well as
the parameters that influence its performance. To further
demonstrate the potential of our solution, we compare its
performance in terms of splitting accuracy to the one obtained
using a hash-based scheme and show that similar level of
accuracy can be achieved. More generally, we argue that



our approach is a better match for OpenFlow oriented traffic
management compared to hash-based schemes, and also has a
lower implementation complexity.

Future extensions of this research will focus on the imple-
mentation of the proposed solution in a test-bed environment.
In particular, this will involve the development of a manage-
ment application to compute the required masks, integrating
both pro-active and reactive processes. Our objective is to
design an algorithm in such a way that the mask-compute time
will be negligible compared to the frequency of reconfigura-
tions. In addition, we will perform an extensive evaluation of
the overall approach based on a wide range of traffic conditions
and network configurations.
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