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Abstract:  Recently Active Networks were proposed as the approach that will enable quick 
introduction of new services in the current telecommunication infrastructure. This approach 
allows third party executable codes (proxylet) to be deployed into the network, which creates 
a big security  risk. In this paper we present the application of Bayesian technology in the 
development of an anomaly detection system for proxylets. This system will be incorporated 
into our Intrusion Detection System (IDS) that will provide runtime security to ensure active 
platform integrity is maintained while running third party executable codes.  

 
Keywords: Active Network; Intrusion detection; Anomaly detection, Bayesian Network 

 

1 Introduction 
 
In today’s fast changing competitive telecommunication environment with increasing customer demands and 
awareness, quick development and introduction of new services is crucial to stay ahead of your competitors. 
With the current telecommunication infrastructure it is becoming completely difficult if not impossible to meet 
the current demand for new services, because the deployment of new services is limited by the slowness of the 
standardization process and inflexibility of this communication infrastructure in which the transport and control 
function are vertically integrated. To overcome this problem an approach was proposed in form of Active 
Networks (ANs). This approach allows third party executable codes (proxylet) to be deployed into the network. 
This provides open access for service developers to service component and control that has always been in the 
hands of network operators. Surely this poses a problem in terms of security requirements of the systems and the 
network at large. 

 This paper presents our first attempt to develop an active platform runtime security system, it starts with an 
introduction to Active Network and our security architecture in section 2. Section 3 begins with a brief 
introduction to the concept of Intrusion Detection and highlights our Intrusion Detection System (IDS) model, 
giving the Anomaly detection System as the main focus of this paper. Section 4 summarises our progress and 
describes directions for future work. 

 

2 Theoretical background 

2.1 Active network 
 
Active networks are characterised by dynamic programmability where the users/third party service providers can 
programme network hardware to manipulate information flowing through them. The network is active in the 
sense that it can dynamically perform computation on the user data, which creates a much more flexible network 
infrastructure with increased capabilities compared to traditional passive networks. In passive networks packets 
are just delivered from one end-point to another. Processing within the network is limited to routing, congestion 
control, flow control and other quality of service (QOS) schemes.  This makes it difficult to quickly integrate 
new technologies and accommodate new services that may require computation within the network, such as 
firewalls, web proxies, in the traditional passive network infrastructure. 

2.2 Active Network architecture 
 
There are several architectural approaches to the realisation of active networks depending on the location of the 
executable codes. Our architecture provides two distinct flavours of activeness; the Active Router and the Active 
Server (AS). These differ in amount of control and flexibility they offer, the Active Routers have tight 
restrictions since an incorrect operation can have a serious impact to many users, so proxylets deployed here 
must be from a trusted source such as the owner or operator of the router. While Active Servers are more 
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     Figure 3: Schematic diagram for our IDS model 
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Figure 1: Active network architecture
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flexible, undesirable operations have limited consequences, so control is 
delegated to general users. Thus third party executable codes are 
deployed on the AS in our approach, as shown in figure 1, [1]. Allowing 
third party executables to be deployed at the server level means an 
incorrect operation will affect limited numbers of users, but it does not 
remove the security threat imposed by the active network open access 
approach.  
2.3 Android security architecture 
 
To address this security problem the high-level security architecture in 
figure 2 was defined. Here security falls into three clear categorises; User 
security, this addresses user security requirements. Platform security, this focuses on the security of the actual 
active server, which is provided by the management elements and policies in action on the server. And finally 

management security, this focuses on the security of the 
management information flow and directories [2]. 

In our security architecture, platform security encompasses 
three major security measures; Proxylet deplorer 
authentication, Proxylet authentication and Run-time 
proxylet resource monitoring. This paper focuses on the 
Runtime proxylet security, a measure to ensure system 
integrity is maintained in case the first two-security 
measures are bypassed. It involves the policing of proxylet 
behaviours or actives on the AS in order to ensure that a 
proxylet stays within its behavioural security envelope. 
Thus it acts as an IDS that uses behaviour-based anomaly 
detection to provide a third line of defence.   
  

2.4 Intrusion Detection  
  
An Intrusion Detection System (IDS) polices or inspects the activities on the system for suspicious behaviour or 
patterns that may indicate system attack or misuse. There are two main categories of intrusion detection 
techniques; Anomaly detection and Misuse detection. The former analyses the information gathered and 
compares it to a defined baseline of what is seen as “normal” service behaviour, so it has the ability to learn how 
to detect attacks that are currently unknown.  Misuse detection is based on signatures for known attacks, so it’s 
only as good as the database of attack signatures that it uses for comparison.  

 

3 IDS model 
 
Our IDS security model is made up of three major 
functional components as shown in figure 3; the monitoring 
system, which monitors the service element resource 
utilisation. Anomaly detection system, this is the brain 
power of our IDS, it  uses the measured system information 
such as CPU and memory utilisation to infer the chance of 
proxylet being “bad”. Finally the Immune system, this 
provides the adaptive capabilities to the security system and 
allo ws policy distribution [2].   

3.1 Anomaly Detection model 
 
Our implementation of the anomaly detection system 
involves the application of Bayesian technology to the 
measured system attributes. Bayesian technology is well 
established in the medical diagnosis field and is almost a 
standard tool for modelling complex problems involving 
uncertainty in artificial intelligence community. The most 
common example of Bayesian application is Microsoft 
Office Assistant application. 
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Figure 5: Bayesian proxylet classifier 
model with Gaussian estimated CPDs. 

C M
P (C|B=T) ~ N 0.9,  0.02)
P (C|B=F) ~ N(0.8,  0.05)

P(M|B=T) ~ N(0.7, 0.1)
P(M|B=F) ~ N(0.6,  0.1)

P(M|B)P(C|B)

P(B)
P(B=F)  P(B=T)

0.6        0.4
Discrete node
Continuous node

B

A Bayesian Network (BN) is a graphical model that encodes probabilistic relationships among dependent set of 
variables. Its main distinguishing feature to classical statistical inference approaches is the use of subjective or 
personal beliefs (prior probabilities) directly into the analysis [3, 4].  

A BN will be incorporated into our IDS as anomaly detector. This approach is based on the assumption that 
service elements (proxylets) have resource utilisation regularities that can be detected and identified as belonging 
to a particular service element. This allows us to build a BN, which provides some probabilistic reasoning about 
the state (“bad” or not) of a running proxylet from the current observed system profiles. By bad proxylet we 
mean a proxylet whose profile is outside the expected normal profile for that particular class of service elements.  

3.2 Development of Anomaly detection system Model 
 
The structural arrangement of our model follows from a much simpler Bayes model that has an impress record in 
medical diagnosis problems , known as naïve Bayes model. To see how our problem can be tackled, we began by 

developing a simple proxylet classifier model shown in figure 4. 
Suppose we have “bad proxylet” as an unobserved class denoted by 
the variable B, with the binary states (True or False). And a random 
variable ε ⊆ {e1 = CPU utilisation(C), e2 = memory utilisation (M)}, 
which represents observed system attributes. For simplicity let us 
keep e discrete with states true or false by assuming if CPU utilisation 
is above 90%, or memory utilisation is exceeds 70% the running 
proxylet is classified as a bad one, (B=T). To complete our model 
construction process each variable (node) was assigned a probability 
of observing a certain state, resulting into the Conditional Probability 
Distributions (CPDs) shown in figure 4.          

This model relies on two simplifying assumptions; the observed 
attributes (C,M) are assumed to be conditionally independent given the class B, and there no hidden attributes 
influence the prediction process, hence the name naïve [5, 6].  The CPDs shown form the basis   for 
computation, so one simply uses the Bayes rule1 to compute the probability of a proxylet being bad (B=T) given 
the evidence ε ⊆ {e1 = T, e2 = T}, that is to say probability P (B=T| C=T, M=T) = P(B=T|ε); 

              

 

 

The above model was implemented in Matlab and various inferences were computed by processing the encoded 
knowledge using the Junction tree algorithm offered by an open source Matlab package, Bayes Net Toolbox 
(BNT) [7].  

 Since the system we are trying model is far more complex than can be represented solely by discrete parameters, 
we extended this discrete model to hold both discrete and continuous variables. The unobservable variable B 
remaining discrete since we want our anomaly detector to also act as an aggregator of all the observed attributes. 
For the continuous attributes it is common practice to assume that within each state of class B, the observed 
attributes follows a normal (Gaussian) distribution. The condition distribution of each observed attribute can be 
defined through its mean and standard deviation given the state of B. From such estimates the conditional 
probability of an observed value (e) can be computed as shown below. 

 

 

 The Gaussian-valued nodes were created as shown in figure 5, 
where N(µb , σb) defines a normally distributed continuous node with 
a mean µb and standard deviation σb, which allows us to encode our 
expert knowledge about the system.  

To test this model a random sample of data was generated and 
presented to the mo del as the observed CPU utilisation. The results 
of the model are shown in figure 6a and 6b. Figure 6a displays the 
output corresponding to the probability of a running proxylet being 
bad (B=T), given the memory consumption (e2) of 60% and 80% 
and CPU utilisation profile shown by the blue solid line.  
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In this figure (6a) we can see that when the CPU utilisation is between 70 and 90 percent, the probability of B 
=T is very low since this is classified as the utilisation for a normal proxylet, and outside this range the 
probability is much higher. It also shows that the probability of B =T increases as an effect of observing memory  
consumption higher than expected for the normal proxylet. The result in figure 7b shows the effect of changing 
the CPU variance in the model. We can see that increasing the variance reduces  the variance of the model output, 
a feature when modelled could prove useful in the attempt to reduce the number false alarms. From these results 
we can see that, by fine tuning this model and using better CPD estimates one can effectively classify service 
elements from the observed resource utilisation profiles. 

 
4 Conclusions and future work  
 
We have presented our IDS model which aims at autonomously assessing the state of the running service 
elements using a probabilistic reasoning model as the anomaly detector. As this is our first attempt to develop a 
reasoning system, the Bayesian approach has given interesting results in a short time. We believe it provides a 
promising step towards our challenge of developing an adaptive runtime active platform security system. 

To realise the full potential of this approach more work still need to be done, so for the near future we intend to 
extend this work in two ways. Firstly we intend to increase the number of nodes  allowing more sophisticated 
statistical indicators such as CPU variance to be modelled. This will give a more detailed analysis and greater 
sensitivity to the reasoning system. We also intend to apply parameter learning techniques to improve our CPD 
estimates and make the anomaly detector more accurate.   
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Figure 6a: Plot of the probability of B=T for the given 
CPU profile (solid line) and rising memory usage .   

Figure 6b: Plot of the probability of B=T for the given 
CPU profile (solid line) and model of different σc values.  
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