
D
R

A
FT

Naming Enhancements for the Internet
R. Atkinson & S. Bhatti

Department of Computer Science
University College London

July 15, 2004

Abstract

The Internet has a number of different namespaces used by its myriad

protocols and applications. Unfortunately overloaded naming semantics

are creating widespread issues. This position paper reviews the exist-

ing namespaces, current naming issues, and then proposes a strawman

approach to resolving the current naming issues.

1 Existing Namespaces

In the original ARPAnet, the first namespace was the address. The modern
Internet primarily uses a 32-bit IPv4 address, for example 128.16.6.8, and ex-
perimentally is using the 128-bit IPv6 address. The network-layer address was
originally intended for the routing of packets, but currently is misused as a host
identifier by upper-layer protocols. Closely associated with the IP address is the
IP Subnetwork name, which consists of a routing prefix (up to 32 bits) and a
prefix length (ranging from 1 bit to 32 bits) in combination. The IP Subnetwork
name is primarily used within routing protocols and the routing system.

The upper-layers of the Internet Architecture have additional namespaces.
Working our way up the stack, we first encounter the Connection End Point.
This is the triple consisting of a host, represented as an IP Address or do-
main name, a transport-protocol, for example the Transmission Control Proto-
col (TCP), and a Port number, for example port 25 which is used for electronic
mail sent via the Simple Mail Transfer Protocol (SMTP).

As we approach the application-layer, we encounter the Domain name, for
example cs.ucl.ac.uk, and its derivative the Mailbox name, for example A.Last-
name@cs.ucl.ac.uk. The Mailbox normally names a specific user, though in some
cases it names a set of users, for example when the Mailbox names a mailing-
list. Alternately, the mailbox might provide a role-based name, for example
(postmaster,webmaster)@cs.ucl.ac.uk. So we have overloaded semantics for a
mailbox name, which might refer explicitly to a particular human user, other
times to a set of users (e.g. mailing list), and yet other times with implicit
semantics of a service name (e.g. the user(s) act as the electronic postmaster or
webmaster for UCL’s Department of Computer Science).

Most recently, the Universal Resource Locator (URL), and its derivatives
the Universal Resource Name (URN) and Universal Resource Identifier (URI)
have appeared. By now the URL is familiar to nearly everyone, as it is the
name used to access web content. If one wanted to read the latest news from
cable-TV network CNN, one would use the URL http://www.cnn.com. In this,
the first portion, http, names an invocation method, such as the Hyper-Text
Transfer Protocol (HTTP), then comes a Domain name (www.cnn.com), and
then optionally the name of a specific object associated with that Domain name.
The URI and URN differ from the URL in that they name objects without

1



D
R

A
FT

necessarily indicating how to locate the object on the network. In the example
above, the domain name has the implicit semantics of a service name. Hence,
one can see that we have overloaded semantics, whereby a domain name might
sometimes refer to a host, other times to a domain (set of hosts), and yet other
times to a service for the specified domain.

2 A Brief History of Naming in the Internet

The network-layer address is the most fundamental namespace in a packet net-
work and necessarily existed from the start. However, even early ARPAnet users
quickly realised that a more human-friendly name was needed for hosts. This
was originally implemented as a flat text file named HOSTS.TXT [Kud74]. At
this time there was no concept of a heirarchical Domain name. So, for example,
the UCL host attached to the ARPAnet might have been named UCL-SATNET.

In the early 1980s, the University of California at Berkeley were developing
the Berkeley Software Distribution (BSD) of the AT&T Unix operating system.
For the 4.2 BSD release, UCB ported a TCP/IPv4 networking stack into Unix
and of course also added the Sockets API to BSD Unix. Because there was
no Domain Name System (DNS) at the time, UCB’s Sockets API uses raw IP
Addresses rather than supporting Domain names.

The Domain Name System (DNS) was deployed in the late 1980s and en-
hanced the previous host name system in at least two major ways[MD88]. Do-
main names are explicitly hierarchical, which simplified name administration.
Also, the DNS included a protocol used for resolving Domain names into ad-
dresses. Since its original deployment, the DNS has been extended with service
location capabilities, for example using the MX, KX, or SRV resource records.
In modern usage, a Domain name might be used to name a single host, an ad-
ministrative domain, a service, or even a cluster of servers that are masquerading
as a single host. These overloaded semantics make the DNS more complex, and
in some ways less useful.

Early on, IPv4 addresses had an implicit network mask; by examining the
first octet, one could determine which of three classes the network was in and
hence which network mask (either 8, 16, or 24 bits) was associated with the
address. This inflexibility, combined with ad-hoc address allocation practices
led to excessive routing table growth in the early 1990s. This was fixed by
the combination of class-less routing, where a variable-length network mask
was explicitly specified, and more systematic address allocation policies. For
many reasons, including simplified address management and perceived security
advantages, Network Address Translation (NAT) has come into common use.

3 Current Naming Issues

At first glance, it might appear that the Internet already has a relatively rich
set of namespaces. However, there are several significant current issues. The
implicit overloading of Domain names to names of services, rather than names
of hosts, for example www.cnn.com, creates issues. Also, the current scheme is
unable to support multiple instances of a given service (e.g. on different TCP
ports) on a single host. There is a clear need to create explicit service

names.

Also, for historical reasons, most networking APIs lack appropriate abstrac-
tions, instead forcing application programmers to use inappropriately low-level
objects. Also, if proper naming abstractions were in use, applications would
not be adversely impacted if a host’s address changed as a result of the host

2



D
R

A
FT

moving to a new location. Instead, many applications and most transport-layer
protocols contain the IP address in local state.

A Domain name might be a host, a cluster, or the single interface of a host.
Absent other information, one can’t distinguish precisely what is being named
for a given name. Similarly, an IP address actually names a single routing
interface on a host, rather than the host itself. The misuse of the IP address as
a generic host identifier, rather than a routing interface identifier, makes host
mobility difficult and causes many applications to be incompatible with NAT.

4 Proposed Approach

Our proposal adds explicit Service names and generic network-layer Host Iden-
tifiers. In our scheme, IP Addresses resume their original limited role, are used
only by the network-layer and only for packet routing. Indeed, this is in keeping
with the current strong binding between an IP address and an interface. Trans-
port protocols and Application protocols substitute more appropriate identifiers
(e.g. the new Host Identifier or perhaps a Domain name) replacing current in-
appropriate uses of the IP Address. There still might be a few special instances
(e.g. control messages, network management) where one would still want to use
raw IP addresses. Finally, the networking APIs are replaced with a new set of
APIs that use more appropriate object types, thereby encouraging application
programmers to use proper abstractions.

A candidate instantiation of this adds a new Identifier (ID) resource record
to the DNS, with support for a mapping from a Domain name to the ID record.
Of course, one can also use the existing PTR record to obtain the Domain name
associated with a given IP Address, and thus traverse the DNS from Address to
ID. There are existing specifications for DNS Security and for Secure Dynamic
DNS Update, which provide authentication for these various name bindings
[3rd99][Wel00]. For example, when a host moves, it can update its address
records at its DNS server using the Secure Dynamic DNS Update. If this new
identifier in the ID record contains suitable structure, then an authenticated
DNS lookup can provide the domain-name associated with that ID.

Additionally, we propose extensions to the existing Internet Control Message
Protocol (ICMP) to support host mobility. For example, Host Has Moved or My
New Address Is ICMP messages are created to enable a mobile host to inform
existing correspondent hosts of the new location of the mobile host. One can
use IP Security to authenticate these messages and prevent forgeries.

Finally, existing transport-layer protocols (e.g. TCP) and application-layer
protocols (e.g. FTP) are modified to replace current use of addresses with
new use of more appropriately abstract identifiers. We propose a new service
instance location protocol that is used to find the location of the service instance
requested by the application via the new API.

There are a number of details that remain to be sorted out, in altering
existing protocols, in properly designing and specifying the new mechanisms,
and in providing some transition scheme from current systems to the conceptual
new system.

5 Benefits

This new enhanced naming architecture provides a number of benefits in routing,
in security, and in other areas. The routing system benefits from two improve-
ments. First, host mobility is much simpler than the current Mobile IPor Mobile
IPv6 specifications permit. Second, the inter-domain routing system does not

3



D
R

A
FT

suffer adverse impacts from widespread campus-level multi-homing. Each of
these benefits derives primarily from the decoupling of the IP address used by
the routing system from upper-layer protocols’ need for some form of generic
host identifier. That change permits in-transit rewriting of addresses without
suffering adverse impacts at the upper protocol layers.

From a security perspective, the current practice of assuming that an IP
address is a de-facto self-authenticating identifier is wrong; forging IP addresses
in packets is trivial. There are numerous known cases of deliberate packet mis-
routing to facilitate eavesdropping, and potentially modification, of in-transit
packets. To remedy this, the new system uses readily authenticatible identifiers.
This facilitates the deployment of existing security specifications, for example
IP Security or routing protocol authentication. In the case of IP Security, one
can now use ESP or AH through a NAT device or other circumstance where an
address was modified in transit, without suffering a security vulnerability. Also,
the use of IP Security with mobile hosts is now quite straight forward.

Adding explicit service names, which is another idea, simplifies network-
wide service location. The current Service Location Protocol (SLP) is useful
only within a single LAN segment; explicit service names (beyond the existing
DNS SRV record) can facilitate finding services anywhere on the global Inter-
net. Also, the new approach better supports situations when there is more than
one instance of a given service on a given host. By reducing semantic overload-
ing of namespaces and updating APIs to use more appropriate object types,
application programming should be simpler and easier.

6 Future Work

This is work in progress at an early stage, and the aim is to build a cleaner use
of names and identity, simplifying the IP architecture and DNS usage. Whilst
we have exposed potential benefits and proposed a strawman mechanism for
enhancing the DNS, further work is clearly required. Issues of APIs and back-
wards compatibility with current mechanisms is a key practical issue. For our
proposal, we have yet to fully resolve how it would impact on (or be utilised for)
multicast/anycast, what the security and possible denial of service (DoS) impli-
cations might be, and of course how the unique identifiers would be managed
(creation, storage, distribution, and verification/authentication). Also there is
related work within the wider research community that should be examined
[IRT]. Additionally, we must consider the privacy implications of creating and
using a unique host identifier.

References

[3rd99] D. Eastlake 3rd. Domain Name System Security Extensions. RFC
2535, Internet Society, March 1999.

[IRT] IRTF Host Identity Protocol Research Group. http://www.irtf.org.

[Kud74] M. D. Kudlick. Host names on-line. RFC 608, Internet Society, January
1974.

[MD88] Paul V. Mockapetris and Kevin J. Dunlap. Design of the Domain
Name System. ACM Computer Communication Review, 18(4):123–
133, August 1988.

[Wel00] B. Wellington. Secure Domain Name System Dynamic Update. RFC
3007, Internet Society, Nov 2000.

4


