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Abstract:  Routing using more than one metric is difficult. Distributed Multimedia 
applications have stringent QoS demands on the network. However, many current QoS 
routing algorithms have large execution times when strict (small) user constraints are 
used. We present an algorithm that have relatively small execution times under strict 
constraints and demonstrate via simulation that this is so. 

  

1 Introduction. 
Real-time network applications like telemedicine, video conferencing, and virtual reality will demand 
highest quality of service (QoS) and reliability from the data transport infrastructure. The networking 
community has developed frameworks such as InServ and Diffserv to alter performance for network 
flows by changing the schedule in a router or switch. However, there is another way to achieve QoS, 
which is called QoS Routing and the goal is to select a feasible path for a network flow based on the 
requirements of the flow. A lot of research has been done on QoS Routing and three main challenges 
are evident:  firstly, finding a feasible path is a very complex problem; secondly, the routing protocols 
will have to measure and exchange values for multiple network metrics such as delay, jitter and 
bandwidth; and thirdly, a mechanism for the user or application to communicate a set of user 
constraints to the network is needed. In this paper we will only consider the challenge of finding 
feasible paths in communication networks. 

Finding a path subject to multiple metrics is difficult and is considered NP-complete [1]. Since the 
motivation for QoS Routing is rooted in the fact that multimedia applications require stringent user 
constraints, a good question is whether or not existing QoS routing algorithms can address the needs 
of applications that have strict constraints (over- constraints [2]). In this paper we will give a 
background on some of the QoS routing algorithms in section 2, and in Section 3 answer this 
important question. In Section 4, we introduce an alternative QoS Routing algorithm specially 
designed to work in over-constraint environments. In Section 5, we present simulations to support the 
claim that our algorithm works well in large networks. 

2. Existing QoS Routing Algorithms 
Before we get into existing QoS algorithms we will give a formal definition for two problems 
associated with QoS Routing. Consider a graph G(N;E) consisting of a set of additive metrics wi(e) for 
each link e ∈ E,  and user requested constraints Li, i ∈ [1, m]. The goal of multi-path-constrained 
routing (MCP) is to find a path P from source node s to destination node t such that wi(P)  ≤ Li  for all 
i. A path that satisfies all m constraints is often referred to as a feasible path. There may be multiple  
paths in the graph G(N; E) that satisfy the constraints, any of which are solutions to the MCP problem. 
Hence it may be necessary to use some type of optimization criteria to select a path from the set of 
feasible paths. This more difficult problem is called the multi-constrained optimal path (MCOP) 
problem. 

Because both the MCP and MCOP problems are NP-complete the bulk of the solutions proposed are 
heuristics.  These heuristics algorithms include Jaffe [3], Chen [4], Iwata [5], and TAMCRA [6]. 
Typically these algorithms are highly specialized and cannot adapt easily to a wide range of user 
requirements.  

There also exist exact solutions for the MCP/MCOP like the SAMCRA [6] and H_MCOP [7]. These 
algorithms offer good performance at the expense of possible high complexities and running times 
growing exponentially in the worst case. However, in [8] it is argued that in practice an exact 
algorithm may work in polynomial time, making guaranteed QoS possible.  



Most of the heuristic solutions involve the use of a modified shortest path algorithm (SPA). However, 
shortest path algorithms use a single metric and therefore these solutions tend to be complicated in 
their effort to accommodate multiple metrics.  On the other hand, most exact algorithms use the k 
shortest paths with some objective function to select the best path. 

3. Over-Constraint users requests 
From [8] it can be inferred that the NP-complete behaviour of a given network depends on its link 
topology, link weight structure and user constraints. The choice of user constraints can heavily 
influence how many feasible paths exist and therefore will affect the execution time needed to find an 
optimal path. User constraints can be strict (over-constraint) [2] or loose (under-constraint).  The set of 
strict user constraints [9] can be defined by equation 1.  

       

 

In equation 1, P is the path for which max(wi(P*)) is minimum  where P* is the set of all paths 
connecting s and t. Similarly, a set of loose constraints can be defined by equation 1 where P is the 
path for which max(wi(P*)) is maximum.  Results of simulations done in [9] suggested that most 
heuristic and exact algorithms provide near-optimal success rates [9] with small execution times when 
loose user constraints are used. However, under strict user constraints using the Waxman graph class, 
heuristic algorithms preformed poorly with respect to their success ratios. However, for this class of 
graph execution times increased but remained polynomial with respect to the network size for both 
heuristic and exact algorithms.  For the Lattice class of graphs exact algorithms experienced 
exponential execution time growth rates with respect to the network size.  

The motivation for QoS Routing is rooted in the fact that multimedia applications require stringent 
user constraints. Based on the simulations results in [9] we think that existing algorithms are 
inefficient under relatively strict user constraints.  

4. An algorithm for over-constraint QoS-Routing  
We present an exact algorithm called Routing Decision Support System (RDSS) that does not depend 
on a shortest path algorithm. There are two main components to this algorithm: 

1. Using a modified version of the all-path algorithm called Constraint All-path (CAP) 
algorithm to find all paths meeting the user constraints. Figure 1 shows the pseudocode for 
the CAP algorithm. The algorithm accepts a graph (G), source(s), destination (t), a set of 
user constraints (C) and returns a list (allpaths) of all the paths between s and t.  The data 
structure for the node consists of a path from the source to the node, the height of the node 
in the tree and a node identifier called vertex.  

The main advantage in this approach is that under strict user constraints the queue size of 
kN can be significantly reduced by eliminating sub-trees violating the user constraints. 

2. Using the RDSS to find a path (from the set of paths resulting from step 1) that most 
closely match the user or optimization requirements. The RDSS algorithm does this by 
taking the constraint paths produced from the CAP algorithm and building preference 
functions [10] for each metric. In [11] we presented introductions to this approach. The 
basic idea is that we use a preference function that accepts a network metric value say x as 
a parameter and returns a value, s(x) between –1 and 1 that represents the preference value 
of x relative to all the network values for this metric. 

5. Simulation 
Our simulation will focus on the computational aspect of the RDSS algorithm under a wide range of 
strict user constraints. To do this we use Waxman graphs [9], with negatively correlated link weights 
representing delay and cost. For 10 different networks containing 400 nodes each, we executed the 
Jaffe, SAMCRA and RDSS algorithms to find a feasible path between node 0 and node 399. Strict 
constraints for delay and cost values each ranging from 100 to 150 are used.  Since the same delay and 
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cost value for a given time measurement are used we represent results using a 2-dimensional graph. 
Figure 1, shows the results for one of the networks tested, the same pattern is observed for other 
networks From the graph, it is evident that the RDSS algorithm has relatively small execution times 
for delay/cost values between 103 and 135. However, between delay/cost 135 and 152 the Jaffe and 
RDSS algorithms execution times are closer. The Jaffe algorithm although having an average 
execution time of 260 ms did not produce feasible paths for the user constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Conclusion 
The RDSS algorithm seems to be relatively fast for networks when strict user constraints are specified. 
This means that the algorithm can be used to find feasible routes for packets of stringent multimedia 
applications. However, the presented RDSS algorithm has exponential times under loose constraints. 
We will address this problem in a future paper.  

findAllPath(G, s, t, allpaths, C)      {         

   node new Node(path  Null, height 0)  

   queue.enqueue(node) 

   while (not queue.empty) { 

     closest  queue.dequeue 

       if (closest.vertex == t)  

           allpaths.append(closest.Path)                      

            Relax (closest) 

} 

 

  Relax (closest) { 

     HEIGHT <- closest.height + 1 

        for each neightbor w of closest    

             PATH  node.path + w 

 if (PATH.wi  ≤ Ci  for all i) { 

       node  new Node(path  PATH, height  
HEIGHT)  

    queue.enqueue(node)  

 }    

      } 

  } 

Fig. 1 The Constraint All-Paths algorithm that is used to generate constraint paths 

1.  For a given metric say mj select all metric values mij for 
routes Ri, where  k},2,...,{1,  i =  

 2. For a given metric mj the best value from the set of all 
routes for mj is assigned to aij where i is the route 
corresponding to the best value for metric mj. 

3. For a given metric mj the worse value from the set of all 
routes for mj is assigned to bij where i is the route 
corresponding to the worse value for metric mj. 

4. A preference scale is then derived for each metric with the 
following properties:  a. If a] [b,    x ∈ then a scale is define 
using   equation 2. 
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b. If mj is concave and x < b then s(x) = -1 and if and x > a 
then 1  s(x)   = .  Additionally, for additive and multiplicative 
metrics if b    x <  then 0  s(x)   =  and if a  x > and 

1  s(x)   = . 

5. Let A be a k x m matrix (m = metrics, k = paths) 
containing columns s1(x1), s2(x2), …, sm(xm) where 
sj(xj) represents a scale for each metric mj. 

6. To find the closest match to the given user 
constraints the following conversion is done: 

[ ])(...)()( 2211 kk cscscsv = .        

7. The o   Av =  matrix multiplication is then 
performed which results in a k x 1 vector. Vector o  
is examined for the highest value of the vector at 
position y where k≤≤ y  1 . The value of y 
corresponds to the route that will be a feasible path. 

8. To find an optimal path for a constraint Ci the s(ci) 
is set to 1 and step 7 is performed. 

 

 

Fig 2. RDSS algorithm for finding an optimal path given a set of constraint paths 
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Fig. 3 2D graph with delay and cost having the same values on the x-axis and execution times 
on y-axis for RDSS, SAMCRA and Jaffe algorithms. 


