
Over-Constraint QoS Routing in Large Networks
W. S. Goodridge† W. R. Robertson†W. P. Phillips† and Shyamala Sivakumar‡

† Dalhousie University, ‡ St. Mary's University

Abstract: Routing using more than one metric is difficult. Distributed Multimedia
applications have stringent QoS demands on the network. However, many current QoS
routing algorithms have large execution times when strict (small) user constraints are
used. We present an algorithm that have relatively small execution times under strict
constraints and demonstrate via simulation that this is so.

1 Introduction.
Real-time network applications like telemedicine, video conferencing, and virtual reality will demand
highest quality of service (QoS) and reliability from the data transport infrastructure. The networking
community has developed frameworks such as InServ and Diffserv to alter performance for network
flows by changing the schedule in a router or switch. However, there is another way to achieve QoS,
which is called QoS Routing and the goal is to select a feasible path for a network flow based on the
requirements of the flow. A lot of research has been done on QoS Routing and three main challenges
are evident: firstly, finding a feasible path is a very complex problem; secondly, the routing protocols
will have to measure and exchange values for multiple network metrics such as delay, jitter and
bandwidth; and thirdly, a mechanism for the user or application to communicate a set of user
constraints to the network is needed. In this paper we will only consider the challenge of finding
feasible paths in communication networks.

Finding a path subject to multiple metrics is difficult and is considered NP-complete [1]. Since the
motivation for QoS Routing is rooted in the fact that multimedia applications require stringent user
constraints, a good question is whether or not existing QoS routing algorithms can address the needs
of applications that have strict constraints (over- constraints [2]). In this paper we will give a
background on some of the QoS routing algorithms in section 2, and in Section 3 answer this
important question. In Section 4, we introduce an alternative QoS Routing algorithm specially
designed to work in over-constraint environments. In Section 5, we present simulations to support the
claim that our algorithm works well in large networks.

2. Existing QoS Routing Algorithms
Before we get into existing QoS algorithms we will give a formal definition for two problems
associated with QoS Routing. Consider a graph G(N;E) consisting of a set of additive metrics wi(e) for
each link e ∈ E, and user requested constraints Li, i ∈ [1, m]. The goal of multi-path-constrained
routing (MCP) is to find a path P from source node s to destination node t such that wi(P) ≤ Li for all
i. A path that satisfies all m constraints is often referred to as a feasible path. There may be multiple
paths in the graph G(N; E) that satisfy the constraints, any of which are solutions to the MCP problem.
Hence it may be necessary to use some type of optimization criteria to select a path from the set of
feasible paths. This more difficult problem is called the multi-constrained optimal path (MCOP)
problem.

Because both the MCP and MCOP problems are NP-complete the bulk of the solutions proposed are
heuristics. These heuristics algorithms include Jaffe [3], Chen [4], Iwata [5], and TAMCRA [6].
Typically these algorithms are highly specialized and cannot adapt easily to a wide range of user
requirements.

There also exist exact solutions for the MCP/MCOP like the SAMCRA [6] and H_MCOP [7]. These
algorithms offer good performance at the expense of possible high complexities and running times
growing exponentially in the worst case. However, in [8] it is argued that in practice an exact
algorithm may work in polynomial time, making guaranteed QoS possible.

Most of the heuristic solutions involve the use of a modified shortest path algorithm (SPA). However,
shortest path algorithms use a single metric and therefore these solutions tend to be complicated in
their effort to accommodate multiple metrics. On the other hand, most exact algorithms use the k
shortest paths with some objective function to select the best path.

3. Over-Constraint users requests
From [8] it can be inferred that the NP-complete behaviour of a given network depends on its link
topology, link weight structure and user constraints. The choice of user constraints can heavily
influence how many feasible paths exist and therefore will affect the execution time needed to find an
optimal path. User constraints can be strict (over-constraint) [2] or loose (under-constraint). The set of
strict user constraints [9] can be defined by equation 1.

In equation 1, P is the path for which max(wi(P*)) is minimum where P* is the set of all paths
connecting s and t. Similarly, a set of loose constraints can be defined by equation 1 where P is the
path for which max(wi(P*)) is maximum. Results of simulations done in [9] suggested that most
heuristic and exact algorithms provide near-optimal success rates [9] with small execution times when
loose user constraints are used. However, under strict user constraints using the Waxman graph class,
heuristic algorithms preformed poorly with respect to their success ratios. However, for this class of
graph execution times increased but remained polynomial with respect to the network size for both
heuristic and exact algorithms. For the Lattice class of graphs exact algorithms experienced
exponential execution time growth rates with respect to the network size.

The motivation for QoS Routing is rooted in the fact that multimedia applications require stringent
user constraints. Based on the simulations results in [9] we think that existing algorithms are
inefficient under relatively strict user constraints.

4. An algorithm for over-constraint QoS-Routing
We present an exact algorithm called Routing Decision Support System (RDSS) that does not depend
on a shortest path algorithm. There are two main components to this algorithm:

1. Using a modified version of the all-path algorithm called Constraint All-path (CAP)
algorithm to find all paths meeting the user constraints. Figure 1 shows the pseudocode for
the CAP algorithm. The algorithm accepts a graph (G), source(s), destination (t), a set of
user constraints (C) and returns a list (allpaths) of all the paths between s and t. The data
structure for the node consists of a path from the source to the node, the height of the node
in the tree and a node identifier called vertex.

The main advantage in this approach is that under strict user constraints the queue size of
kN can be significantly reduced by eliminating sub-trees violating the user constraints.

2. Using the RDSS to find a path (from the set of paths resulting from step 1) that most
closely match the user or optimization requirements. The RDSS algorithm does this by
taking the constraint paths produced from the CAP algorithm and building preference
functions [10] for each metric. In [11] we presented introductions to this approach. The
basic idea is that we use a preference function that accepts a network metric value say x as
a parameter and returns a value, s(x) between –1 and 1 that represents the preference value
of x relative to all the network values for this metric.

5. Simulation
Our simulation will focus on the computational aspect of the RDSS algorithm under a wide range of
strict user constraints. To do this we use Waxman graphs [9], with negatively correlated link weights
representing delay and cost. For 10 different networks containing 400 nodes each, we executed the
Jaffe, SAMCRA and RDSS algorithms to find a feasible path between node 0 and node 399. Strict
constraints for delay and cost values each ranging from 100 to 150 are used. Since the same delay and

 ,...,1,)(L i miPwi =+= φ (1)

cost value for a given time measurement are used we represent results using a 2-dimensional graph.
Figure 1, shows the results for one of the networks tested, the same pattern is observed for other
networks From the graph, it is evident that the RDSS algorithm has relatively small execution times
for delay/cost values between 103 and 135. However, between delay/cost 135 and 152 the Jaffe and
RDSS algorithms execution times are closer. The Jaffe algorithm although having an average
execution time of 260 ms did not produce feasible paths for the user constraints.

7. Conclusion
The RDSS algorithm seems to be relatively fast for networks when strict user constraints are specified.
This means that the algorithm can be used to find feasible routes for packets of stringent multimedia
applications. However, the presented RDSS algorithm has exponential times under loose constraints.
We will address this problem in a future paper.

findAllPath(G, s, t, allpaths, C) {

 node new Node(path Null, height 0)

 queue.enqueue(node)

 while (not queue.empty) {

 closest queue.dequeue

 if (closest.vertex == t)

 allpaths.append(closest.Path)

 Relax (closest)

}

 Relax (closest) {

 HEIGHT <- closest.height + 1

 for each neightbor w of closest

 PATH node.path + w

 if (PATH.wi ≤ Ci for all i) {

 node new Node(path PATH, height
HEIGHT)

 queue.enqueue(node)

 }

 }

 }

Fig. 1 The Constraint All-Paths algorithm that is used to generate constraint paths

1. For a given metric say mj select all metric values mij for
routes Ri, where k},2,...,{1, i =

 2. For a given metric mj the best value from the set of all
routes for mj is assigned to aij where i is the route
corresponding to the best value for metric mj.

3. For a given metric mj the worse value from the set of all
routes for mj is assigned to bij where i is the route
corresponding to the worse value for metric mj.

4. A preference scale is then derived for each metric with the
following properties: a. If a] [b, x ∈ then a scale is define
using equation 2.

⎪
⎩

⎪
⎨

⎧

=

≠⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=

ba
ba
bx

x
1

ba 1
)(
)(2

)sj((2)

b. If mj is concave and x < b then s(x) = -1 and if and x > a
then 1 s(x) = . Additionally, for additive and multiplicative
metrics if b x < then 0 s(x) = and if a x > and

1 s(x) = .

5. Let A be a k x m matrix (m = metrics, k = paths)
containing columns s1(x1), s2(x2), …, sm(xm) where
sj(xj) represents a scale for each metric mj.

6. To find the closest match to the given user
constraints the following conversion is done:

[])(...)()(2211 kk cscscsv = .

7. The o Av = matrix multiplication is then
performed which results in a k x 1 vector. Vector o
is examined for the highest value of the vector at
position y where k≤≤ y 1 . The value of y
corresponds to the route that will be a feasible path.

8. To find an optimal path for a constraint Ci the s(ci)
is set to 1 and step 7 is performed.

Fig 2. RDSS algorithm for finding an optimal path given a set of constraint paths

ear [1].

References.
[1] Z. Wang and J. Crowcroft, "Quality-of-Service Routing for Supporting Multimedia

Applications", IEEE Journal on Selected Areas in Communications, vol. 14, n. 7, pp. 1228-1234,
1996

[2] Van Mieghem, P. and F. A. Kuipers, 2003, The Impact of Correlated Link Weights on QoS
Routing, Computer Communications, vol. 26, No. 4, March 2003, pp. 376-387.

[3] Jaffe, J.M. , "Algorithms for Finding Paths with Multiple Constraints”, Networks, vol.14, pp.95-
116, 1984.

[4] Chen, S. and K. Nahrstedt, 1998a, “On Finding Multi-constrained Paths”, Proc. ICC ’98, Atlanta,
Georgia.

[5] Iwata, A., R. Izmailov, D.-S. Lee, B. Sengupta, G. Ramamurthy and H. Suzuki, 1996, “ATM
Routing Algorithms with Multiple QoS Requirements for Multimedia Internetworking”, IEICE
Trans. Commun., vol. E79-B, no. 8, August.

[6] P. Van Mieghem, H. De Neve and F.A. Kuipers, "Hop-by-Hop Quality of Service Routing",
Computer Networks, Vol. 37, No. 3-4, pp. 407–423, November 2001.

[7] T. Korkmaz, M. Krunz, "Multi-Constrained Optimal Path Selection", in Proceedings
of the IEEE INFOCOM 2001 Conference, Vol. 2, pp. 834–843. Anchorage, Alaska, April 2001.
[8] Van Mieghem, P. and F. A. Kuipers, 2003, On the Complexity of QoS Routing, Computer
Communications, vol. 26, No. 4, March 2003, pp. 376-387.
[9] Kuipers, F. A., T. Korkmaz, M. Krunz and P. Van Mieghem, 2004, Performance Evaluation of

Constraint-Based Path Selection Algorithms, to appear in IEEE Network.
[10] J. Barzilai, "Notes on measurement and Decision Theory," Proceedings of the NSF Design and

Manufacturing Research Conference, San Juan, Puerto Rico, pp.1-11, 2002
[11] W. Goodridge, W. R. Robertson, W. P. Phillips and S, Sivakumar , “Comparing a Novel QoS

Routing Algorithm to Standard Pruning Techniques used in QoS Routing Algorithms”, IEEE
CCECE 2004, Niagara Falls, May 2004

0

100

200

300

400

500

600

700
10

3

10
7

11
1

11
5

11
9

12
3

12
7

13
1

13
5

13
9

14
3

14
7

15
1

Delay/Cost

Ex
ec

ut
io

n
Ti

m
e

/m
s

RDSS
SAMCRA
JAFFE

Fig. 3 2D graph with delay and cost having the same values on the x-axis and execution times
on y-axis for RDSS, SAMCRA and Jaffe algorithms.

