
A Bayesian Alternative to the Statistical Distance Approach to Association 
C. M. Rogers 
QinetiQ Ltd 

 
Abstract The association of a measurement or measurements with an existing set of 
measurements is a common problem in many engineering systems. Traditionally the method of 
solving this problem has been based on statistical distance. However, this approach, whilst 
simple, implies association unless proven otherwise. An alternative approach which does not 
make this implication is presented. This approach makes use of Bayesian probability theory. It is 
concluded that the limitations of the statistical distance methods can be overcome using the 
Bayesian approach, but at the cost of extra complexity in many situations. 

 
1. Introduction 
The association of a measurement or measurements to an existing set of measurements is a common problem in 
many engineering systems. The problem can be split into two groups, the first dealing with one new 
measurement being associated, and the second with many new measurements being associated. A common 
occurrence of this problem is in tracking systems such as air traffic control, where a new measurement of an 
aeroplane’s state (position, heading, velocity) has to be associated with an existing track of the aeroplane, from 
many possible tracks, or used to start a new track. 
 
Another occurrence of this problem is found in imaging systems on production lines, where objects are selected 
and sorted by colour. Due to reflections, changing light conditions and environmental conditions the colour of 
the object seen by the camera is not constant, and so the colour measurement has to be associated with a database 
of potentially many colours so that the object may be sorted correctly. 
 
There are many methods for determining associations, ranging from probabilistic methods to heuristic methods. 
In this paper the focus will be on probabilistic methods, as heuristic methods such as neural networks rely on 
training data, and go beyond the scope of a short paper. Furthermore, data sets will now be referred to as 
measurements, but it should be kept in mind that the principles can be generalised. 
 
Two main probabilistic methods exist for determining associations, these being statistical distance methods and 
Bayesian methods. 
 
2. 1-to-Many Association 
Where only one new measurement is being associated, it may be termed a 1-to-many association problem (figure 
1). In the air traffic control tracking system the association is between a new measurement and an existing track 
from many potential tracks. In the production line imaging system the association is between a new colour 
measurement and a colour from a set of possible colours from a data base. There is essentially no limitation on 
what form the data to be associated may take, except that, for the association to be feasible, the data in one set 
implies something about the data in the other set. For example, the track contains information about where the 
aircraft should be and in what direction it should be heading with what velocity with a certain degree of 
(un)certainty. This in turn implies what sort of value the new measurement of the aircraft’s position should have. 
Alternatively, the measured velocity of the aircraft implies whether it is a jet-propelled aircraft or a propeller 
driven aircraft. It would then be possible to associate the velocity measurement of the aircraft with the 
classification of the aircraft, from many possible classifications. 
 
 
 
 
 
 
 
 
 
 
 
2.1 Statistical Distance 
An uncertainty is associated with each measurement, and is expressed as the covariance of that measurement. By 
dividing the square of the difference of the measurements by the sum of the covariances of the measurements a 
dimensionless statistical distance is calculated[1]. 

Existing measurements 

New measurement 

Figure 1 1-to-many association, with 1 true association (solid) and 4 
alternative associations (dashed)
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The association is then between the new measurement and that existing measurement which gives the smallest 
statistical distance, where the statistical distance is used rather than the physical distance as it allows for the 
uncertainty in the measurements. Furthermore, a threshold on the statistical distance may be chosen, such that 
those measurements within that threshold are deemed to be candidates for association, and those outside are 
deemed not to be candidates. This is effectively gating the measurements. The threshold can be chosen from the 
χ2

 (Chi-squared) distribution to specify the probability of truly associating measurements being accepted as 
associating, whilst maximising the probability that non-associating measurements will be rejected[2]. If more 
than one existing measurement is deemed to associate with the new measurement, then the one with the smallest 
statistical distance can be accepted. 
  
The advantage of this method is that it is very simple and quick to implement. The statistical distance for every 
possible association between the new measurement and the existing measurements is calculated, and then a 
statistical distance threshold may be specified below which the measurements are deemed to associate. 
Furthermore, by setting a hard threshold on the statistical distance it is possible to conclude that a particular 
measurement does not associate with any existing measurements. In this manner, an unknown number of targets 
can be coped with. 
 
The disadvantage of this method lies in the implied association assumption that it makes. Consider the case when 
the uncertainty in the measurements is very large. This equates to very large covariances. With such large 
covariances, the statistical distance between the two measurements at any one time could be small, and the 
measurements would therefore associate. Depending on the application, this assumed “associate unless proven 
otherwise” can be a severe disadvantage. In such a situation, it would be preferable to assume non-association 
somehow, or signify that it isn’t really known whether the measurements associate or not. Furthermore, setting a 
hard threshold for non-association is troublesome, as defining the most appropriate value is difficult. Finally, the 
probability of association is not directly available using this method, which is often a desired parameter. 
 
2.2 Bayesian Probability 
The Bayesian probability method does away with the assumed association of the statistical distance method[3]. 
Bayes theorem states 
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i.e. the probability of a given b is true is the a-priori probability of a multiplied by the probability of b given a 
divided by the unconditional probability of b. Applied to the association problem 
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where λE,N is the association of existing measurement XE with new measurement XN. For the simple 1-to-many 
case, P(λE,N) is the inverse of the number of existing measurements, discounting the possibility of the new 
measurement not associating with any of the existing measurements.  
 
p(XE,XN|λE,N), the probability of the data given that they associate, is simply the probability of XN from a 
distribution of mean XE and covariance QE+QN. If the distributions are assumed Gaussian, 
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p(XE,XN), the unconditional probability of the data, cannot be calculated directly, but can be treated as a 
normalising factor, as if all possible associations are considered, the sum of the probabilities must equal 1, and 
p(XE,XN) is constant over all λE,N. 
 
It must be noted that if the number of targets isn’t known, or the existing measurements do not cover all the 
targets, then assumptions must be made about the distribution of the likely number of true targets, and their 
spatial distribution. This is not a simple matter due to important subtleties that can lead to biasing towards 
association or non-association, and will not be considered in this short paper. 
 
The probabilities of the different associations can then be used to decide which are the correct associations in the 
same manner as with the statistical distance method, and give the confidence of that association. 
 



The advantages of the Bayesian method in 1-to-many association are therefore its mathematical simplicity and 
the fact that association is not assumed. Furthermore, a probability of association is derived, which is of great use 
when decision making is considered. However, there is the issue of extra assumptions required when the true 
number of targets is unknown. 
 
3 Many-to-Many 
The many to many association problem is significantly more complicated than the 1-to-many association 
problem. In this situation there are several existing measurements and also several new measurements. This 
means that there is not only the possibility that 1 new measurement will associate with several existing 
measurements, but also the possibility that 1 existing measurement will associate with several new 
measurements (figure 2). 
 
 
 
 
 
 
 
 
 
 
 
 
An extension to the 1-to-many statistical distance method is commonly referred to as the global nearest 
neighbour method, which deals with this many to many association problem. However, the disadvantages of the 
statistical distance method remain. 
 
To overcome the disadvantages of the Global Nearest Neighbour method, an extension to the Bayesian method 
may be used. If the 1-to-many Bayesian method is considered again, each possible association, λN,E, can be 
termed a hypothesis, and so with 3 existing measurements and 1 new measurement, there are 4 hypotheses, 
including the non-association hypothesis (0), λN,0, λN,1, λN,2 and λN,3. These account for all possibilities. Similarly, 
when multiple new measurements are present, a set of hypotheses can be generated. For the case of 2 existing 
measurements and 2 new measurements, there are 7 hypotheses, including those where one or more new 
measurements don’t associate with existing measurements. Similarly, for the case of 3 existing measurements 
and 2 new measurements, there are 13 hypotheses. 
 

 N1 N2 
h0 =  (λ1,0, λ2,0) - - 
h1 =  (λ1,1, λ2,0) E1 - 
h2 =  (λ1,2, λ2,0) E2 - 
h3 =  (λ1,0, λ2,1) - E1 
h4 =  (λ1,0, λ2,2) - E2 
h5 = (λ1,1, λ2,2) E1 E2 
h6 = (λ1,2, λ2,1) E2 E1 

 
N=2, E=2, 7 hypotheses 

 
 
 
 
 
 
 

 N1 N2 

h0 = (λ1,0, λ2,0) - - 
h1 = (λ1,1, λ2,0) E1 - 
h2 = (λ1,2, λ2,0) E2 - 
h3 = (λ1,3, λ2,0) E3  
h4 = (λ1,0, λ2,1) - E1 
h5 = (λ1,0, λ2,2) - E2 
h6 = (λ1,0, λ2,3) - E3 
h7 = (λ1,1, λ2,2) E1 E2 
h8 = (λ1,2, λ2,3) E2 E3 
h9 = (λ1,3, λ2,1) E3 E1 
h10 = (λ1,1, λ2,3) E1 E3 
h11 = (λ1,2, λ2,1) E2 E1 
h12 = (λ1,3, λ2,2) E3 E2 

 
N=2, E=3, 13 hypotheses 

 
The Bayesian equation then becomes 
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The a-priori probability of a hypothesis is constant for a constant number of new measurements, existing 
measurements and associations and can be simply calculated. The number of hypotheses is given by 

Existing measurements

New 
measurements 

Figure 2 The many-to-many association problem 
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where E is the number of existing measurements, N is number of new measurements and L is the number of 
associations in a hypothesis. 
 
p(Xn1, Xn2,...XnN, Xe1, Xe2,...XeE) is once again a normalising factor as it is constant for all hi, and can be calculated 
once all hypotheses have been considered. 
 
It remains to calculate p(Xn1, Xn2,...XnN, Xe1, Xe2,...XeE|hi). This can be calculated as for the 1-to-many case, with 
the individual measurements being formed together into vectors of measurements, and the covariances formed 
into one big covariance matrix, taking care of the order in the vectors implied by the association hypothesis. For 
example, for hypothesis 10 
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Through these calculations, it is possible to calculate the probabilities of individual associations by accumulating 
the probabilities from those hypotheses that contain the particular association of interest (figure 3).
 

 N1 N2 P(hi|XE,XN )%
h0 = (λ1,0, λ2,0) - - 2 
h1 = (λ1,1, λ2,0) E1 - 0 
h2 = (λ1,2, λ2,0) E2 - 40 
h3 = (λ1,3, λ2,0) E3  2 
h4 = (λ1,0, λ2,1) - E1 12 
h5 = (λ1,0, λ2,2) - E2 1 
h6 = (λ1,0, λ2,3) - E3 10 
h7 = (λ1,1, λ2,2) E1 E2 1 
h8 = (λ1,2, λ2,3) E2 E3 20 
h9 = (λ1,3, λ2,1) E3 E1 1 
h10 = (λ1,1, λ2,3) E1 E3 1 
h11 = (λ1,2, λ2,1) E2 E1 10 
h12 = (λ1,3, λ2,2) E3 E2 0 

 Σ P(hi|XE,XN ) = 100% 

 
 
 
 
 

 E1 E2 E3

N1 2 70 3 
N2 23 2 31 

 
Association Probabilities 

(%) 
 
 
 
 
 
 

 
4 Conclusion 
Association of measurements to existing measurements is of key importance in many engineering systems. Two 
probabilistic methods have been presented, the statistical distance method, and the Bayesian probability theory 
method. Of these the statistical distance method has the severe disadvantage of assuming association unless 
proven otherwise, and does not provide a probability of the association being correct. This is overcome using the 
Bayesian method, which makes no assumptions about association and does provide a probability of association. 
However, the Bayesian method is more complex, especially when the number of targets is unknown. 
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Figure 3 Calculation of association probabilities from hypothesis probabilities 


