
A Study of Distributed Low Latency Application Layer

Multicast Tree Construction

Su-Wei Tan, Gill Waters, John Crawford
Computing Laboratory, University of Kent

Abstract

We are interested in constructing low latency data delivery trees for application layer multicast
(ALM). A salient feature of ALM is that it uses an overlay topology built on top of existing unicast
services to bypass the need for the network layer multicast support. However, ALM protocol hosts are
normally end systems that have constrained access bandwidth, processing capability and topological
knowledge. These limitations suggest that the overlay structure used for data delivery must be degree-
bounded, and need to be constructed in a decentralised manner using limited topology information.
In this paper, we report a comparative study of a wide range of existing distributed ALM overlay
construction techniques that adhere to the above requirements.

1 Introduction

Over the past few years, application layer multcast (ALM) has received much attention. This is mainly
because it offers an alternative to realising group communication applications over the global Internet,
which has been hindered by the sporadic deployment of IP multicast infrastructure. In ALM, all multicast
functionalities such as packet replication and membership management are implemented directly at end
systems like desktop/laptop computers, proxy servers, etc. These end systems are organised into an
overlay topology for multicasting. The edges in the overlay are unicast tunnels between the end systems.
Hence, the key to the efficiency of an ALM solution lies in the overlay structure used.

We are interested in the problem of creating low latency degree-bounded data distribution trees for
point-to-multipoint applications. The degree constraint is due to the limited available bandwidth and
processing capability at the end systems. This type of tree is particularly useful for real-time applications
such as live webcasting and critical event notification. Specifically, we look at the following optimisation
problem:

Minimum maximum-latency degree-bounded spanning tree problem: Given a data source, s
and a set of receivers, and the degree constraint for each of these nodes, construct a degree-bounded
overlay spanning tree rooted at s such that the maximum delay from s to the receivers is minimised.

A key issue in creating an efficient overlay structure is the end systems’ lack of knowledge of the underlying
topology and its performance metrics, e.g. delay and bandwidth. To obtain such information, an ALM
protocol often uses active end-to-end measurement techniques. As such a technique consumes substantial
network bandwidth, it is impractical to gather the metrics for all node-pairs — for an n-node system,
O(n2) measurements will be needed. This indicates that a practical solution needs to work with limited
topological knowledge. In addition, the solution must limit the interaction between the members so as
to scale to large group sizes. Unfortunately, the above problem is NP-hard [1] even under a centralised
computational model.

We believe that a practical solution for the tree construction problem needs to be fully distributed. The
aim of this work is to understand the properties of existing solutions, which serves as a basis for the design
of a new protocol. In this paper, we compare the quality of the overlay trees generated by several existing
ALM protocols. The chosen protocols encompass a wide spectrum of overlay construction techniques.

2 Selected Distributed ALM Trees Construction Protocols

In general, a distributed overlay construction protocol consists of two phases: i.) joining phase; and ii.)
maintenance phase. The joining phase deals with the creation of a new group and bootstrapping of new
members into a running session, i.e. attaching to the existing overlay. Once attached to the overlay,
members participate in maintenance functions such as overlay connectivity maintenance, overlay opti-
misation, and membership management. The overlay optimisation process normally involves periodical
reconfiguration of the overlay structure. A reconfiguration operation (e.g. add/delete an overlay link) is
done if it will improve the quality of the overlay.



In the following discussion, we will focus only on the overlay construction and optimisation techniques;
other aspects of the protocols (e.g. loop detection/avoidance/etc.) are beyond the scope of this paper.

The rest of this section briefly reviews the chosen protocols. We select representative protocols that are
designed to be scalable and are able to produce degree-constrained trees. Some of these are modified
slightly to give known improvements.

HMTP [2]: HMTP is designed to create low cost trees, where the cost of a tree is defined as the sum of
delays on the tree links. To construct a low cost tree, each node (except the root) periodically attempts
to look for and switch to a new parent that is nearer to itself than its existing parent. HMTP uses a
depth-first search technique to explore a branch of the tree at a time when looking for a potential parent.

Switch-trees [3]: Switch-trees defines a set of scope limited switch-parent operations to reconfigure the
overlay trees. A switch operation is performed when a node finds that the switch target (i.e. potential
parent) provides better performance (e.g. lower delay from the tree root) than its current parent. The
proposed scopes include nodes that are h hops away from a node that tries to perform a switch. In this
paper, we consider the case where h = 2, which is a practical and yet efficient solution compared to other
cases proposed in the paper. In [4], the authors proposed HostCast for creating low latency overlay trees.
HostCast also adopts the switch-parent operation for nodes within a local region. The local region for
a node x defines its potential parents, which include x’s grandparent and uncles. In addition, HostCast
allows a parent-child pair to swap position to achieve better performance. In our 2-hop switch-trees
implementation, we include the swap operation. As the 2-hop scope is the superset of HostCast’s local
region, we expect that our version of switch-trees to perform better than HostCast.

AOM [5]: AOM can be viewed as a hybrid of the above-mentioned protocols: it provides a set of
conditions that combine the efforts to reduce the tree cost and delay from the tree root. The conditions
are weighted by two parameters (i.e. α and p, where 0 < α, p < 1): these two values can be tuned to
choose a new parent that is sufficiently close and also provides low delay to the tree root. AOM uses a
local region that is similar to HostCast. Its delay properties have been shown to out-perform those of
HMTP [5].

Banerjee et al.’s scheme [6]: This scheme was originally designed to create minimum-average latency
trees for a proxy-based architecture. Extension were suggested for building minimum maximum-latency
trees. It defines a set of local transformation operations (e.g. switch-parent, swapping) for nodes within
two levels of each another. Besides the information about the delay from the tree root (as in switch-
trees, HostCast and AOM), a node also keeps the maximum delay for the subtree rooted at itself. A
transformation is made if it improves the objective function and does not increase the subtree delay.

TBCP [7]: TBCP is a generic tree building protocol. It uses a localised central arrangement scheme to
place a node into the delivery tree. Basically, when a node x tries to join to a node y, x measures the
distance from itself to y and y’s children. Based on this information, and the distance information from
previous rounds, y knows the complete distance matrix for itself, its children and x. It then selects the
best configuration to place x onto the subtree rooted at itself, where the goodness of a configuration is
judged by a score function. In this paper, we use a score function proposed in [8], which has been shown
to out-perform the original function. In particular, the function tries to minimise the maximum stretch
in the configuration.

Scribe [9]: Scribe constructs ALM trees on top of overlays built with Pastry [10], an efficient peer-to-peer
object location protocl. Basically, Scribe utilises Pastry’s good routing properties to attach newcomers
to nodes that are topologically close to them. Instead of implementing the whole Pastry-Sribe protocol
set, we simulate Scribe trees in the following manner. When a newcomer, say x, joins a session, we attach
x to the nearest on-tree node, say y. If y found that adding x violates its degree bound, y executes the
“bottleneck remover algorithm” as suggested in Scribe. Specifically, y drops its farthest child, which will
be redirected to one of y’s remaining children. Once attached to the tree, a node periodically uses the
above procedures to improve its on-tree position.

3 Performance Evaluation and Discussion

We use a custom written event-driven simulator for the experiments. The experiments run on topologies
generated by two well-known models: i.) transit-stub; and ii.) power-law. We report representative results
from a 10100-node transit-stub network, and a 5000-node power-law network. For all experiments, each
end system is randomly attached to one of the routers. Each of them is assigned a maximum out-
degree which is uniformly distributed between 2 and 10. For each simulation scenario, we conduct 50



independent runs and report the average. Fig. 1 and Fig. 2 illustrate the quality of the delivery trees built
with different techniques, in terms of four widely used metrics, observed under the transit-stub network
and the power-law network respectively.

Tree Cost Ratio (TCR) [2]: Tree cost is calculated as the sum of delays on the overlay tree’s links.
It provides a simplified view of the total network resource consumption of a tree. We calculate TCR as
the ratio between the costs of the overlay tree and the network layer shortest path tree. From Fig. 1 (a),
we can see that Scribe and HMTP have the smallest TCR, which is then followed by AOM, switch-trees,
TBCP and Baneerjee et al.’s scheme. The low TCR observed for Scribe and HMTP is because they
try to place nodes that are topologically close together, and thus produce low cost tree. Scribe shows
smaller TCR than HMTP as our implemented version exploits the knowledge of the underlying topology.
Other protocols try to minimise the delay properties, which often result in a tree that has a compact

structure. In other words, longer links may be added into the tree, and result in high tree cost. We can
also observe a rather similar trend for results obtained from the power-law network (see Fig. 2 (a)). One
major difference is that the TCR values are relatively smaller compared to the transit-stub network.

RMP: RMP is defined as the ratio between the maximum latency from the root, s to other nodes using the
overlay tree and the maximum latency from s to other nodes using direct unicast connections. Therefore,
it represents the objective of the low delay degree-constrained tree problem mentioned in Section 1.
Fig. 1 (b) shows that Scribe and HMTP perform worse than the other protocols. This is because they
produce low cost tree that often have long overlay paths between the nodes, and consequently results in
a taller tree. Between these two protocols, Scribe which shows better TCR has higher RMP than HMTP.

For other protocols that specifically try to minimise the root delay, we found that Banerjee et al.’s scheme
performs the best, which is followed by switch-2hop, TBCP and AOM. As Banerjee et al.’s scheme utilises
more flexible tree reconfiguration technique, and uses additional information (i.e. subtree delay), its better
performance is expected. The results for the power-law network (see Fig. 2 (b)) show a similar trend,
except that the RMP for trees generated by AOM increases rapidly with the group size, which eventually
show higher RMP than HMTP and Scribe. We note that the performance of AOM can be tuned with two
configurable parameters, and we chose to use the best setting suggested in [5], i.e. α = 0.9 and p = 0.2.
However, the above observations suggest that the optimal setting of the parameters is very sensitive to
the underlying topologies used. This is an undesirable property as the best model for the Internet is still
an open question.

RAP: RAP is defined as the ratio between the average latency from s to other nodes using the overlay
tree and the average latency from s to other nodes using direct unicast connections. From Fig. 1 (c),
we can see that the comparison among the protocols are quite similar to that for RMP, for the same
network model. One observable difference is that TBCP provides the lowest RAP. From Fig. 2 (c), we
can observe that TBCP again provides the lowest RAP.

Link Stress: Link stress is defined as the number of duplicated copies of identical packet flows over a
single link. Hence, it represents the redundant traffic injected in to the network by an ALM solution.
From Fig. 1 (d) and Fig. 2 (d), we can observe that the performance trend roughly follows those of the
TCR. In other words, protocols that produces low cost trees also have lower traffic redundancy.

Comparing the maximum stress values observed for both network models, we can see that the transit-
stub network always result in higher stress (as well as TCR). In a transit-stub network, each stub domain
attaches to a transit domain via limited stub-transit links, which results in traffic concentration on
these links. On the other hand, the power-law model creates a flat topology, which allows traffic to be
distributed more evenly to all links.

Summary: The above results show that Banerjee et al.’s scheme can produce trees with the smallest
radius, i.e. the maximum delay from the tree root to the other nodes. However, as low delay trees tend
to be more compact in structure, this results in high tree cost (i.e. resource usage) and link stress. As
the compact structure often causes nodes that are topologically close to be placed farther apart, the
average delay to all nodes may suffer. For example, this can be viewed from the better RAP performance
of TBCP, which tries to minimise the stretch between the nodes. On the other hand, protocols that
produces low tree cost (i.e. Scribe and HMTP) show the worst delay performance. Overall, this proves
that there is a trade-off between delay and tree cost (and link stress), i.e. minimising tree cost results
in high end-to-end delay; minimising delay results in high tree cost and link stress. Between these two
extremes, there is a wide spectrum of other trees that provide varying cost and delay values. By using two
different network models, we also observe some topological effects on the performance of the protocols.



 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1024 512 256 128 32

T
re

e 
C

os
t R

at
io

Group Size
(a)

Banerjee et al.
TBCP

Switch-trees
AOM

HMTP
Scribe

 1

 2

 3

 4

 5

 6

 7

 1024 512 256 128 32

R
M

P

Group Size
(b)

Scribe
HMTP
AOM

TBCP
Switch-trees

Banerjee et al.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1024 512 256 128 32

R
A

P

Group Size
(c)

Scribe
HMTP
AOM

Switch-trees
Banerjee et al.

TBCP

 0

 10

 20

 30

 40

 50

 60

 70

 1024 512 256 128 32

M
ax

im
um

 L
in

k 
S

tr
es

s

Group Size
(d)

Banerjee et al.
TBCP

Switch-trees
AOM

Scribe
HMTP

Figure 1: Results for Transit-stub Network: (a) TCR, (b) RMP, (c) RAP and (d) Max. Link Stress

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1024 512 256 128 32

T
re

e 
C

os
t R

at
io

Group Size
(a)

Banerjee et al.
Switch-trees

TBCP
AOM

HMTP
Scribe

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1024 512 256 128 32

R
M

P

Group Size
(b)

AOM
Scribe
HMTP
TBCP

Switch-trees
Banerjee et al.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1024 512 256 128 32

R
A

P

Group Size
(c)

AOM
Scribe

Switch-trees
HMTP

Banerjee et al.
TBCP

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1024 512 256 128 32

M
ax

im
um

 L
in

k 
S

tr
es

s

Group Size
(d)

Banerjee et al.
Switch-trees

TBCP
AOM

Scribe
HMTP

Figure 2: Results for Power-law Network: (a) TCR, (b) RMP, (c) RAP and (d) Max. Link Stress

4 Concluding Remarks

We are interested in building low latency degree-bounded application layer multicast trees for single source
real-time applications. This work is carried out as the first step towards enhancing/designing protocols
for such applications. In this paper, we report a simulation comparison for the following existing overlay
tree construction protocols: a scheme by Banerjee et al., HMTP, Scribe, TBCP, switch-trees, HostCast
and AOM. The results show that Banerjee et al’s scheme can produce trees with the smallest worst-case
delay from the tree root to the other nodes. However, this sometimes results in poorer average delay
to the nodes. In addition, such low delay trees often have high traffic redundancy and network resource
usage. On the other hand, protocols like Scribe and HMTP try to connect nodes that are topologically
close together, and yield low traffic redundancy and resource usage. However, the resultant trees often
have high end-to-end delay.

Based on the above observations, we have designed a new scheme called MeshTree [11], which considers
both the delay and the closeness of the overlay nodes. The resultant trees show good delay, traffic
redundancy and resource usage properties, compared to Baneerjee et al.’s scheme.

References

[1] S. Y. Shi, J. S. Turner, and M. Waldvogel. Dimensioning server access bandwidth and multicast routing in overlay
networks. In NOSSDAV, Port Jefferson, New York, USA, 2001. ACM.

[2] B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework for delivering multicast to end users. In IEEE
INFOCOM, pages 1366–1375, New York, USA, 2002.

[3] D. A. Helder and S. Jamin. End-host multicast communication using switch-trees protocols. In Workshop on Global
and Peer to Peer Computing on Large Scale Distributed System (GP2PC), 2002.

[4] Z. Li and P. Mohapatra. Hostcast: A new overlay multicast protocol. In IEEE ICC, Anchorage, Alaska, USA, 2003.
IEEE.

[5] Shuju Wu, Sujata Banerjee, Xiaobing Hou, and R. A. Thompson. Active delay and loss adaptation in overlay multicast
tree. In IEEE ICC, Paris, France, 2004.

[6] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S Khuller. Construction of an efficient overlay multicast
infrastructure for real-time applications. In IEEE INFOCOM, San Francisco, USA, 2003.

[7] L. Mathy, R. Canonico, and D Hutchison. An overlay tree building control protocol. In Networked Group Communi-
cation, pages 78–87, London, UK, 2001.

[8] S. W. Tan and Gill Waters. Building low delay application layer multicast trees. In 4th Annual PostGraduate
Symposium (PgNet), Liverpool, UK, 2003.

[9] M. Casto, P. Druschel, A. M. Kermarrec, and A. Rowstron. Scribe: A large-scale and decentralised application-level
multicast infrastructure. IEEE JSAC, 20(8), 2002.

[10] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on Distributed Systems Platforms, 2001.

[11] S. W. Tan, Gill Waters, and J. Crawford. MeshTree: A delay-optimised overlay multicast tree building protocol.
Submitted conference paper under submission, Computing Laboratory, University of Kent, 2004.


