
Stigmergy: A Wide Area Service Discovery Protocol for Active Networks

Kalaiarul Dharmalingam and Martin Collier
Research Institute for Networks and Communications Engineering (RINCE),

Dublin City University, Republic of Ireland

Abstract

The touted goal that drives the field of Active Networks lies in the concept of dynamic service provisioning. In this, when
an Active Node is presented with a request for a service, it will be able to either provide the service: (i) immediately – if
the requested service is available locally; or (ii) after an initial delay – caused due to discovery, deployment and instantiation
of the service dynamically. The delay to dynamically discover and deploy Active Services can affect the overall quality of
service perceived by end applications. Hence, efficient service discovery mechanisms are essential for proper operation. In this
paper we present a service discovery protocol, referred to as Stigmergy, which supports the discovery of Active Services in the
network. The key feature of the Stigmergy protocol is that each Autonomous System in the network is treated as an independent
two level caching structure in which the upper level, L1, contains pointers to active services that are present in the lower level,
L0. This protocol, by self-organising network nodes that are under a common administrative control into virtual cache clusters,
maximises the chances of discovering the required services within minimal latencies. Furthermore, the Stigmergy protocol is
completely distributed and follows a best-effort cache co-operation model. Finally, this protocol avoids the need to configure
and maintain independent caching frameworks for service discovery purposes.

I. INTRODUCTION

The current Internet suffers from slow network evolution, due to lengthy standardisation processes and compatibility
concerns. One way to overcome the network evolution problem is to introduce programmability into network nodes, a feature
already available in end user systems. Active Networks are targeted towards achieving this goal. In Active Networks, the
traditional model of packet forwarding, store-and-forward, is replaced by store-compute-forward, thereby enabling packet
processing support at intermediate nodes as they travel through the network. The key feature of Active Networks is the
flexibility to dynamically deploy new services at network nodes in response to user demands.

Data packets in Active Networks carry the name of the Active Service which should process them at intermediate network
nodes. When a Active Router is presented with a request for a service, the node will be able to either provide the service: (i)
immediately – if the requested service is available locally; or (ii) after an initial delay – caused due to discovery, deployment
and instantiation of the service locally. Setting up services on-the-fly involves the following costs: (i) increased memory
requirements – the packets that arrive during service discovery phase will have to be buffered until the service is instantiated
locally; and (ii) increased initial delay experienced by those packets that arrive when the service is not available locally.
Thus, the delay to dynamically discover and deploy Active Services can affect the overall quality of service perceived by end
applications. Hence, efficient protocols are required for providing service discovery support. Note a detailed analytical study
that formulates the dynamics of an Active Networking system providing dynamic service provisioning can be found in our
earlier work [1].

Some of the approaches that are currently followed by existing Active Networking systems for service discovery support
are: (i) loading from the source [2]; or (ii) loading from a code server [3]. The “load from source” approach does not scale
to a large user population. This is because each individual end application will have to download and host service codes
locally before usage. This operation is performed even if the intermediate nodes host the required service, thus introducing
redundant traffic within the network. Alternatively, the use of code servers to host Active Services has been proposed. In this
model, code servers are arranged in a hierarchy, similar to DNS nodes in the current Internet. When a network node requires
a new service, it performs a search through this hierarchy to locate and download the desired module. The major problems
that arises when working with this approach are: (i) code servers will have to be configured to co-operate with neighbouring
repositories in the hierarchy; (ii) the request does not always follow the shortest path route to the server hosting the required
service; and (iii) those nodes that are higher in the hierarchy become points of implosion under heavy loading conditions. We
believe that a decentralised solution is more appropriate, taking into account the ever expanding size of networks.

II. GLOBALLY UNIQUE LABELS FOR ACTIVE SERVICES

In our model, the server function of hosting Active Services is distributed across: (i) the intermediate network nodes; and
(ii) the “home nodes” located at network edges. By “home node” of an Active Service, we refer to a node that is responsible
for permanently hosting the Active Service. In order to identify each Active Service uniquely in the network, we propose to
follow the URI naming scheme [4]. In this, names for individual Active Services are derived by concatenating: (i) the address
of the home node of that Active Service; and (ii) its service specific label name. These attributes are set by the home node
and do not change for the lifetime of an Active Service. For example < 192.168.254.1/packet−duplication − service >
denotes a label of an Active Service. Here, “192.168.254.1” represents the address of the home node and its service specific
label is “packet-duplication-service”. This Uniform Resource Identifier (URI) based scheme coupled with network level
routing support is used to build the Stigmergy protocol.



T

B

B

B1

S
a

T

B4

B3
b

N

d
c

Home Server 
(H)

Node "S" requires service "X"

X

B2

Autonomous System - A
Autonomous System - B

Home Server 
(K)

(a) An Example of Service Discovery in ABC Framework

Protocol Number 
 

(Service Request)

Source Address 
 

(Requesting Node)

Destination Address 
 

(Home Node for the Active 
Service)

Active Service 
Name

(b) Format of a Request Packet in Stigmergy

Fig. 1

III. STIGMERGY PROTOCOL CONCEPT

The key feature of the Stigmergy protocol is that each Autonomous System in the network is treated as an independent
two level caching structure in which the upper level, L1, contains pointers to Active Services that are present in the lower
level, L0. For example in Fig. 1(a), information about various Active Services that present at Active Nodes within the
Autonomous System A, are stored at level L1, which can subsequently be used by other nodes in the network for service
discovery. However, many issues have to be addressed to realise such a system. They are:
(a) Which node(s) in an Autonomous System should be elected to function as L1 point(s) ?
(b) How to construct the L1 level representation for an Autonomous System?
(c) What would be the criteria used to decide whether the Active Router which requires a service should initiate a discovery

process, (i.e. contact distributed L1 levels in the network) or contact the home node of the Active Service directly?
(d) What search strategy should be adopted to route service requests through various L1 levels within the network?
(a) Border Routing Nodes as Aggregation Points: The border router nodes of an Autonomous System are the most suitable
points to act as L1 locations for the following reasons. A routing path for packet in the Internet comprises segments that span
different Autonomous Systems. Individual Autonomous Systems contain both interior and exterior routing nodes (border
nodes). The former route packets within the domain, while the latter perform inter-domain routing, i.e. between neighbouring
Autonomous System (Fig. 1(a)). Thus, when a packet needs to traverse an Autonomous System, it must be routed through
one of its border nodes. Thus, by storing pointers at border routing nodes of an Autonomous System, we can create an exact
map of the services available within it.
(b) Self-organising Network Caches: The list of Active Services present at caches of each individual Active Node can be
announced to the border router nodes of the domain1. The border routing nodes can record these announcements into the
“L1 Table”. The information recorded into the L1 Table should contain the name of the Active Service and the address of
the node on which it currently resides. Thus, the model follows a self-organising technique to build the information for the
L1 level.
(c & d) The Combined Model: The decision as to whether a node requiring a service must search the network caches or
contact the home node directly is not clear cut. One approach is described below. The node which requires the service sends
a request to the home node. Should the request pass through a border node which contains a reference to the service, the
border node suppresses the request and deals with it itself. Otherwise the request will reach the home node for processing.

A. Working of the Stigmergy Protocol
The Stigmergy protocol for performing service discovery is presented below. An Active Node (node S in Fig. 1(a)) on

facing a miss for an Active Service generates a request to the home node (node H) of the required service (say X). Recall that
the address of the home node for an Active Service can be extracted from its name (section II). The format of the request
packet is shown in Fig. 1(b). The request packet is routed along the shortest path route to the home node. In Fig. 1(a), the
shortest path route from S to H is, S-a-B1-B2-b-c-d-B3-H. When the packet reaches a border router2 (e.g. either B1 or B2),
it performs the following operations.

First, it extracts the name of required Active Service from the request packet. Next, it checks whether there is a correspond-
ing entry for the particular service in its L1 Table. If the result is true (i.e. a hit), the border router signals the node holding
the service to send a copy of the service to the node requiring the service code (i.e. to the source address of the packet).
However, when there is no entry in the L1 Table (i.e. a miss), the border node simply forwards the packet on the shortest
routing path towards the packet’s destination address, i.e. the home node of the Active Service. In the case of B1 as in Fig.
1(a), it does not contain an entry for the service. Hence, it simply forwards the packet towards H. However, when the packet
reaches B2, it identifies that the required service is present at node N. Hence, B2 signals N to deliver the requested service to
node S. Thus, the border node functions as a packet deflector service within the network for service discovery packets.

1It is assumed that each node in a domain is aware of the address list of its border routers
2Its assumed that Stigmergy packets are recognised by border routing nodes based on a unique protocol number, while intermediate network nodes route

them as regular data packets.



B. Discussion

Minimising State at Border Routers: In the above approach, each border router of an Autonomous System stores pointers
for all the services present within it. This state information at border routers can be reduced by exploiting the phenomenon
of route aggregation present in the Internet [5]. For example considering the Autonomous System B in Fig. 1(a), the shortest
route paths from N to H and K are through B3 and B4 respectively. In this case, routing requests for H , would always
traverse B3. Based on this fact, B3 can restrict itself to caching only those entries of services which belong to H , while B4

can restrict itself to entries of K. Recall that names of Active Services include the address of the home node. This feature
can be exploited to achieve an optimal storage model for the Stigmergy protocol.
Status of Routing Nodes: Routers may go out of service abruptly without prior announcements due to node or link failures.
Hence, border routers should avoid assigning discovery requests to those nodes that have announced participation in the L1

cache, but are later unavailable for service. For this purpose, the L1 Table must also record the status of the Active Nodes
that are participating. The periodic routing updates sent by Interior Gateway Protocols (e.g. RIP, OSPF protocols) can be
used for this purpose.

C. Key Benefits of the Stigmergy Protocol

Large Virtual Caches: This protocol, by self-organising network nodes that are under a common administrative control into
virtual cache clusters, maximises the chances of discovering the required service locally.
Zero Cache Cooperation: The Stigmergy protocol is completely distributed and follows a best-effort cache co-operation
model. By this we mean that Active Nodes can join/leave a virtual cache group depending on a best-effort basis. Furthermore,
this architecture avoids the need to configure and maintain independent caching framework for service discovery purposes.
Locate Unpopular Services with Minimal Delay: The search requests always follow the shortest path to the home node of
the Active Service. This feature is of immense value to unpopular services which are not widely deployed in the network.

IV. EVALUATING DEPLOYMENT LATENCIES OF ACTIVE SERVICES

We use simulations to study the service deployment latencies in wide area networks, such as the Internet. The service
deployment delay consists of: (i) the delay to obtain the necessary bytecode of the service; and (ii) the delay to instantiate
the service locally. However, the time to download the required bytecodes constitutes the significant element of the total
service deployment time. We used the Network Simulator (ns) package [6] for performing the simulations. Our analysis
was performed using the core-stub network topologies generated by the GT-ITM [7] package. The topology used in our
simulations is shown in Fig. 2(a). The network has an average node degree 3.6, with effective path bandwidth of 10Mbps
and link delay of 30ms.

1) Stigmergy Protocol Vs. Code Server Model: In the simulation setup, three nodes are selected to represent the Active
Node requesting service (client), the node containing the required service (cache) and the home node of the Active Service.
The distance between the client and the home node is configured to be 14 hops. The location of the cache is selected at a
midway point between the client and the home node, i.e. 7 hops in this case. The server and cache nodes are configured
to host various services of sizes in the range 500Bytes to 32KBytes. TCP is used for communication purposes. In the first
set of experiments, we measure the service deployment delay without caching. The client node is configured to contact the
home node for the bytecode file necessary to deploy a service. Fig. 2(b) shows the results of this analysis. In the next set
of experiments, the client uses the Stigmergy protocol to discover the cache node, and requests the code from it. Fig. 2(b)
shows the results of this analysis. Note this delay is sum of the discovery and code fetching delays.

2) Stigmergy Protocol Vs. Non-caching Scheme: Here we analyse the performance of the Stigmergy protocol with various
ratios of caching level support available in the network. For this purpose, we measured the variation of downloading delay
incurred by the Stigmergy protocol as a function of cache distance from the client node; and then, using equation 1 we
calculated the normalised delay of the cache-less approach, i.e. where the network nodes do not participate in distribution of
Active Services

Normalised Overhead of Cache− less =
TStandard − TCache

TCache

(1)

where, TStandard denotes the time to obtain the service from the home node, while Tcache denotes the time to download
from the cache. The simulation setup for the measurements involved a server (the home node), client and a cache node. The
server was configured to be 15 hops away from the client. For every measurement we varied the cache location in relation to
the client from a distance of 2 to 14 hop counts, in increments of 2. We also measured the downloading delays for various
client locations and server positions. The measurements were performed for code sizes of 500Bytes and 2.5KBytes. Fig. 2(c)
shows the results from this analysis. Next, using equation 1, we evaluated the overhead incurred by the cache-less approach
relative to the Stigmergy protocol. The results are presented in Fig. 2(d).

Discussion of Results: Fig. 2(b) shows the variation in downloading delay as a function of code size. By exploiting the
caches present at Active Routers, the Stigmergy protocol achieves a near three fold reduction in downloading delay. The
cache-less approach introduces considerably more delay than the Stigmergy protocol. This is shown in Fig. 2(d), where the
delay associated with the cache-less approach is shown as a proportion of the corresponding delay for a network using the
Stigmergy protocol. Excess delays imposed by active network systems on packets requesting services will adversely affect
end applications. Furthermore, in such systems, packets will be dropped if the required set of services are not deployed



34

285

33

284

32

283

31

282

29

30

281

28

279

280

27

278

26

277

25

276

24

275

23

274

22

273

21

272

19

20

271

18

269

270

17

268

16

267

15

266

14

265

13

264

12

263

11

262

10

261

259

260

258

257

256

255

254

253

252

251

249 250

248

247

246

245

244

243

242

241

239

240

238

237

236

235

234

233

232
231

229

230

228

227

226

225

224

223
222221

219

220

218

217

216

215

214

213

212

211

199

209

210

198

208

197

207

196

206

195205

194

204

193

203

192
202

191

201
190

189

200

188

187 186

185

184

183

182

181

180

179

178177

176

175

174

173
172

171170
169

168
167

166

165

164

163

162

161

160

159

158

157

156

155

154

153

152

151

150

149

148147
146

145

144

143

142

141

140

139

138

137

136

135

134

133

132
131

130

129

128

127126

125

124

123

122
121

120

119

118

117

116

115

114

113

112

111

110

109

108
107

106

105

104

103

102101

100

99

98

9

97

8

96

7

95

6

94

5

93

4

92

3

91

2

90

89

1

88

0

87

86

85

84

83

82

81

80

79 7877

76

75
74

73

72

71

70
69

68

67

6665

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49 48

299

309

47

298

308

46

297

307

45

296

306

44

295
305

43

294

304

42

293

303

41

292

302

39

40

291

301

38

289

290

300

37

288

36

287

35

286

(a) Network Topology used for Analysing Stigmergy

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

D
ep

lo
ym

en
t D

el
ay

 (s
ec

on
ds

)

Active Service Code Size (KBytes)

From Server (20 Hops)
From Active Router Cache (10 Hops)

(b) Service Deployment Delay in the Reactive Model

0

0.5

1

1.5

2

2 4 6 8 10 12 14

D
ow

nl
oa

d 
D

el
ay

 (s
ec

)

Hop Count to Cache of Active Router

Code Size = 1 KBytes
Code Size = 2.5 KBytes

(c) Service Deployment Time for various Cache Loca-
tions within the Network

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14

N
or

m
al

is
ed

 D
el

ay
 o

f S
er

ve
r A

pp
ro

ac
h 

(%
)

Hop Count to Cache of Active Router

Code Size = 500 Bytes
Code Size = 2.5 KBytes

(d) Normalised Delay of the Cache-less Approach for
Service Deployment

Fig. 2
PERFORMANCE ANALYSIS OF THE STIGMERGY PROTOCOL

within a predefined time bound. This will in turn increase the number of failed connections within the network. Hence, the
complexity of the Stigmergy protocol, in comparison to the cache-less scheme, is justified by the superior delay performance
of the network when it is used.

V. CONCLUSIONS

The delay to dynamically discover and deploy Active Services can affect the overall quality of service of an Active Net-
working system. We proposed a service discovery protocol, referred to as Stigmergy, which supports the discovery of active
services in an Active Network. This protocol, by self-organising network nodes that are under a common administrative
control into virtual cache clusters, maximises the chances of discovering the required services within minimal latencies. The
Stigmergy protocol is completely distributed and follows a best-effort cache co-operation model. Furthermore, this protocol
avoids the need to configure and maintain independent caching frameworks for service discovery purposes.

REFERENCES
[1] Kalaiarul Dharmalingam. Network Support for Multimedia Applications using the Netlets Architecture. Ph.D Thesis, Dublin City University, February,

2004.
[2] D. Wetherall John Guttag and David L. Tennenhouse. ANTS: A Toolkit for Building and Dynamically Deploying Network Protocols. In Proceedings

of IEEE International Conference on Open Architectures and Network Programming (OPENARCH), 1998.
[3] D. Decasper and B. Plattner. DAN - Distributed Code Caching for Active Networks. In Proceedings of IEEE INFOCOM, pages 609–616, April 1998.
[4] Sollins K and Masinter L. Functional requirements for uniform resource names. RFC 1737, http://www.cis.ohiostate.edu/htbin/rfc/rfc1737.html,

December 1994.
[5] S.V.Fuller, T.Li et al. Classless Inter-Domain Routng (CIDR): An Address Assignment and Aggregation. RFC 1519, 1993.
[6] Network Simulator, http://www.isi.edu/nsnam/ns/.
[7] Ellen W. Zegura et. al. How to model an internetwork. In Proceedings of IEEE INFOCOM, March 1996.


