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Abstract:  This paper aims to analyse the oceanographic sediment data obtained from the 
WaveNet project. In particular we would like to search for any deterministic trends present and 
explore the degree of self-similarity in the data. The results from the data analysis will form the 
foundation of the development of adaptive sampling and data fusion strategies in the SECOAS 
sensor network project.  

1. Introduction 
The work in this paper is initiated by the Self-Organised Collegiate Sensor Network Project (SECOAS). 
SECOAS aims to deploy a network of low-cost sensors for the efficient retrieval of oceanographic data with 
good temporal and spatial resolution. This is to replace the traditional approach of using one or a few expensive 
and high precision sensors for data collection. The sensors communicate with a wireless ad-hoc network and the 
network is distributed [1].  

The SECOAS sensor network has the specialities of distributed algorithms [2][3], and simple biologically 
inspired algorithms [4][5][6]. Data analysis is performed prior to the development of data handling algorithms 
including adaptive sampling and fusion strategies. It is important to understand the nature of data in relation to 
the costs specific to the project, which are battery power and communication bandwidth. Efficient use of power 
can extend sensors’ lifetime and communication bandwidth is a scarce resource in the ocean environment. The 
requirement for preserving interesting science, sensor power, network bandwidth and user input regarding data 
resolution form the specific network engineering scenario.      

Turbidity is one of the parameters obtained from the WaveNet project at Scroby Sands area at Great Yarmouth 
[7]. Other measurements are temperature, conductivity, and pressure. Turbidity, a measurement of sediment level 
is selected in this paper because of two reasons. Firstly, SECOAS monitors the environmental impact of the 
wind farm on the coastal area and sand banks and sediment is the major measurement for such event. Secondly, 
out of the four measurements available, sediment is the least predictable and is mostly dependent on the local 
area, thus, making it the most interesting in engineering terms. The data were gathered in bursts of 1024 points 
every hour/ bin at 1Hz frequency. The system then slept for the rest of the hour (2576 seconds) and woke up 
afterwards for the measurement in the next hour.  

2. Parameter Description 
Sediment, or precipitation refers to both organic and inorganic loose material that is moved from time to time by 
physical agents including wind, waves, currents and gravity [8]. The short space and time scales of sediment 
make it difficult to interpret point measurements [9]. There are a variety of methods to measure sediments 
including the use of chemical tracers, light attenuation and scattering, and oxygen isotope. Light scattering is 
used to obtain the test data in this project.  

Turbidity, or cloudiness of water describes sediment level in a relative term depending on characteristics of the 
scattering particles, external lighting conditions and the instrument used. Turbidity in this project is measured in 
Formazin Turbidity Units (FTUs). It is derived from diluted concentrations of 4000-FTU formazin, a murky 
white suspension that can be purchased commercially [9].  

3. Methodology 
Basic analysis on the time series and frequency domain using Fast Fourier Transform (FFT) will be performed 
first. We then proceed to determine if self-similarity exists in the data. 

• Self-similarity 
Self-similarity is one of the characteristics that result from a long-range dependency (LRD) or 1/f random 
process. A stationary LRD process has the characteristic of:-  
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where xS  denotes the spectral density function (SDF), f is the frequency and Cs is a constant. αfCfS sX ≈)(  
with f approaches zero. An alternative definition stated in terms of autocorrelation function (ACF) is such that:- 
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where τ,Xs denotes the ACF and τ  denotes the time lag. A stationary process has τ

τ φCs X ≈,  where a LRD 

process has β
τ τsX Cs ≈,  for largeτ . In both case 0, →τXs  as ∞→τ , but the rate of decay toward zero is 

much slower for a long memory process, implying that observations that are widely separated in time can still 
have a covariance that cannot be neglected [10][12].  

Common stationary models for LRD processes includes fractional Gaussian noise (fGn), fractional difference 
process (FD) and pure power law (PPL) [10][12]. In general, α from Eq. (1) is used to quantify the degree of 
LRD. The Hurst parameter H is particularly used to characterize fGn where 0<H<1 indicates a stationary LRD 
fGn process. Although fGn is always stationary while LRD processes can be stationary or non-stationary, H and 
α are both used interchangeably in literature for any LRD process with the relation of H21−=α  (Table 1).  

Non-stationary  
LRD process 

Stationary  
LRD process 

White noise Stationary not  
LRD process 

1≥H  or 
1−≤α  

12/1 << H  or 
01 <<− α  

2/1=H  or 
0=α  

2/1<H  or 
0≥α  

Table 1: Relation of H,  α and type of random process 

• Hurst estimate - Wavelet weighted least square estimator  
Wavelet least squares fit estimator (WLSE) proposed in [14] is used for Hurst estimation. WLSE is based on 
Discrete Fourier Transform (DWT) [10][11] and is described in [10] for estimating a quantity called wavelet 
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where 2
,tjW denotes the wavelet coefficients at octave j  or scale jτ . [10] proposes that αττ −∝ jjxv )(2  for LRD 

process such that when 2
xv  is plotted against jτ  a straight line is obtained with a slope of α− . Therefore, α , or 

2/)1( α+=H , can be estimated by linearly regressing ))(log( 2
jxv τ  on )log( jτ  using least square fit. [12][14] 

further proposed the use of weighted least square fit to increase the robustness of the estimator. The weights 
122 2/)2ln( += nS j  used are the inverse of the theoretical asymptotic variance of a chi-square distribution [14]. 
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Figure 1: Testing of robustness of WLSE Hurst estimator using fGn H=0.8 for (a) periodic signal with various 
amplitudes and frequencies, (b) linear trend.  

• Robustness of the estimator 
Since the turbidity data exhibit both linear trends and periodicity, the simpler form of time domain estimators 
including the R/S statistics, correlogram, periodogram and variance plot [12] have poor statistical performance, 
notably high bias and sub-optimal variance [14][12]. The effect has been studied in many other research papers 



[14][15][16]. We experiment on some non-stationary trends specific to the data characteristics in preparation for 
the analysis section. 

Figure 1 is the result for the robustness test on WLSE estimator. From Figure 1(b) it is observed that the WLSE 
is robust against linear trend, that it gives consistent estimate of around H = 0.71 for all amplitudes of linear 
trend. In Figure 1(a), the flat region is the ‘safe region’ for the estimator where it gives consistent results. We can 
see that the estimator is only robust with some small amplitude and long period of periodic signals. If the period 
is long enough ( 410 −<f ) it is robust against all amplitudes since the periodic signal would resemble a linear 
trend.  

4. Results of the Analysis 
Figure 2 (a) plots the hourly mean of the burst data in each bin. Periodicity is observed and the time series shows 
a drifting mean and varying variance overall. Figure 2 (b) confirms the periodicity observed. There is a sharp 
peak to the spectrum at 12.28 hours. A smaller frequency component appears at 6.06 hour. Since the spectrum is 
not smoothed the periods obtained are approximations only. The strong power observed at the very low 
frequencies is due to a non-zero mean of the data.  

Figure 3, which plots the frequency spectrum in hour 1 shows that there is no periodicity within a burst. It can be 
observed that the power decays with the frequency similar to 1/f noise. This may be evidence to suggest the 
presence of long-range dependency (LRD). Figure 4 shows a slowly decaying ACF. The coefficients are large 
even after 100 lags. Figure 5 is the Hurst estimates using WLSE for every burst over time. The estimates range 
from 0.6 to 1.3 with a mean of 0.887. This is a strong evidence for the presence of LRD in the turbidity data in 
short time scale. Note that the periodicity observed in Figure 3(a) is 104 longer than the sampling time so the 
estimator is robust in that region. Figure 6 shows an interesting result that the Hurst estimates are actually 
periodic in synchronous with the actual data themselves.  
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Figure 2: Basic analysis of (a) Time series of hourly mean of Turbidity (b) FFT of hourly mean data 

5. Conclusion 
In this paper, the turbidity data as a measurement of sediment level has been analysed first in the time and 
frequency domains. In the time domain periodicity is observed for hourly mean data. The frequency spectrum of 
hourly mean data confirms there is a dominant periodicity at 12.3 hour and a frequency component of less power 
at 6.06 hour.  

Another quantity we look for is the degree of self-similarity in the data. Self-similarity is an expression for long-
range dependency in a random process and is often quantified by the Hurst parameter. In this paper we have 
demonstrated the use of wavelet weighted least square estimate (WLSE) for Hurst estimation in data. The 
estimator is robust against linear trends, long periodicity or small amplitudes of periodic signals.  

Self-similarity is observed in several ways in the short time-scale turbidity data. The power of the spectrum 
decays with the frequency similar to 1/f noise. The autocorrelation function shows some strong correlation of 
data even at 100 time lags. The mean Hurst parameter estimated is 0.887 and is an evidence for self-similarly in 
the data. Another interesting characteristic is that the Hurst estimates shows periodic behaviour similar to the 
time series of hourly mean data.  



In the future we would like to explore the modelling and parameter estimation with the test data and develop 
appropriate sampling and fusion strategies for the SECOAS sensor network.   
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Figure 3: FFT of sediment data in bin 1 
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Figure 4: Autocorrelation of sediment data in bin 4 
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Figure 5: Hurst estimate using WLSE for each bin 
over time 
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Figure 6: FFT for Hurst estimate in Figure 5 
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