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Abstract: In this paper, we address the problem of distributed compression in sensor net-
works. We first propose a distributed compression technique for camera sensor networks,
where independent wireless devices are used to acquire and transmit images of a certain scene
from different viewing positions. Our approach uses some geometrical information in order to
estimate the correlation in the visual data. This correlation, which is related to the structure
of the plenoptic function, can then be used to reduce the overall transmission rate from the
sensors to a common central receiver. Our approach allows for a flexible allocation of the
bit-rates amongst the encoders and can be made resilient to a fixed number of occlusions.
Finally, we show that our distributed coding approach can be extended to general binary
sources. The technique we propose uses linear channel codes and can achieve any point of the
Slepian-Wolf achievable rate region.

1 Introduction

The recent advent of sensor network technology is radically changing the way in which we process, sense
and transport signals of interest. Sensor networks are given by a large number of low-power, smart devices
with computational capabilities connected through wireless links. In this work, we first focus on camera
sensor networks, that is, we assume that each sensor is equipped with a digital camera and transmits the
acquired visual data to a central receiver. The data acquired by different sensors can be highly correlated.
If sensors could communicate amongst themselves, it would be easy to exploit this correlation in full.
However, this collaboration is usually not feasible since it would consume most of the sensors’ power. It
is therefore necessary to develop separate compression algorithms that can still exploit this correlation
without allowing cooperation amongst sensors.

This distributed compression problem has its theoretical foundation in two papers by Slepian and Wolf [1]
and by Wyner and Ziv [2]. Surprisingly, it was shown that separate encoding of the outputs of two
correlated sources can be as efficient as joint encoding, assuming that the two compressed signals can be
jointly decoded. The achievable rate region for such a system is given by: RX ≥ H(X|Y ), RY ≥ H(Y |X)
and RX +RY ≥ H(X, Y ). However, the theories developed in these papers are non constructive. The first
constructive design of separate encoders was presented in [3]. Extensions of this encoding strategy have
been subsequently presented in several papers (see [4, 5, 6] for example). These distributed compression
schemes usually rely on the assumption that the correlation of the source is known a-priori. In this
paper, we show how it is possible to predict the correlation structure of the acquired data by using
a-priori knowledge of the locations of the cameras and of the objects of interest. We study in details
some simplified geometric set-ups and present new distributed compression algorithms that exploit any
geometrical information. Our algorithm allows for a flexible allocation of the bit-rates amongst the
encoders and can be made resilient to a fixed number of occlusions (Section 2). We then show that our
compression strategy can be generalized to any correlated binary sources and present ways to implement
symmetric and asymmetric Slepian and Wolf codes by using linear channel codes (Section 3).

2 Distributed Compression of Correlated Images

The structure of the visual information available at any viewing position and in any direction is given
by the plenoptic function [7]. Therefore, if we can estimate the structure of this function, we can obtain
some information about the correlation between the different views of the scene. In our approach, we use
some geometrical information about the position of the cameras and the objects of interest in order to
estimate the plenoptic constraints.

The geometrical set-up of our camera sensor network is presented in Figure 1. We consider N cameras
evenly placed on a horizontal line and all having the same orientation (perpendicular to the line of



cameras). We assume that the observed scene is composed of simple objects with depths bound in
[zmin, zmax]. According to the epipolar geometry principles, which are directly related to the plenoptic
function, we know that the difference of an object’s position on the images obtained from two consecutive
cameras is given by: ∆ = αf

z , where z is the depth of the object, α is the distance between the cameras
and f is the focal length. Since this disparity ∆ depends only on the object depth z, and since we know
that there is a finite depth of field (z ∈ [zmin, zmax]), the range of possible disparities for any object is
therefore bound in [ αf

zmax
, αf

zmin
]. This result gives us some information about the correlation structure

between the different views and can be used to design distributed compression algorithms.

Let X and Y be the horizontal positions of a specific object on the images obtained from two consecutive
cameras. Assume that the image width is made of 2R pixels. For a specific X, we know that Y ∈
[X + αf

zmax
, X + αf

zmin
]. Our first coding approach consists in sending X perfectly from the first encoder

and then, modulo encode Y as Y ′ = Y mod dαf( 1
zmin

− 1
zmax

)e and send it from the second encoder. At
the decoder, the original Y is recovered as the only possible position belonging to [X + αf

zmax
, X + αf

zmin
]

and corresponding to Y ′.

This simple approach takes full advantage of the geometrical information to minimize the global trans-
mission bit-rate, however, its asymmetrical structure may be problematic for some practical applications.
We propose thus a distributed coding scheme that allows for a flexible allocation of the bit-rates amongst
the encoders. Let Ỹ correspond to Y −d αf

zmax
e. We can thus see that the difference (Ỹ −X) is contained

in {0, 1, . . . , δ}, where δ = dαf( 1
zmin

− 1
zmax

)e. Looking at the binary representations of X and Ỹ , we
can notice that the difference between them can be computed using only their last Rmin bits where
Rmin = dlog2(δ + 1)e. Our distributed coding approach is presented in Figure 2 and can be described
as follows: For each object’s position, send the last Rmin bits from both sources and send only comple-
mentary subsets for the first (R − Rmin) bits. This simple technique is very powerful since it allows for
a completely flexible allocation of the bit-rates amongst the two encoders.
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Figure 1: Our camera sensor network configuration.
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Figure 2: Our distributed compression approach for
two correlated sources. The last Rmin bits are sent
from the two sources but only complementary sub-
sets of the first (R − Rmin) bits are necessary at the
receiver for a perfect reconstruction of X and Y .

According to Slepian and Wolf [1], the minimum information that must be sent from each encoder is given
by the conditional entropy H(X|Y ) and H(Y |X) respectively. Assuming that the difference between X
and Y is uniformly distributed and that δ + 1 is a power of 2, we can state that H(X|Y ) = H(Y |X) =
Rmin. The remaining information that has to be sent in order to allow for a perfect reconstruction
is related to the mutual information I(X;Y ) and is by definition available at both encoders. If X is
uniformly distributed, we have that H(X) = R and I(X;Y ) = H(X)−H(Y |X) = R−Rmin. Therefore,
our coding approach is, in this case, optimal.

Our coding approach can be generalized to any number of sources and can be made resilient to a fixed
number of occlusions. Consider a system with N cameras as depicted in Figure 1. Assume that any
object of the observed scene can be occluded in at most M ≤ N − 2 views. The following distributed
coding strategy is sufficient to allow for a perfect reconstruction of these N views at the decoder and to
interpolate any new view: Send the last Rmin bits of the objects’ positions from only the first (M + 2)
sources, with Rmin = dlog2((M + 1)δ)e and δ = dαf( 1

zmin
− 1

zmax
)e. Then, for each of the N sources,

send only a subset of its first (R−Rmin) bits such that each particular bit position is sent from exactly
(M +1) sources. Since no more than M views are occluded, this strategy ensure the reception of the last
Rmin bits from at least two sources and the reception of each particular bit position of the first R−Rmin

bits from at least one source. Therefore, a full reconstruction of all the views is possible.



3 Slepian-Wolf Codes using Linear Channel Codes

The coding strategy shown in Figure 2 can be generalized to any binary sources. In this section, we
present a general constructive approach using linear channel codes. Then, we show how this method can
be generalized to the case of more than two sources.

3.1 Constructive approach using linear channel codes

Assume we have an (n, k) binary linear code C with parity check matrix H in its reduced form such that:
H = [H1 H2], where H1 and H2 are of size (n−k×k) and (n−k×n−k) respectively. Assume without
loss of generality that H2 is non-singular. Notice that if the code is systematic, H2 is simply the identity
matrix. We know that such a code is capable of correcting 2n−k different error patterns. Therefore, this
code C generates 2n−k cosets, each of them containing 2k codewords of length n.

Let xi be a binary block of length n represented as: xi = [ai bi qi], where ai, bi and qi are of length
k1, k2 and n−k respectively (k1 and k2 are chosen such that their sum is equal to k). The syndrome of xi

is defined as: si = H1[ai bi]T ⊕H2q
T
i . We know that xi belongs to the coset number k, if its syndrome

is given by: si = HxT
i = HeT

k (ek is the coset leader of coset number k, i.e., the codeword with minimum
weight).

Consider now two n-bit blocks x1 and x2, correlated such that their Hamming distance dH(x1, x2) is at
most m. Assume that the channel code C is able to correct perfectly any erroneous codeword having up
to M ≥ m bit errors. Our distributed coding strategy consists in sending only [a1 sT

1 ] and [b2 sT
2 ]

from the encoders 1 and 2 respectively. The transmission bit-rates are therefore given by: R1 = n − k2

bits and R2 = n− k1 bits, corresponding to a total of R1 + R2 = 2n− k bits.

At the receiver, we let ed correspond to the “difference pattern” between x1 and x2 as: ed = x1⊕x2. We
know that the syndrome of ed is given by sd = HeT

d = H(xT
1 ⊕ xT

2 ) = s1 ⊕ s2. We can now retrieve the
error pattern ed corresponding to this syndrome sd using one of the following techniques: If the code is
not too large, a simple lookup table storing the corresponding pattern error for each possible syndrome
can be used. For larger code, an iterative method has to be used. Using an iterative decoding scheme such
as the one proposed in [6], we can recover ed as the closest codeword to the all zero sequence satisfying
the syndrome sd.

Knowing the difference pattern ed, the missing bits of the k first bits of x1 and x2 are easily obtained as:
[a2 b1] = [a1 b2]⊕ ek

d, where ek
d corresponds to the k first bits of ed.

We know that the syndrome of x1 corresponds to: s1 = H1[a1 b1]T ⊕ H2q
T
1 . Let z1 be defined as:

z1 = s1 ⊕ H1[a1 b1]T . We can now retrieve q1 by computing: qT
1 = H−1

2 z1. Notice that H−1
2 can be

obtained using Gaussian Elimination and that, if C is systematic, H2 = I and q1 = zT
1 . Knowing q1, we

have now completely recovered x1 and we can easily obtain x2 as: x2 = x1 ⊕ ed. We can now summarize
our coding approach with the following proposition:

Proposition 1 Assume X and Y are two binary sequences of length n, correlated such that their Ham-
ming distance is at most m. Consider an (n, k) linear channel code C that can correct up to M ≥ m
errors per n-bit block. The following distributed coding strategy uses a total of 2n − k bits to encode the
two sequences and is sufficient to allow for a perfect reconstruction of them at the decoder:

• Send the syndromes of X and Y from their respective encoders.

• Send only complementary subsets of their first k bits.

In terms of performance, we can say that the ability of our distributed source coding technique to work
close to the Slepian-Wolf bound only depends on the quality of the channel code used. More specifically,
if X and Y are uniformly distributed and p(Y |X) is the transition probability, then the closer the channel
code C gets to the capacity of the binary channel p(Y |X), the closer our system gets to the Slepian-Wolf
bound. The design of capacity achieving channel codes, however, is beyond the scope of this paper.



3.2 Generalization to more than two sources

Our coding strategy proposed in Section 3.1 can be extended to an M sources scenario (see Figure 3)
through the following proposition:

Proposition 2 Assume x1, . . . , xM are M binary sequences of length n correlated such that the Hamming
distance between two consecutive sequences is at most m (i.e., dH(xi, xi+1) ≤ m for i = 1, . . . ,M − 1).
Consider an (n, k) linear channel code C that can correct perfectly up to M ≥ m errors per n-bit block.
The following distributed coding strategy uses a total of k +M(n− k) bits to encode the M sequences and
is sufficient to allow for a perfect reconstruction of all of them at the decoder:

• From each encoder, send the syndrome si of the corresponding block xi.

• Send only subsets of their first k bits such that each bit position is sent from only one encoder.
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Figure 3: Encoding strategy for M correlated sources. Each encoder sends the syndrome and only a
subset of its first k bits. The subsets are chosen such that each bit position is sent from only one source.

The decoding procedure in that case is similar to the one proposed in Section 3.1. Using the M syndromes,
we can recover the M − 1 difference patterns. Then, using these difference patterns, all the missing bits
of the first k bits of all the sequences can be recovered. Finally, each original block xi := [ai qi]
(i = 1, . . . ,M) is completed by recovering its last n− k bits as: qT

i = H−1
2 (si ⊕H1a

T
i ).

4 Conclusions

We have proposed a distributed compression technique for camera sensor networks. Our approach es-
timates the correlation of the different views using some geometrical side information and allows for a
flexible allocation of the bit-rates amongst the encoders. An extension of our coding technique to any
binary sources has also been proposed. Ongoing research is focusing on the development of efficient
distributed compression algorithm for camera sensor networks in natural scenes.
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