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Abstract:  Positioning information plays an important part in analyzing and understanding the 
data obtained from wireless sensor networks, as it facilitates the formation of a coherent picture of 
the environment. Traditionally the preserve of computationally intensive techniques such as GPS, 
the limited computation and storage capabilities of wireless sensor networking necessitate an 
alternative approach.  This paper proposes an algorithm adapted for wireless sensor networks and 
presents the implementation issues that have necessitated such an approach. 

 

1. Introduction. 
Wireless sensor networks are networks of large numbers of devices that sense the environment in a 
distributed manner, whilst retaining autonomous control. These devices are characterised by their 
small size, low cost and limited computational. The purpose of the general sensor network initiative is 
to create an intelligent, self-organising network using these simple devices distributed in an ad-hoc 
fashion [1].  The main advantage of these systems is arguably their self-organising capabilities. Device 
autonomy allows adaptation to environmental changes. Consequently the network as a whole is 
reliable and robust to device failure. Additionally, the large number of devices provides finer 
granularity observation than with previous monolithic sensing techniques. 

The distributed nature of these phenomena presents a problem for algorithm designers because 
processes external to each individual node need to be considered. To overcome this, it is necessary that 
the algorithms are distributed in nature, to enable the different local circumstances influence the 
network. The limited resources available to each node necessitate simple algorithms. With distributed 
algorithms typically being complex and computationally expensive [2], these requirements are 
conflicting. Biological models help resolve this conflict as they are made up of sets of simple rules 
working together to exhibit complex behaviour [3]. This work is presented with particular emphasis on 
the characteristics required from a node localization algorithm within a wireless sensor networking 
context.  

2. Iterative Averaging. 
This is a simple algorithm used to determine coarse granularity node position estimates in a sensor 
networks, using information obtained from radio transmissions between nodes. Two classes of nodes 
are assumed to exist within the network. Position Aware nodes (PA) are nodes that know their 
absolute position, either from pre-programmed coordinates or an attached GPS module. Position 
Determining nodes (PD) do not know their position and thus need to make estimations of their 
positions. The algorithm proposes that all PDs set their position estimates to the average of all position 
estimates received from all one hop neighbours i.e. if a node receives more than one estimate, it 
averages the values obtained, using (1). If a node receives just one position estimate from its 
neighbours, it sets its position estimate to this value, until such a time as it receives additional position 
estimates from other neighbouring nodes. This process continues iteratively position estimates stop 
changing significantly. Intuitively, we infer for the above that nodes with few neighbours will have 
large errors in position estimates. 
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3. Design considerations. 
This work is carried ut within the context of the SECOAS[4] project. The algorithm is implemented on 
a PIC18F452, a 10 MIPS (100 nanosecond instruction execution), 77 single word instruction, CMOS 
FLASH-based 8-bit microcontroller, with 256 bytes of EEPROM [5]. The interface between the 
algorithm and the hardware is a message oriented operating system (kOS), which abstracts the low-
level functions and presents the algorithms with a simple self-scheduling design, affording application 
writers the opportunity to choose their execution time. Compared to pre wireless sensor networking 
platforms, applications are presented with rather limited resources and the approach taken to design 
algorithms for these networks needs to take the platform into consideration. As such, the algorithms 
need to have a small footprint and utilise simple computations to obtain the necessary results. 
Additional to the device limitations, we also have the challenges posed by the environment. In this 
situation, the nodes are placed in a highly dynamic environment (the ocean). Consequently, the 
positions will be changing rapidly as depicted in Figure 1, necessitating an algorithm that converges 
quickly and utilises minimal resources so that sampling the environmental changes; the primary 
objective of deploying the network is not hampered by network configuration tasks.  

Another problem is the large error in the 
measurements obtained for utilisation by the 
algorithms. This method of distance 
estimation presents a number of challenges. 
Several repetitions of the same measurement 
yield different results. This is attributable to 
the fact that signal strength is not only 
influenced by the equipment and range of the 
transmitter and receiver, but also the angle in 
3D-space between the sender and receiver 
nodes and the environment in which the 
measurements are obtained, i.e. the 
orientation and proximity of objects in the 
environment . In our case, the wave height 
variability means that the angle between the 
transmitter and receiver will change 
frequently resulting in high variability of 
RSSI obtained for any particular distance, 
making RSSI a very unreliable distance 
measure.  This is corroborated by 
propagation test data obtained off the coast of 
Great Yarmouth, as shown in Figure 2. We 
can see that there is high variability in the 
obtained RSSI analysis of the data shows that 
the measurement error is of the order of 
±50m.  

Given this significant error and the limited 
resources the IA algorithm was developed. 
RSSI information is only used loosely for the 
position estimation. The primary factor in the 
determination of the position estimates is the 
finite communication constraint, allowing 
information to move across the network from 
one cluster of nodes to the next by a 
diffusion-like process. IA has been 
implemented on the kOS platform for testing 
in an oceanic environment in the SECOAS 
trials scheduled for August 2004. 
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Figure 2 Relationship between signal strength and distance from 
propagation tests carried put in the Scroby sands area by 
University of Essex. The readings are between two 173MHz radio 
modules placed in the ocean at various distances apart. The centre 
zero mean line is straddled by dotted lines, showing error bounds 
at ±2Δ standard deviations, i.e. 95% confidence interval. 

Figure 1 Variability of ocean wave height. 512 samples of wave 
height fluctuation at 1 Hz over a time of ~8 minutes [7]. 



4. Results. 
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Figure 3:(a) Simulation results showing initial randomly generated topology for a network of 164 PD nodes in circles, 36 PA nodes 
in square are positioned in a grid, (b) the final position estimates of the randomly located nodes, (c) linked real and estimated 
position pairs of all PD nodes, the point with the node id is estimated , (d) Distribution of the errors in the position estimates. 

This section presents the IA simulation results.  Figure 3 show the results for a simple network of 200 
nodes on a 400x400 grid, with 36 of the nodes being PA nodes. The PA nodes are arranged in a 6x6 
grid. The remaining 164 PD nodes are uniformly distributed within the deployment area. All nodes 
have a communication range of 40m.  Figure 3 (a) illustrates the node topology and connectivity 
within the test network. Initially the 196 PD nodes have no knowledge of their positions and are 
initialised to position (0,0). On running the algorithm, the PD nodes are able to make position 
estimates based on the information they receive from their neighbours.  Figure 3(b) shows the final 
position estimates of these nodes, while Figure 3(c) provides real and estimate position pairs for 
comparison. On closer inspection of Figure 3(c), we observe that the accuracy of the position estimate 
is related to the proximity to a PA node, the number of neighbouring nodes, the number of PA nodes 
present within the range of a PD node and the distribution of the neighbouring nodes. This can be 
better explained by focusing on particular areas of the graph.  

Considering the nodes around 40 to 160 along the y-axis as 
shown in Figure 4, they only receive information from two PA 
lying on this axis. The only information they have is that they 
are close to two nodes with 0 as their x coordinate and their y 
coordinate must lie somewhere between 80 and 160. 
Consequently they have no x information but manage to arrange 
themselves in the correct order in the y direction. This results in 
a clustering along the y-axis as seen in Figure 4. In contrast to 
this clustering behaviour that produces highly erroneous position 
estimates other node configurations perform mush better.  

(a) (b)

(d)(c) 
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Figure 4 Close-up of the area around 40-
160 on the y-axis for Figures 3 (a) and (c). 



Figure 5 shows nodes close to 80-160 on the x-axis. 
These nodes have obtained better position estimates, 
because they are able to obtain information through 
‘diffusion’ from a number of differently positioned 
PA nodes, resulting in the position estimates 
providing a better fit to the real data. This results in a 
network with high variability in positioning accuracy. 
This is shown graphically in Figure 3(d). The mean 
error is of the order of 16m.  This is in line with 
theoretical analysis. 

The intrinsic error of obtaining estimates from only one PA in an 80m square grid is 32m, as 
calculated from the standard deviation (σ̂ ) of a uniform distribution. In this case, the majority of 
nodes can estimate their positions by using information from several nodes, resulting in the 
expectation that the error distribution will have a mean significantly less than this. Figure 3(d) shows 
that the average error is substantially below the 32m baseline as predicted and therefore, the algorithm 
performs as expected. We expect weighting using the RSSI information would further improve the 
performance.   

5. Conclusions. 
Despite being a relatively new research area, wireless sensor networking has attracted considerable 
interest and there are several research initiatives in the field [9]-[11].  The issue of node localization in 
these networks has attracted particular interest due to the value position information adds to the 
sampled data. There are numerous approaches to the problem. The predominant method is to use range 
measurements obtained using one of RSS, TDOA, or some combination of these methods. 
Triangulation or multilateration are then applied to the range values to obtain position estimates [12]-
[16]. A qualitative analysis of some of these methods is presented in [17]. 

The dependence on range measurements presents two problems; (i) error is introduced into the 
position estimates from the onset, (ii) ranging requires radio usage, resulting in large power 
requirements. Both these reasons make the above algorithms unsuitable for our application. We 
require a lightweight algorithm with little dependence on RSSI ranging, both for power considerations, 
as radio transmission are the single largest power drain on wireless sensor node power resources [18] 
and because the environmental characteristics (ocean spray) result in unpredictable radio 
characteristics, making it difficult to obtain distance information from RSS measurements. 
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Figure 5 Close-up of the area around 80-160 on the x-
axis for Figures 3 (a) and (c). 


