
Structured Parallel Concatenated LDPC Codes

J. C. Serrato†and T. O’Farrell‡

†University of Leeds

Abstract: The concatenation of two or more Low Density Parity Check (LDPC)
codes has proved to be an effective way to improve the bit error rate (BER) perfor-
mance by increasing the redundancy whilst reducing the decoding complexity when
compared to a LDPC of the same length. The concatenation of two LDPC codes with
different Mean Column Weights (MCWs) through a bipartite graph in the decoder,
allows the use of the Maximum A-Posteriori (MAP) decoding algorithm to obtain a
better performance than that of the individual codes. This paper shows the perfor-
mance of two concatenated LDPC codes obtained through well structured procedures
with MCW1=2 and MCW2=3. The results are compared with a previous work con-
sidering two randomly created LDPC codes with MCW1=2 and MCW2=2.66 and
approximately the same length. As all the individual LDPC codes are of rate 1/2,
the concatenation results in a 1/3 rate code.

1 Introduction

H. Behairy and S. Chang presented in [1] a procedure to concatenate two LDPC codes, using the
turbo principle. They concluded that several benefits could be obtained from considering this
approach, such as, less complexity, less delay, less memory required and a good BER performance
when compared to a single LDPC code with the same length, simply because the individual
LDPC codes are shorter. To implement the concatenation no interleaver between the codes had
to be used, as the performance is the same when considered.

To test their procedure, two half rate randomly created LDPC codes with different MCW were
proposed, and concluded that the concatenation provided the best overall BER performance
compared to the BER performances of the individual codes. The MCWs considered in the
previous work are 2 and 2.66, in order to have a low MCW code to perform better in the low
EbNo region, and a high MCW code to perform better in the high EbNo region.

Structured LDPC codes have been recently under development [2]. The main goal of these
construction methods is to design LDPC codes with a girth as large as possible, as a function of
some variables such as the length, MCW and rate. This paper analyses the performance of two
structured, half rate, parallel concatenated LDPC codes, based on Cayley graphs and Graphical
models.

2 Half rate (n,2,k) LDPC codes with girth 16.

Haotian Zhang and Jos M. F. Mora describe the construction of a class of (n,2,k) LDPC codes
with girth 16 and code rate 1/2, based on a cylinder structure [3,4]. Assume the number of
parity check equations v = 8p, and divide these points into 8 subsets of equal size, where points
in each subset are aligned in a vertical line. These subsets X0, X1, , X7, comprise a loop, and
each point within subset Xk can only connect to points in the previous or next subset, and
cannot connect to points in the same subset. The overall structure looks like a cylinder.

A cycle is formed either by consecutive lines passing all the 8 subsets around the cylinder
structure, or within points in some of the 8 subsets. To achieve LDPC codes with girth 16, no
cycles with less than 8 points on the cylinder structure should take place. To create the LDPC
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code, two edges (lines) should connect each single point in the subset Xk, with two different
points in the next subset Xk+1. All the edges between two neighbouring subsets Xk and Xk+1

in a cylinder structure compose a section Si. The slope s is the edge connecting the point ai in
the subset Xk with the point bj in the subset Xk+1. An Admissible Slope Pair (ASP) contains
the pair of slopes that connect all the points in a section, and that has fullfilled the necessary
conditions to avoid cycles shorter than 8 considering the previous ASPs assigned. To create a
LDPC code of rate 1/2, each section should be assigned two different ASPs.

The corresponding H matrix is well structured and completely determined by p and the Admis-
sible slope pairs ASP0, , ASP7. The codes used for this paper have the following characteristics:

• (240,2,120) p=15 and ASP={(0,0)(+2,-13)} {(0,0)(+3,-12)} {(0,0)(+4,-11)} {(0,0)(+6,-
9)} {(0,0)(+1,-14)} {(0,0)(+3,-12)} {(0,0)(+7,-8)} {(0,0)(+6,-9)}

• (672,2,336) p=42 and ASP={(0,0)(+2,-40)} {(0,0)(+3,-39)} {(0,0)(+4,-38)} {(0,0)(+5,-
37)} {(0,0)(+2,-40)} {(0,0)(+6,-36)} {(0,0)(+1,-41)} {(0,0)(+8,-34)}

3 Half rate (n,3,k) LDPC codes.

G.A. Margulis describes the construction of a class of (n,3,k) LDPC codes with code rate 1/2,
based on Cayley graphs [5,6]. For this code consider a finite group G. Let A ⊂ G be a subset of
G satisfying A = A−1. The Cayley graph X(G, A) is the graph having as vertices the elements
g ∈ G. The vertices g, h ∈ G are connected by an edge whenever there is an a ∈ A such that
h = ga.

Let q be an odd prime. Let Fq be a finite field of q elements and consider the Special Linear
Group over Fq (SL2(Fq)) as the set consisting of all 2 x 2 matrices[

a b
c d

]
with entries in Fq and having determinant ad − bc = 1. One readily verifies that SL2(Fq) is a
group of order q3 − q.

Consider the subset A :=
{

A =
[

1 2
0 1

]
, A−1 =

[
1 −2
0 1

]
, B =

[
1 0
2 1

]
, B−1 =

[
1 0
−2 1

]}
.

Now, let G = SL2(Fq) and let A be as above. Then the Cayley graph X(G, A) is a 4-regular
graph with q3 − q vertices. From this graph, it is possible to construct a (3,6) regular LDPC
code. As left vertices two copies of G are taken (i.e. G and G̃). The right vertices of the
bipartite graph will consist of the set G. An element g ∈ G on the left will be connected with
the right vertices gA2,gABA−1,gB. An element g̃ ∈ G̃ on the left will be connected with the
right vertices g̃A−2,g̃AB−1A−1,g̃B−1.

The bipartite graph described above describes a (3,6) regular LDPC code of block length 2(q3−q)
and girth c ≥ log(1+

√
2)

( q
2

)
. The corresponding H matrix is well structured and completely

determined by q and the bipartite graph. The codes used for this paper have the following
characteristics:

• (240,3,120) q=5

• (672,3,336) q=7

4 Parallel Concatenation.

The encoder requires the two different generator matrices to generate systematic codewords in
order to send the information bits just once, together with the redundancy obtained from each
generator matrix.



The decoder follows the turbo decoding principle without the use of an interleaver. Each LDPC
decoder computes the a posteriori probability as described in [7] using the sum-product algorithm
with modifications to accommodate the a priori information. The first decoder computes the
a posteriori probability using the received sequence with no a priori information. The process
of exchanging information between decoders continues until one or both decoders converge to
a valid codeword, or the maximum allowed number of iterations is reached. LDPC codes are
defined by a bipartite graph; therefore, the concatenation of two LDPC codes can also be defined
by a bipartite graph in such a way that the variables corresponding to the information bits and
the parity bits are related to the checks in both codes.

5 Simulation Results.

The characteristics of the structured LDPC codes considered in the investigation mentioned
previously, belong to a category of the best designs known so far with MCWs of 2 and 3 and
rate=1/2, in terms of BER performance. Fig. 2 and Fig. 3 show the BER performance of
two structured versus two random parallel concatenated LDPC codes under AWGN channel
conditions, respectively. The average MCW of the proposed structured parallel concatenated
LDPC code is MCW1+MCW2

2 = 2+3
2 = 2.5. The additional redundancy is only improving the

BER performance at high Eb/No values and actually performs worse than the individual codes
at low Eb/No values. The performance of the structured parallel concatenated LDPC codes is
similar to that of the random codes.

6 Conclusions.

The BER performance of the parallel concatenated approach is worse than the performance of
the individual codes at low Eb/No values; therefore, it is recommended to assign thresholds, in
order to assign more iterations to the MCW=2 decoder if the Eb/No value of the received signal
is low, to assign more iterations to the MCW=3 decoder if the Eb/No value of the received signal
is medium and to assign an even number of iterations to both decoders if the Eb/No value of the
received signal is high. As the length of the individual codes is increased, the Eb/No value at
which they will be outperformed by the parallel concatenated code is increased and therefore, it
is less attractive to use this approach. It can be concluded that for short length, low complexity,
small delay, and high Eb/No values, this approach is an attractive option and could replace a
single LDPC code of the same length.
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Figure 1: Structured (360,2.5,120) vs Random (576,2.3,192) Parallel Concatenated LDPC code
+ BPSK + AWGN

Figure 2: Structured (1008,2.5,336) vs Random (576,2.3,192) Parallel Concatenated LDPC code
+ BPSK + AWGN


