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Abstract:  In the last years the research community has been studying the Internet behaviour to 
have a better understanding of what could allow a refinement for its protocols, management as 
well as components to improve the Internet's performance. A great effort has been done in 
providing suitable models in this direction. This paper is a review of the Internet modeling with 
special focus on the flow's packet interarrival distribution and its application in the efficient early 
detection of elephant flows. 

 

1. Introduction 
In the old days of traffic engineering, modeling in telecommunications networks was simpler than today. There 
was only one kind of traffic: voice. It presented well known characteristics; Poisson interarrival rates (time 
between calls reaching the central office switch) and exponential call length distribution. There was no need to 
worry about things such as network layers, as they did not exist. It was easy to measure critical values of the 
important parameters. Queuing theory permitted analysis of voice networks to meet any desired performance 
characteristics; for example, call-blocking probability. 

Recent measurements of traffic network have shown that it is often bursty over a wide range of time scales, a 
much wider range than is captured by traditional traffic models. The variability over wide time scales implies 
that bursts do not average out over long enough time period; no matter what is the scale being considered on the 
number of packets crossing a network link, always a similar amount of packet bursts will be resulted. 
Statistically, this phenomenon is referred to as Self-Similarity and has received significant attention in the 
networking community [1][2][3][4][5][6][7]. These studies were resulted because traditional models were too 
inaccurate which leads to wrong network behavior simulations and under optimized elections of different 
network design parameters. 

These advances in modeling can be in different network’s invariants were summarized by Fischer [8]Error! 
Reference source not found.. In this research, special interest lies in the statistical behavior of the flow’s packet 
interarrivals, which has been shown to be heavy-tailed [9]. Detailed information about it is provided in the next 
two sections where the heavy tailed distributions and the packet interarrival behavior are explained. 

2. Heavy-tailed distributions 
These are distributions whose tails follow a power-law with low exponent, in contrast to traditional distributions 
(e.g., Exponential, Poisson) whose tails decline exponentially. In the late 80’s and early 90’s, accumulate 
experimental evidence began to show that some properties of computer systems and networks displayed 
distributions with very long tails, and thus attention turned to heavy-tailed distributions particularly in the mid 
90’s  [1][9]. 

The definition of a heavy tailed distribution is the following: Let X be a random variable with cumulative 
distribution function F(x) = P[X ≤ x] and its complement F (x) = 1 - F(x) = P[X > x]. If X is heavy tailed, then 
the function will be  
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This definition restricts our attention to distributions with strictly polynomial tails, although broader classes such 
as the subexponential distributions [10] can be defined and most of the qualitative remarks are similar.  



The traditional modeling methods have focused on distributions with “light” tails which declines exponentially 
fast (or faster) and arbitrarily large observations are vanishingly rare. On the other hand, heavy tailed models 
behave quite differently because arbitrarily large observations have non-negligible probability. In fact, large 
observations, although rare, can dominate a system’s performance characteristic. This is what happens in the 
elephant and mice phenomenon, where a few elephant flows carry most of the traffic data. Other examples of  
heavy tail distributions are the sizes of data objects in computer systems and the process/job lifetimes. 

Special care must be paid to deal with heavy tailed distributions, because the workload metrics following heavy 
tailed distributions are extremely variable. In fact, their variance is infinite and for α<2, the mean is infinite as 
well. In practice, empirical moments are slow to converge or are non convergent. To characterize system 
performance, either attention must shift to distribution itself, or attention must be paid to the timescale of 
analysis. 

Although there are difficulties in dealing with heavy tailed distributions, they exhibit some properties that can be 
exploited in systems design: the Expectation Paradox and the Mass-Count Disparity. 

2.1. The Expectation Paradox 
The Expectation Paradox implies that in a heavy tailed event, the longer the wait of an event, the longer it is 
expected to wait. Poisson distribution presents the opposite phenomenon, take phone call generation as an 
example, the longer the wait, the sooner a call is expected. This is also another example telling why the 
traditional modeling is unsuitable for detection application in current networks. 

Assuming a heavy-tailed distribution is a Pareto one. This distribution has the following definition: 
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In this formula, α is a constant, and the expected time for the next event (E[X|X>k]) is greater when k (the 
waiting time) increases. 

2.2. Mass-Count Disparity 
The second useful property of heavy tailed distributions is the mass-count disparity [11]. This property can be 
stated formally as [10]: 
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which is the case when the Xi are positive random variables drawn from a heavy-tailed distribution. This 
property states that when considering collections of observations of a heavy-tailed random variable, the 
aggregated mass contained in the small observations is negligible when comparing to the largest observation in 
determining the likelihood of large values of the sum. In practice this means that the majority of the mass in a set 
of observations is concentrated in a very small subset of the observations. 

3. Flow’s packet interarrival time modeling 
The packet interarrival time (IA) is defined as the difference of the arrival times (AT) of the ith packet and the (i-
1)th packet: 

)1()( !! iATiAT=IA   (6) 

The measured traces have shown a heavy-tailed distribution in the flow’s packet interarrival time. An example of 
this behaviour are the HTTP applications, where the HTTP requests and responses for one web page that contain 
several objects are typically captured with very short interarrival times and between each web page loading, a 
user needs reading time or thinking time, which may last up to tens of minutes and cause the tail of the 
distribution to be significant. 



Many heavy-tailed distributions have been tested by varying relevant parameters and comparing them to traces: 
Chi-squared distribution, exponential distribution, inverse Gaussian (Wald) distribution, lognormal distribution, 
Pareto distribution and Rayleigh distribution. Cruickshank  [11] concludes that among all this heavy tailed 
distributions, the function which best fits to the HTTP traces observed for packet interarrival time is the inverse 
Gaussian distribution. 

 The National Laboratory for Applied Network Research (NLANR) [12] has been studying the intra-properties 
of flows in different traces and they state that it is possible to distinguish a high volume flow from the others 
through the packet interarrival time distribution and this may be useful to router designers need to design high 
performance forwarding paths for certain high volume flows. 

4. Elephant and mice phenomenon 
Today's Internet carries traffic from a wide range of applications, each of them with different requirements and 
constraints on network resources. Applications with special constraints such as video-conferencing, Internet 
telephony, on-line gaming, multimedia streaming and many more, have gradually appeared and the suitability of 
Internet’s best-effort policy and the need for providing different qualities of service to each type of application 
are being proposed. 

The two types of flows referred to are those which make an extensive use of network resources (high bandwidth 
long-lived), the elephant flows, and those which do not consume so many resources, the mice flows. Typically, 
elephant flows consist of low-priority applications, that is large data transfer transactions and peer to peer file 
sharing. On the contrary, mice flows tend to be sensitive to delay jitter and high loss rates, which are mainly 
experienced in on-line gaming, small-sized web requests, multimedia broadcasting and voice over IP. 

The accurate identification and special treatment of elephant flows, either by rerouting, throttling, priority 
management, is crucial to guarantee a better performance of the global network and a higher user satisfaction. 

5. Elephant and mice packet interarrival time distributions 
In order to illustrate what is noted in the previous paragraph, a 70-second traffic trace collected by NLANR has 
been considered. This is a backbone traffic trace that is collected at the output of the Indianapolis router towards 
Cleveland. Such trace contains about 395,000 different flows carrying around 3.74Gbytes. Figure 1A shows the 
total contribution of the largest traffic flows. The x-axis represents percentage of flows, and the y-axis shows the 
percentage of traffic volume. For only 0.1% of the traffic flows, that is 395 flows, which contribute to nearly 
83% of the total traffic. The next 0.9% of the biggest traffic flows (another 2,555) contributes to an extra 13% of 
the traffic. The striking feature is that the remaining 99% flows (391,050) carry only 4% of the total traffic. 

 
Figure 1. A) Accumulated traffic volume. B) Packet interarrival time distributions of the biggest elephants. C) Packet interarrival time 

distributions of the biggest mice flows 

 
Figure 2. A) Mean packet interarrival time. B) Packet interarrival time variance. C) Flow duration 



Packet interarrival times of the elephant and mice distributions from the trace observer are illustrated in this 
section. The threshold chosen to define the elephant flows is the 0.15% biggest flows, which according to figure 
1A, carry over 87% of the total traffic.  

Figures 1-2 show some statistics on this elephant traffic. The mean and variance in the packet interarrival time 
for both elephant and mice flows can be observed in figures 2A and 2B. As expected, elephant flows have short 
average packet interarrival time, typical from intensive applications. Figure 1B and 1C shows the packet 
interarrival time distributions of the biggest elephant and mice flows respectively in the trace. All the packet 
interarrival distributions of the elephants reach the 100% before 0.2 seconds, showing that the elephant flows 
doesn’t have important pauses. Also it is observed that most of the elephant packet interarrival time values are 
concentrated in lower values than in the mice ones. Finally, Figure 2C shows the flow duration where black and 
white bars represent mice and elephant flows respectively. As observed, most of elephants are long-duration 
flows and mice flows rarely exceeds 5 seconds. All these flow’s features explained could be exploited in 
designing an accurate detection strategy. 

7. Conclusions 
Firstly, this paper reviewed the current modeling status in the flow packet interarrival time. Secondly, the packet 
interarrival time distributions obtained in an Internet trace for both elephant and mice flows was discussed. 
Finally, the differences in the packet interarrival time found in the elephant and mice flows suggest that it can be 
used to detect elephant flows in aggregated traffic in an efficient way. 
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