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Abstract: Using a genetic programming approach we design quantum logic circuits 

suitable for the experimental demonstration of a three-qubit quantum computation 

prototype based on optically controlled, solid-state quantum logic gates. 

 

1 Introduction. 

Quantum computation is a computational model based on the interaction of two-level quantum 

mechanical systems typically termed qubits which has attracted great interest for its potential for 

increased computational power[1]. However, because of the demanding technological challenges, 

(particularly the issue of decoherence, i.e. the unwanted perturbation of the qubits by the environment 

which causes a loss of the stored quantum information), large-scale quantum computation is still far 

from the implementation stage and a number of physical systems have been proposed in the past 

aiming at the developing scalable systems[2]. One of these proposals is based on the optical control of 

the interactions between qubits stored in the electron spin of donors in a solid-state (possibly silicon) 

substrate[3]. This model, sometimes referred to as SFG model[4], aims at achieving large-scale 

quantum computation by exploiting the good tolerance towards decoherence of donor electron spin 

qubits in semiconductors[5] in conjunction with the optical control which allows to avoid the 

complicated fabrication processes for the exact placement of control electrodes used in other 

implementations[3]. The SFG model has been studied intensively during the last years and the 

implementation of a small-scale quantum computation prototype represents an important next step 

towards testing the potential of this technology. 

 

In this paper, we work towards this aim by developing quantum circuits suitable for the experimental 

demonstration of a three-qubit quantum computation prototype based on the SFG model. We use the 

genetic programming approach adapted to quantum circuit design proposed by Williams and Gray[6] 

for designing quantum logic circuits, specifically tailored for SFG quantum logic gates, which 

implement a three-qubit refined Deutsch-Jozsa (DJ) algorithm[7]. First, we develop circuits based on 

ideal and technology independent quantum gates, then, we observe how the circuits’ performance 

changes when the ideal gates are approximated by quantum gates produced within the SFG model, 

aiming at identifying solutions characterized by short computational time in order to protect the circuit 

from unpredictable errors which may perturb the system during an experimental implementation. 

2. Quantum circuit design 

In quantum computation, the implementation of an algorithm requires to apply a unitary 

transformation Ucomp to a quantum register comprising N qubits. However, the transformation Ucomp is 

an abstract object which, when implementing it experimentally on a quantum computer, is typically 

decomposed into a sequence of single qubit operations (i.e. quantum gates which alter the state of a 

single qubit) and two-qubit gates (quantum gates which lead to the interaction of two qubits)[1]. The 

specific types of gates available for the sequence depend on the particular technology used for the 

quantum computational system under study.  Hence, given a quantum register of N qubits, the design 

of a quantum logic circuit implementing a specific algorithm corresponds to finding a decomposition 

into a well defined sequence of single- and two-qubit operations of the unitary 2
N
x2

N
 matrix Ucomp 

which describes the algorithm[1]: 

jmjkmjcomp UUUUUUU !!!!!=                                         

The operators on the right-hand side of (1) are unitary operators U! describing single- or two-qubit 

operations which are taken out of an ensemble !={j,k,l,m,n...} comprising all the gates allowed by the 

(2) 
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given technology. Here, to perform the decomposition given in (1), we use the genetic programming 

approach developed by Wiliams and Gray[6]: first, a population of random circuits is generated. Each 

circuit Ucirc is represented by a random sequence of operators from the available set of gates. The 

fitness, which defines a comparison between the ideal transformation Ucomp and how well a 

synthesized circuit Ucirc actually implements it, is then evaluated for each element of the population. 

As a fitness parameter we use the average fidelity AF(see [8], for example): 

AF=|Tr(U
†

compUcirc)/2
N
|
2
 

AF returns 1 when Ucirc implements Ucomp exactly (up to an irrelevant phase difference) and decreases 

in case of imperfect implementation. Once the initial population has been created, the algorithm 

repeats following steps: a new generation of circuits is bred by randomly picking elements out of the 

previous generation, with circuits with higher fitness having a higher probability of being selected, and 

forming new circuits through crossover or mutation. In crossover, random fractions of two selected 

circuits are combined to form the new element while mutation forms a new circuit by adding, deleting 

or perturbing a random gate in the selected circuit. Once the new generation has been bred, the fitness 

of all circuits is evaluated. The algorithm continues breeding new generations until at least one 

element in the population has fitness higher than a desired threshold value (or if a maximum number 

of allowed iterations has been reached). The idea behind the genetic programming approach is that, 

mimicking the evolutionary process of nature, by composing or mutating well-performing circuits, 

generations of better-performing circuits might subsequently be built. 

 

In our design process, we exploit for single-qubit operations the operator Rz(")[1], shown in 

expression (3a). As described in [3],[8], techniques for implementing single-qubit operations 

compatible with the SFG model have been already demonstrated experimentally in the past and will 

therefore not be discussed here. In terms of two-qubit gates, we exploit two types of gates. We start 

using the ideal controlled-phase (CP) gate (expression (3b)), which is a gate commonly used in 

quantum computation[1]. Then, we repeat the design process after substituting the ideal CP gates with 

approximations obtained via the SFG model. In SFG quantum computation, interactions between two 

qubits carried by the electron spin of donors are mediated by a control particle placed in their 

proximity[3]. All the wavefunctions of this three-particle system are well separated and do not interact 

in their ground state. Instead, if the electron of the control particle is brought to an excited state 

through an optical pulse, its wavefunction spreads and overlaps with the adjacent wavefunctions of the 

qubit electrons, hence, leading to an effective interaction between them. The interaction is stopped by 

a second de-exciting pulse which returns the control electron to the ground state. For a discrete set of 

pulse interleave times Ti which can be shown to depend on two integers M and N, the qubits interact 

without losing information to the control particle and the two-qubit interaction is described by the 

matrix given in (3c) where J is the strength of the exchange interaction characterizing the qubits-

control atom system, B is a static magnetic field term and f=B/J[8]. A variety of different gates can be 

produced within the SFG model, including, as shown in [8], approximations of CP gates. Expressions 

(3a), (3b) and (3c) summarise the gates used in our work: 

! 

Rz "( ) = e
#i
"

2 0

0 e
i
"

2

$ 

% 

& 
& 

' 

( 

) 
) 
 (3a);        CP =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 #1

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 (3b);        SFG M,N( ) = e
i J#B( )T

e
# i 3# f( )J +2B[ ]T

0 0 0

0
#1( )

M
+ e

#i 1# f( )JT[ ]
2

#1( )
M
# e# i 1# f( )JT[ ]
2

0

0
#1( )

M
# e#i 1# f( )JT[ ]
2

#1( )
M

+ e
# i 1# f( )JT[ ]

2
0

0 0 0 e
2iBT #1( )

N

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 

 (3c);

 

We use the genetic programming approach to design circuits for the core operator Uf of the refined DJ 

algorithm, assuming a quantum register of three qubits as this represents the simplest structure with 

maximum functionality[7]. We label the 3 qubits as ‘0’, ‘1’ and ‘2’, and assume that each can interact 

with the others. In terms of two-qubit interactions, we assume that, for each design procedure, three-

two qubit gates are available: U1, U2 and U3 (respectively between qubits 0 and 1, 1 and 2 and 0 and 

2), which may either be ideal CP gates or SFG gates. The core operator Uf of a three-qubit refined DJ 

algorithm is (except for a constant case in which it corresponds to the identity matrix) an 8x8 diagonal 
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operator, with a balanced distribution of ‘1’s and ‘-1’s on its diagonal, which implements a function f 

chosen by an oracle used in the algorithm. There are 35 different balanced functions and, therefore, 35 

different quantum circuits which implement them[9]. 

4.1 Quantum circuits exploiting ideal CP gates 

We have run the genetic programming algorithm for all the 35 balanced functions using ideal CP gates 

for two-qubit interactions. The results are presented in Table 1, in which for each function fIJ the 

corresponding circuit sequence returned by the genetic programming algorithm is reported. The 

circuits have been split according to the number of two-qubit gates contained in the sequence and the 

subscripts of the quantum gates labels describe to which qubits in the quantum register the gates are 

applied. We have used the same hexadecimal codification of the functions as in the results presented 

by Kim et al where circuits for the same algorithm have been derived through a generator expansion 

technique for the case of a nuclear magnetic resonance quantum computer[9]. Here, we chose the 

genetic programming approach proposed by Williams and Gray[6] because it is more flexible in terms 

of the quantum gates which can be used in the decomposition process. 

0 Two-qubit gates 1 Two-qubit gate 2 Two-qubit gates 3 Two-qubit gates 
f0F R2z(#) f1E R2z(#)CP01 f1B CP01 CP02R2z(#) f17 CP01 CP02 CP12 

f33 R1z(#) f2D R0z(-#)CP01R2z(#) f1D R2z(#)CP01 CP12 f2B CP12 CP02 CP01 R1z(-#)R2z(#) 

f3C R1z(#)R2z(#) f36 CP02R1z(#) f27 CP01 CP02 R1z(-#) f4D CP02 R2z(#)CP01CP12R0z(#) 

f55 R0z(#) f39 CP02R1z(-#)R2z(-#) f2E R1z(-#)R2z(-#)CP12 CP01 f71 CP12 R1z(-#)CP01CP02R0z(#) 

f5A R0z(#)R2z(#) f4B CP01R0z(#)R2z(-#) f35 R1z(#)CP02 CP12   
f66 R0z(#)R1z(#) f56 CP12R0z(-#) f3A CP12 R2z(#) CP02 R1z(#)   
f69 R0z(#)R1z(#)· 

·R2z(#) 

f59 R2z(#)CP12R0z(-#) f47 CP02 R1z(#)CP12   

  f63 CP02R0z(#)R1z(#) f4E R2z(#)CP01 CP02 R0z(-#)   

  f65 R0z(#)R1z(-#)CP12 f53 CP02 R0z(#)CP12   

  f6A R0z(-#)R1z(#)R2z(-#)CP12 f5C CP12 R0z(-#) CP02 R2z(-#)   

  f6C R1z(-#)CP12R0z(-#)R2z(#) f72 R1z(-#)CP01 R0z(-#)CP02   

  f78 R1z(-#)R2z(#)CP12R1z(-#) f74 R1z(-#)CP01 CP12 R0z(#)   
Table 1: Quantum circuits for all 35 balanced functions of the refined DJ algorithm 

All the reported circuits implement the corresponding operator exactly (average fidelity AF=1). 

Comparing Table 1 and the results presented in [9], it can be seen that the circuits obtained with the 

two different methods require the same number of two-qubit gates. In terms of single-qubit gates, the 

same length of circuits has been found for all functions belonging to the group requiring 0 two-qubit 

gates. For the remaining functions, we found that 2D, 39, 63, 59, 65, D8, AC, CA, 27, 47, 53, 1D, 

35,17 designed with our genetic programming algorithm required 1 less single-qubit gate, functions 36 

and 56 two less, while function 4D required one single-qubit gate more. However, these differences 

might not be caused by the different methods used for the decomposition, but could also have been 

induced by the different two-qubit gates used. 

4.1 Quantum circuits exploiting SFG gates approximating CP gates 

Focusing on the function f17 (whose operator U17 has the balanced string [1 1 1 -1 1 -1 -1 -1] on its 

diagonal and belongs to the class requiring 3 two-qubit gates, therefore representing one of the 

functions with maximum complexity) we ran the genetic programming algorithm using SFG gates 

approximating the CP gates. Aiming at obtaining circuits with short computational time in order to 

reduce the number of errors which may accumulate during computation, we tested two different sets of 

SFG gates. A first set (Set A), exploiting SFG gates which approximate CP gates with high precision 

(AF>0.999) but with long gate operation times (Ti>80ns), and a second set (B) which only 

approximated the CP gates with AF>0.99 but with gate operation time Ti <10ns. Choosing the same 

magnetic field term B of 0.136meV used in a recent study on SFG quantum gates[4] and using the 

equations given in [8], we obtained the gate parameters shown in Table 2 for the two sets of gates 

which returned, respectively, the two circuits shown in (4) for the operator corresponding to f17: 
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Set A (AF>0.999) Set B (AF>0.99) 

U1A=SFG(1595,2137),   J=6.15GHz,   T=157.95ns 

U2A=SFG(1584,2177),   J=1.74GHz,   T=81.17ns 

U3A=SFG(815,904),   J=16.44GHz,   T=100.84ns 

U1B=SFG(124,142),   J=51.93GHz,   T1=2.63ns 

U2B=SFG(137,156),   J=54.37GHz,   T2=2.77ns 

U3B=SFG(143,162),   J=56.77GHz,   T3=2.77ns 

Table 2: Parameters of two sets of SFG gates approximating CP gates with a different degree of precision  

! 

U
17appA = Rz0

"0.001( ) U1A  Rz0
0.008( ) U3A  Rz1 "0.011( ) Rz2

0.019( ) U2A

U
17appB =U

2B  Rz1 0.038( ) U1B  Rz0
0.059( ) U3B  Rz2

0.183( ) 
 

Both circuits require extra single-qubit rotations which, as can be seen from Table 1, were not 

necessary in the ideal case. These compensate for part of the non-idealities introduced by the SFG 

quantum transformations as opposed to the ideal CP gates. In terms of performance, the first circuit, 

U17appA, approximates the ideal transformation with an average fidelity AF>0.999. However, while 

U17appB approximates the ideal circuit only with an average fidelity of ~0.988, it does so exploiting 

two-qubit quantum gates more than ~30 times faster. Hence, at the expenses of a slightly lower (yet 

still high) precision, it implements the desired transformation in less time and, therefore, better 

protecting the circuit from further, unpredictable errors (for example due to decoherence) which may 

perturb the system during an experimental demonstration. 

4. Conclusions. 

Using a genetic programming approach, we have developed quantum circuits for an SFG quantum 

computational system which implement a three-qubit refined Deutsch-Jozsa algorithm. Through a 

compromise between precision of the solution and length of computation time, we have identified a 

convenient solution which would be suitable for the experimental realization of a three-qubit SFG 

quantum computer.  
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