
UNV_v2.0: Content Centric Live Video Streaming

Grigorios Stathis, George Smart, Obada Sawalha, Lorenzo Levrini, Hans Balgobin, Stelios Vitorakis

and Yiannis Andreopoulos

University College London

Abstract
1
: We present UNV_v2.0, an open-source video streaming framework for the

Linux operating system, based on the video for Linux (v4l2 API) and the FFmpeg
library. The purpose of the 2

nd
 version of UNV is low-delay live capturing and streaming

over IP, with a choice of codecs and protocols to use. The architecture and main features
of the software are presented and bandwidth utilization, subjective quality assessment and
delay results are given for a video conferencing application and a surveillance application
scenario over Wi-Fi and over a campus eduroam network.

1. Introduction

Low-delay video streaming is now a prevalent service for entertainment, business, surveillance and
social media enterprises [1][2]. Within the last year alone, Google, Microsoft, Facebook, as well as
several major Internet Service Providers around the world have focused on product offerings including

low-delay video capture and streaming over IP for conversational or “rich media” applications [1].
The upcoming HTML5 standard with the foreseen “video” element will include several APIs
supporting video capture, encoding and decoding directly through the web browser [1], fuelled by the
de-facto presence of cheap webcam hardware on all laptop computers, tablets and smartphones today.

In this paper we present UNV_v2.0, a software solution for low-delay video capture, coding and
streaming via the Linux operating system. UNV_v2.0 offers:

• an open-source solution for video capture via the v4l2 (video for Linux) API of the Linux kernel,
and encoding&streaming via a C/C++ implementation that is easy to extend, as it is entirely based

on the FFmpeg library [3]; our solution allows both offline and live content to be streamed;

• video playback at the client through VLC
2
 or indeed any other player supporting raw (unwrapped)

H.264/AVC or MJPEG streams
2
;

• support for streaming via multiple ports for content-driven or traffic-driven prioritization [4];

• optional use of MKV wrapping for multi-stream rich-media transmission over IP;

• efficient resource usage that enables its operation even in low-end netbook computers.

We created UNV_v2.0 as today there is no open-source live video streaming that functions with new-
generation coding schemes (e.g. H.264/AVC) and also provides a simple implementation that operates

with the mainstream FFmpeg library. Mainstream solutions such as Ekiga or Skype are either
proprietary (closed-source) software, or utilize customized players and encoding tools, thus making
further application development based on them difficult to maintain and support. Other open-source
tools, such as Gnome Empathy or even direct VLC-to-VLC streaming, have significant
implementation complexity due to the bundling of many services and protocols into a single project,
thus making further application development in their codebase a difficult task. On the contrary, all I/O

routines and coding/decoding in UNV_v2.0 is handled very efficiently by using “off-the-shelf”
components from the v4l2 API and the FFmpeg library; both of these software packages are actively
maintained by a large community of developers; thus one can concentrate on the streaming session
development and on the offering of content-centric functionalities to the user (e.g. video analysis,
content-adaptive streaming, etc. [4]) while utilizing the existing codebase of these projects.

2. UNV_v2.0 Architecture and Main Features

The project follows the conventional client-server architecture, outlined in Figure 1. Possibilities for
wrapped bitstream transmission from the server to the client exist in UNV_v2.0 via the support of the

1
 Acronym synopsis: UNV: UNV, Not VLC; VLC: VideoLAN Client; IP: Internet Protocol; HTML: Hypertext

Markup Language; MKV: Matroska Video; RTSP: Real-time Streaming Protocol; TCP: Transmission Control

Protocol; UDP: User Datagram Protocol; Wi-Fi: wireless systems certified by the Wi-Fi Alliance; AVC/H.264:

ISO-IEC Advanced Video Coder Standard/ITU H.264 Recommendation; MJPEG: Motion JPEG codec; RAM:

Random Access Memory; RTP: Real-time Transport Protocol; RTT: Round Trip Time.
2
 http://www.videolan.org/, http://wiki.videolan.org/Codec

MKV wrapper [4]. The client is using the VLC player for efficient real-time video decoding and
playback. In addition, VLC can provide the current playback point (��) and the client can periodically
send it to the server for rate and transmission adaptation, or adaptation of the server (local) capturing
play-out point (��) for soft real-time content streaming (i.e. end-to-end delay of a few seconds). The
network operations indicated in Figure 1 involve packet fragmentation, usage of RTP encapsulation

and transmission via UDP or TCP to the client’s designated IP address and port(s). Further details on
these operations are included below. The multi-port streaming potential of UNV is detailed in [4].

Figure 1. Block diagram outlining the UNV_v2.0 architecture.

Figure 2. Flowchart for the webcam opening function.

 AVPacket Any binary data except raw frames
is treated as an AVPacket.

AVFrame FFmpeg’s “raw” format for video.
Webcam AVPackets are decoded
to AVFrame before encoding.

AVCodecContext Contains all parameters used for a
given codec. It is initialised to
default values using an FFmpeg
method before populating with
desired parameters.

AVFormatContext Contains all parameters associated
with a wrapper format, in this case
MKV. Passed as a pointer to the
wrapping method, and contains the
buffers sent over the network by
UNV.

AVCodec Contains all codec information and
settings.

AVStream Contains stream information. It has
an AVCodec associated with it.

Figure 3. Key FFmpeg structures used by the

UNV_v2.0 server.

The server parses the command-line parameters and then, if live video streaming of webcam content is

required, opens the webcam after establishing connection with the client (see Figure 2 for the flow-
chart of the related function). First, the video header is transmitted, which includes the MKV header if
MKV wrapping is used. Subsequently, under “live webcam” operation, once a video frame is captured

from the webcam via the v4l2 API, it is encoded via the FFmpeg’s x264 (open-source H.264/AVC
implementation) or MJPEG coder and the produced video packet is fragmented into pieces of a
predefined maximum size, which are then transmitted to the client via a UDP or TCP connection.
Fragmentation of video packets prior to transmission is necessary in order to avoid excessively large
packets, especially for the case of the MJPEG coder and the intra frames of the H.264/AVC.

The implementation of the frame capturing, encoding and network-related processing is done on
separate threads for increased efficiency in modern multicore processor environments. A summary of
the key FFmpeg structures used at the server is given in Figure 3.

The client communicates with the server through an RTSP/TCP control session with the standard
control commands (“SETUP”, “PLAY”, “STOP”, etc.). Furthermore, the client launches VLC
(selected because of its excellent error-recovery capabilities) and passes each received video packet
(after assembling all its fragments) to the standard input of VLC via an operating system pipe. The
simple implementation via a system pipe makes the client independent of the video player code and

allows for a simple design. The current playout point can be retrieved via libVLC and sent back to the
player periodically via the RTSP/TCP session. VLC is launched with only 10ms buffering and zero
jitter (--file-caching 10 --clock-jitter=0) in order to allow for low-delay decoding
and playback. Real-time flow-control mechanisms can be implemented via the knowledge of the
playback point and the control of the passing of received video packets from the client buffer to VLC.

3. Experimental Results

We focus on two scenarios: (i) a typical “video meeting” application, where each end launches a client

and a server and real-time video streams are captured, encoded and streamed bi-directionally; (ii) a

“video surveillance” application where a camera monitors an urban area and transmits compressed

video to a remote location via a UDP or TCP connection.

For each case, we performed two trials: one via a stand-alone Wi-Fi router, and one via the University

College London’s campus eduroam wireless network. A low-end laptop (AMD V120 2.2GHz, 3GB

RAM) and a netbook computer (Intel ATOM 1,66GHz, 1GB RAM) were used for our experiments

(both running Kubuntu Linux). For video encoding, MJPEG is used with fixed quantization

(qmin=qmax=90) and H.264/AVC is used with the constant quality encoding (crf=32 in the x264

encoder), and with only one reference frame and only P frames for low-delay encoding and decoding.

The video resolution was set to 640x480 pixels and 24 frames per second were used. End-to-end delay

is measured very accurately by using a millisecond clock at the client side and capturing the client

monitor with the server webcam; thus, the client shows simultaneously its native time as well as what

the server captures at that instant (see the example given in Figure 4). This simple measurement

technique is accurate and applicable to any live capture and streaming framework.

The obtained delay results are given in Table 1, where we also present the average delay of Skype and

direct VLC-to-VLC streaming over eduroam. Our UDP solution achieved average end-to-end delay of

402ms on Wi-Fi and 567ms on eduroam, which is still 2.4~3.4 times higher than that of Skype but it is

an order of magnitude smaller than that achieved by VLC-to-VLC streaming. Packet RTT was found

to be around 15ms on average and the server capturing and encoding delay was measured to be around

15ms. Hence, the usage of VLC as an external component at the client comes with a significant delay

penalty in the current implementation. Thus, future work should attempt further delay reductions at the

client, ideally without sacrificing the separation between client and the player.

Figure 4. End-to-end delay measurement. Encircled: Time stamp

contained in the received stream from the server at that instant in

UNV_v2.0 (left) and Skype (right).

Wi-Fi, UDP, H.264 402

Wi-Fi, TCP, H.264 636

Wi-Fi, UDP, MJPEG 1105

Wi-Fi, TCP, MJPEG 17193

eduroam, UDP, H.264 567

eduroam, TCP, H.264 667

eduroam, UDP, MJPEG 832

eduroam, TCP, MJPEG 9569

eduroam, Skype 168

Wi-Fi, UDP, VLC-to-VLC 4669

Table 1. Delay measurements (in

ms, averaged over multiple trials).

Client time-stamp

Concerning the obtained video quality (Figure 5), H.264/AVC achieved higher visual quality than

MJPEG for all our experiments, despite our attempts to set quantization parameters leading to similar

visual quality. However, UDP transmission led to occasional frame drops that were significantly more

visible with H.264/AVC than with MJPEG due to the use of motion compensated prediction.

Finally, concerning bandwidth utilization, Figure 6 shows traffic profiles for indicative experiments

with both codecs over eduroam, under TCP and UDP. Ignoring the initial traffic peak due to stream

initialization, UDP transmission led to a smooth traffic profile (variations between 50kbps~100kbps)

with smooth playback; on the contrary, TCP suffered from very high traffic variability (that also led to

somewhat irregular video playback at the client) due to the accumulation of multiple packets in the

server buffers (due to delayed packet acknowledgments and TCP’s backoff policies). In all our

experiments, despite offering lower quality, MJPEG led to significantly higher bandwidth

requirements and comparable or higher variations than H.264/AVC.

Figure 5. Visual comparisons of H.264/AVC encoded video (left halves) and MJPEG encoded video

(right halves) for the conversational (left) and surveillance applications (right).

Figure 6. UNV_v2.0 traffic (in kbps, averaged from the arrival packet traces) of H.264/AVC and

MJPEG streams under eduroam via: UDP transmission (left) and TCP transmission (right).

4. Conclusion

Based on the v4l2 API and the FFmpeg library, the proposed UNV_v2.0 software solution
(available at http://www.ee.ucl.ac.uk/~iandreop/UNV.html) provides an open-source framework that

allows for low-delay video capturing, encoding and streaming. While still in development stage, our
solution provides multiple codec support, as well as UDP and TCP streaming, with a simple software
design that allows for the use of any state-of-the-art video playback framework (such as VideoLAN’s
VLC) supporting the utilized codecs. Even though UNV_v2.0 is already significantly more delay-
efficient than direct VLC-to-VLC streaming, further improvements can focus on the client side in
order to bring the end-to-end delay from 400~570ms down to the 150ms range achieved by

commercial offerings for real-time conversational services over IP.

References

[1] E. Ackerman and E. Guizzo, “5 technologies that will shape the web,” IEEE Spectrum, vol. 48, no. 6, pp.
40-45, June 2011.

[2] A. Roy, N. Gale and L. Hong, “Automated traffic surveillance using fusion of Doppler radar and video
information,” Mathematical and Computer Modelling, vol. 54, no. 1-2, pp. 531-543, July 2011.

[3] S. Tomar, “Converting video formats with FFmpeg,” Linux Journal, no. 146, June 2006.
[4] I. Tsakos and Y. Andreopoulos “Multiport streaming of Matroska (MKV) video over IP”, Proc. London

Communications Symposium, paper 35, Sept. 2010.

