Programme Specification

<table>
<thead>
<tr>
<th>Programme title:</th>
<th>MSc Wireless and Optical Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final award (BSc, MA etc):</td>
<td>MSc</td>
</tr>
<tr>
<td>(where stopping off points exist they should be detailed here and defined later in the document)</td>
<td></td>
</tr>
<tr>
<td>UCAS code:</td>
<td>N/A</td>
</tr>
<tr>
<td>(where applicable)</td>
<td></td>
</tr>
<tr>
<td>Cohort(s) to which this programme specification is applicable:</td>
<td>From 2008/09 Entry</td>
</tr>
<tr>
<td>(e.g. from 2008 intake onwards)</td>
<td></td>
</tr>
<tr>
<td>Awarding institution/body:</td>
<td>University College London</td>
</tr>
<tr>
<td>Teaching institution:</td>
<td>University College London</td>
</tr>
<tr>
<td>Faculty:</td>
<td>Engineering Sciences</td>
</tr>
<tr>
<td>Parent Department:</td>
<td>Electronic and Electrical Engineering</td>
</tr>
<tr>
<td>(the department responsible for the administration of the programme)</td>
<td></td>
</tr>
<tr>
<td>Departmental web page address:</td>
<td>www.ee.ucl.ac.uk/masters</td>
</tr>
<tr>
<td>(if applicable)</td>
<td></td>
</tr>
<tr>
<td>Method of study:</td>
<td>Full Time</td>
</tr>
<tr>
<td>Full-time/Part-time/Other</td>
<td></td>
</tr>
<tr>
<td>Criteria for admission to the programme:</td>
<td>Please see: Minimum of 2:1 UK degree or equivalent in Electronic Engineering or related subject. http://www.ucl.ac.uk/prospective-students/graduate/apply/taught/entry-requirements</td>
</tr>
<tr>
<td>Length of the programme:</td>
<td>One calendar year full-time</td>
</tr>
<tr>
<td>(please note any periods spent away from UCL, such as study abroad or placements in industry)</td>
<td></td>
</tr>
<tr>
<td>Level on Framework for Higher Education Qualifications (FHEQ)</td>
<td>7</td>
</tr>
<tr>
<td>(see Guidance notes)</td>
<td></td>
</tr>
</tbody>
</table>
Wireless and Optical Communications is concerned with developing, providing and maintaining infrastructure, products, processes and services for society. Wireless and Optical Communications Engineering addresses the complete life-cycle of a digital or analogue communications system, process or service over wireless and optical media, from conception to design and optimisation and analysis, within the constraints imposed by economic, legal, social, cultural and environmental considerations. Wireless and Optical Communications Engineering relies on three core elements, namely scientific principles, mathematics and 'realisation'. Scientific principles clearly underpin all engineering, while mathematics is the language used to communicate parameters, model and optimise solutions. Realisation encapsulates the whole range of creative abilities that distinguish the engineer from the scientist; to conceive, make and actually bring to fruition something which has never existed before. This creativity and innovation to develop economically viable and ethically sound sustainable solutions is an essential and distinguishing characteristic of engineering, shared by the many diverse, established and emerging disciplines within engineering.

The UK Standard for Professional Engineering Competence (2010) sets out five main areas of competence expected for Chartered Engineers, each covering a number of different aspects:
A Use of general and specialist engineering knowledge and understanding
B Application of appropriate theoretical and practical methods
C Technical and commercial leadership and management
D Effective interpersonal and communication skills
E Commitment to professional standards and recognition of obligations to society, the profession and the environment.
Brief outline of the structure of the programme and its assessment methods:
(see guidance notes)

All modules are taught in intensive one-week lectures (6 hours per day for 4 days). A week of self-study is allowed after the module teaching finishes and this is followed by a 3-4 hour discussion and tutorial session. Modules are assessed within two to four weeks of the tutorial session.

All students will take two core modules and four compulsory modules (dependent on the programme) and then select 3 optional modules which could be from any of our programmes although some restrictions will apply. The two core modules are the modules common to a number of master programmes.

- 2 Core Modules
 1) Introduction to Telecommunications Networks (15 Credits EXAM 2½ hours)
 2) Professional Development Module (in-class assignment and presentations)

- 4 Compulsory Modules
 - Mobile Communications Systems (15 Credits EXAM 2½ hours)
 - Broadband Communications Lab (15 Credits Two reports ~32,000 words)
 - Communications Systems Modelling (15 Credits EXAM 2 hours & Lab Assignment)
 - Broadband Technologies and Components (15 Credits EXAM 2½ hours)

- 3 Options from the following
 - Satellite Communications (15 Credits EXAM 2½ hours)
 - Optical Transmission and Networks (15 Credits EXAM 2½ hours)
 - RF Circuits and Devices (15 Credits EXAM 2½ hours)
 - Antennas and Propagation (15 Credits EXAM 2½ hours)
 - Radar Systems (15 Credits EXAM 2½ hours)
 - Advanced Photonic Devices (15 Credits EXAM 2½ hours)
 - Photonic Sub-systems (15 Credits EXAM 2½ hours)

- Project and dissertation: 18-20 weeks of supervised study assessed by viva and written report Dissertation (60 Credits <12,000 words)

~~~Board of Examiners:

i) Name of Board of Examiners:

Communications Programmes Board

Professional body accreditation (if applicable):

Institution of Engineering and Technology (IET)

Date of next scheduled accreditation visit: 2018
EDUCATIONAL AIMS OF THE PROGRAMME:

1. To provide students with advanced knowledge and comprehensive understanding of wireless and optical communications systems and networks, their analysis and design techniques and of details of new concepts and technologies relevant to the area.

2. To provide thorough coverage of research methods based on the underlying scientific and engineering principles of wireless and optical communications systems and engineering.

3. To equip the students with the scientific and intellectual tools required for defining and formulating research problems, and to detail the methodologies needed to address them.

4. To equip the students with the scientific and intellectual tools required for designing and analysing key engineering processes related to wireless and optical communication systems.

5. To enhance the students ability to apply mathematical modelling techniques and computer modelling tools in telecommunications engineering and to assess their limitations.

6. To develop awareness of the trends of technology and standardisation developments of wireless and optical communications systems, at the device level, physical and higher layers.

7. To provide detailed knowledge of new and upcoming technologies related to wireless and optical communications industries and standards.

8. To get exposed to industrial designs and processes and to innovations in the wireless and optical communications industry.

9. To develop deep knowledge of standards and the communications commercial environments and standardisation processes and to be able to contribute to such processes through appreciation of their contexts, economic and regulatory drivers and limitations.

10. To provide knowledge and skills to allow for independent learning.

11. To provide knowledge and skills required for critical assessment of research work (of self and others).

12. To provide a wide range of intellectual, practical and transferable skills that will allow students to develop careers in industry or academia.
INTENDED LEARNING OUTCOMES:

The MSc in Wireless and Optical Communications programme is designed to give specialisation in the field of wireless and optical communications for an enhanced preparation for an industrial career or further specialised studies in the field, e.g. PhD work or work in an R&D laboratory in the sector. It includes substantially increased depth of study beyond that of a corresponding BEng (Hons), and an increased emphasis on industrial relevance. The dissertation project within the MSc in Wireless and Optical Communications programme includes an individual research/design project with strong industrial relevance and involvement. The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas.

Knowledge and understanding - Graduates will be able to

- Use knowledge of underlying principles, mainly physics, mathematics and computer science on which modern wireless and optical communications theory and systems are based, including complex numbers, matrix algebra, differential equations, transform theory, semiconductor physics and optics, to tackle a wide range of tasks, including analysis and design of methods and systems at the device level, physical, medium access, network and application layers of the communications stack.
- Understand and apply the fundamental principles that underpin wireless and optical communications systems, including Fourier and Laplace Equations, information and communications theory and principles of programming for embedded and networked real-time systems.
- Understand and apply the fundamental principles of the generation, guided transmission, amplification and reception of light, the design consideration and techniques used in radio networks, the principles of digital transmission and the role of optics and wireless in both access and core networks.
- Analyse and design mobile and wireless communications systems in detail by in-depth understanding the physical layer techniques and consideration of practical wireless network standards (e.g., GSM and UMTS).
- Draw on materials from a range of courses in electronic and electrical engineering and related disciplines in order to solve problems in wireless and optical communications systems including demonstrating depth and breadth to their learning.
- Apply business and management techniques that are relevant to wireless and optical communications engineering.
- Explain the role of wireless and optical communications in society and the constraints within which their engineering judgement will be exercised.
- Understand the professional and ethical responsibilities of wireless and optical communications engineers.
- Appreciate the national and international role of a wireless and optical communications systems engineer and the impact of related engineering solutions in a global context.
- Demonstrate a systematic understanding of knowledge, and a critical awareness of current problems and/or new insights, much of which is at, or informed by, the forefront of their academic discipline, field of study or area of professional practice.

Skills and other attributes – Graduates will be able to

- Deal with complex issues both systematically and creatively, make sound judgments in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences.
- Demonstrate self-direction and originality in tackling and solving problems and act autonomously in planning and implementing tasks at a professional or equivalent level.
- Continue to advance their knowledge and understanding, and to develop new skills to a high level.
- Have the qualities and transferrable skills necessary for employment in circumstances requiring the independent learning ability required for continuing professional development, the exercise of initiative and personal responsibility, and decision-making and sound judgment in complex and unpredictable situations.
- Use a combination of general and specialist engineering and computer science knowledge and understanding to optimise the application of existing and emerging technology.
- Apply appropriate theoretical and practical methods to the analysis and solution of engineering problems.
- Use software necessary for wireless and optical communications systems analysis and design, including MATLAB, network simulators, and other scripting languages, if required in projects or labs.
- Demonstrate practical transferrable engineering skills such as programming, system design and development, through the range of labs, and projects that permeate the programme.
- Apply advanced knowledge in certain areas as appropriate to programme options chosen.
- Undertake a large-scale supervised research project in academia or industry and present the results of this work in a written report and oral presentation.
- Work effectively in communications systems-based assignments.
- Explain in depth the managerial and economic factors facing a professional Telecommunications systems engineer.
- Interpret specifications and document their solutions to Telecommunications engineering problems so that others can follow and validate their work.
- Apply professional engineering practice and judgement in project work.
- Appreciate and practice professional skills, including appreciation of sustainability, commercial risk and ethics and understanding of electronic and electrical engineering in the wider context of engineering in general, in accordance with the ethos of the Integrated Engineering Program.
**Intellectual skills – Graduates will be able to**

- Demonstrate a comprehensive understanding of techniques applicable to their own research or advanced scholarship.
- Demonstrate originality in the application of knowledge, together with a practical understanding of how established techniques of research and enquiry are used to create and interpret knowledge in the discipline.
- Show originality in tackling and solving problems.
- Understand how the boundaries of knowledge are advanced through research.
- Demonstrate a conceptual understanding that enables the student to evaluate critically current research and advanced scholarship in the discipline.
- Demonstrate a conceptual understanding that enables the student to evaluate methodologies and develop critiques of them and, where appropriate, to propose new hypotheses.
- Apply appropriate quantitative mathematical, scientific and engineering tools to the analysis of problems.
- Analyse and solve wireless and optical communications systems problems, applying rigour in any related mathematics and software/hardware design.
- Design wireless and optical communications hardware or software systems, components or processes to meet a need.
- Be creative in the solution of problems and in the development of designs.
- Integrate knowledge and understanding of other scientific, mathematical, computational, software, or engineering disciplines in order to support their specialisation.
- Formulate and test hypotheses modifying the hypotheses depending on the data obtained.
- Evaluate designs, processes and products and make improvements.
- Take a holistic approach in solving problems and designing systems, applying professional judgements to balance risks, costs, benefits, safety, reliability, aesthetics and environmental impact.

**Characteristics – MSc in Wireless and Optical Communications Graduates will**

- Be rational and pragmatic, interested in the practical steps necessary for a concept to become reality.
- Strive to achieve sustainable solutions to problems and have strategies for being creative, innovative and overcoming difficulties by employing their knowledge in a flexible manner.
- Be numerate and highly computer literate, and capable of attention to detail.
- Be cost and value-conscious, and aware of the social, cultural, environmental, health and safety, and wider professional responsibilities they should display.
- Appreciate the international dimension to engineering, commerce and communication.
- When faced with an ethical issue be able to formulate and operate within appropriate codes of conduct.
- Adopt a professional outlook, capable of team working, effective communicators, and able to exercise responsibility.

A: Knowledge and understanding
Knowledge and understanding of:

- Key technologies and their underpinning scientific principles that make up network architectures and systems of modern wireless and optical communications networks.
- Mathematical and analytical methods used to model, analyse and design communication systems in the device, system and network levels.
- Advanced computer simulation and modelling systems used in communications.
- Computer systems and programming languages used for operating wireless and optical communication networks.
- The industrial and regulatory standards and standardisation frameworks.
- The wireless and optical communications commercial environments and the constraints they place on the design and operation of communication systems and networks.
- The design processes of communication devices, sub-systems and integration into systems, taking into consideration the device level, the physical and higher layers.
- Developing and emerging technologies in wireless and optical communication networks and communication systems.

Specific topics include:
Mobile and wireless systems
Communications technologies
Optical devices and technologies
Optical broadband networks
Business aspects of wireless and optical communications

Teaching/learning methods and strategies:

- The main teaching and learning methods are based on the use of intensive, 4-5 day lecture based courses supported by tutorials, and private study.
- Each module is supported by a three-hour tutorial session where the module content is discussed and where discussions are based on the material taught and at least one full week of individual study and problem/exercise solving.
- The core technical modules are designed to provide knowledge of the key technologies and their underlying principles. This is done by providing the methods to analyse systems and their key components, and develop through lectures and discussions, critical awareness of new problems and technologies.
- Some modules include seminars and workshops to support the students.
- Most modules include an invited industrial lecture.
- Laboratory sessions are used to provide comprehensive knowledge of up-to-date systems and techniques for use in research.
- Discussion forums and supplementary learning material provided through a virtual learning environment.
- Individual one-to-one regular tuition sessions during the project work. These include detailed technical discussions plus teaching of research methods.

Assessment:

- Assessment is usually carried out three to four weeks after module teaching.
- Core modules are assessed by unseen written exam.
- Assessment methods of optional modules depend on the module taken where assessment is by exam, assignment or a mix of the two.
### Intellectual (thinking) skills:

The course aims to enable the students to:

- Develop a holistic approach to the design processes and methodologies of wireless and optical communications networks by considering the multiple facets that must interoperate. These include technical, commercial and application considerations.
- Use knowledge of communications engineering fundamentals to design and specify components or subsystems within the network.
- Apply knowledge of research methods to analyse and/or develop new technologies.
- Apply knowledge of communications principles to synthesise new concepts and generate research ideas.
- Analysis of complex engineering arguments encompassing design, commercial and business limitations and industrial requirements.
- Critical assessment and analysis of current research and research methodologies in wireless and optical communications.

### Teaching/learning methods and strategies:

- The primary teaching methods will be through Lectures, tutorials and seminars within the associated modules.
- Intellectual skills will be reinforced and strengthened significantly throughout the process of the project.
- Specific lectures on research methods are given.
- Critical assessment of research literature and methodologies is supported through workshops and seminars (several occasions during the year).
- Laboratory sessions within a number of modules support the development of students' design skills.

### Assessment:

- Assignments and exams including design exercises within modules.
- Specific assignments include aspects of critical assessments of the literature and of "others" designs and systems.
- The output of these skills will also be assessed in the project, which is assessed by dissertation.
### C: Skills and other attributes

#### Practical skills (able to):
- In the modules a number of practical design skills will be developed.
- Programming in MATLAB will be developed.
- Additional practical skills developed by student will largely depend on the research topic followed for their dissertation.
- Communicate effectively in writing and through presentations.
- Practical research techniques in a specialised research topic.
- Apply mathematical modelling and analysis appropriate to unfamiliar problems.
- Apply appropriate computer simulation tools to investigate a research question.
- Design, construct and undertake an experiment investigation to test a theory.
- Analyse the results of an experiment, simulation or other investigation.

#### Teaching/learning methods and strategies:
- Basic skills will be supported in specific modules by Laboratory and workshop sessions, as well as seminars on basic research methodologies and techniques.
- Programming is taught through a specific, computer laboratory based module.
- The primary teaching method used in the research project is direct supervision by a member of academic staff with support of a second assessor.

#### Assessment:
- Exams and Assignments within the modules and the dissertation.
- MATLAB programming is assessed through a programming assignment.
D: Skills and other attributes

<table>
<thead>
<tr>
<th>Transferable skills (able to):</th>
<th>Teaching/learning methods and strategies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The programme will enable students to:</td>
<td>These skills will be promoted through the dissertation and the transferable skills module.</td>
</tr>
<tr>
<td>• Learn complex topics independently.</td>
<td>Part of the transferable skills module will be provided by CALT through the PPMS course (<a href="http://www.ucl.ac.uk/myp/">http://www.ucl.ac.uk/myp/</a>).</td>
</tr>
<tr>
<td>• Work on new topics demonstrating initiative and creativity.</td>
<td>The main mode of teaching and learning for many of these skills will be the direct supervision of the research project by a member of academic staff. This interaction will focus on the development of skills.</td>
</tr>
<tr>
<td>• Write well-structured complex reports.</td>
<td></td>
</tr>
<tr>
<td>• Write brief reports and executive summaries of complex arguments.</td>
<td></td>
</tr>
<tr>
<td>• Present work to an audience with mixed knowledge and skills.</td>
<td></td>
</tr>
<tr>
<td>• Use appropriate resources and citation methods.</td>
<td></td>
</tr>
<tr>
<td>• Study and evaluate a variety of research material of a kind that they will not have used as undergraduates.</td>
<td></td>
</tr>
<tr>
<td>• Provide a critical assessment of their own work and that of others.</td>
<td></td>
</tr>
<tr>
<td>• Make a contribution to the research topic by following through their ideas.</td>
<td></td>
</tr>
<tr>
<td>• Critical assessment of own work.</td>
<td></td>
</tr>
<tr>
<td>• Group work and team skills.</td>
<td></td>
</tr>
<tr>
<td>• Time management and organisational skills.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The writing skills are assessed through assignments and the different elements of project assessment (executive summary and final dissertation).</td>
</tr>
<tr>
<td>• Presentation skills are assessed as part of the project work.</td>
</tr>
</tbody>
</table>

The following reference points were used in designing the programme:

- the Framework for Higher Education Qualifications (http://www.qaa.ac.uk/Publications/InformationAndGuidance/Pages/The-framework-for-higher-education-qualifications-in-England-Wales-and-Northern-Ireland.aspx);
- the relevant Subject Benchmark Statements (http://www.qaa.ac.uk/AssuringStandardsAndQuality/subject-guidance/Pages/Subject-benchmark-statements.aspx);
- the programme specifications for UCL degree programmes in relevant subjects (where applicable);
- UCL teaching and learning policies;
- staff research.

Please note: This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each course unit/module can be found in the departmental course handbook. The accuracy of the information contained in this document is reviewed annually by UCL and may be checked by the Quality Assurance Agency.

Programme Organiser(s) Name(s): Dr Kit Wong (course Director) and Professor Izzat Darwazeh (Postgraduate Tutor)

Date of Production: 11th November 2013
<table>
<thead>
<tr>
<th>Date of Review:</th>
<th>October 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date approved by Head of Department:</td>
<td>November 2013</td>
</tr>
<tr>
<td>Date approved by Chair of Departmental Teaching Committee:</td>
<td>November 2013</td>
</tr>
<tr>
<td>Date approved by Faculty Teaching Committee</td>
<td>November 2013</td>
</tr>
</tbody>
</table>
**MSc in Wireless and Optical Communications:**

**PROGRAMME STRUCTURE – 2014-15**

**General**

The diagram below details the core, compulsory and the optional modules available for the MSc in Wireless and Optical Communications. Please see Section 3 below for module acronym definitions. Each module comprises 15 UCL Credits. The dissertation project comprises 60 UCL Credits and 180 UCL Credits are required for the award of the MSc in Wireless and Optical Communications. The Scheme of Award description is given in Section 4 below.

1. **Module Selection**

![Diagram of module selection]

2. **Dissertation Project**

The dissertation report represents an important part of the MSc in Wireless and Optical Communications degree. Not only does it represent one third of the final mark, but the project work offers a unique opportunity to focus on a problem with enough depth to write a professional document about it.

3. **Module Definitions**

Below are definitions of all of the modules along with the module leader.

**PDM - Professional Development Module**  
Module Leaders – Dr Yiannis Andreopoulos and Dr Kit Wong

**ITN - Introduction to Telecommunications Networks**
Module Leader – Professor Izzat Darwazeh

**MCS** – Mobile Communications Systems
Module Leader – Professor Izzat Darwazeh

**BCL** – Broadband Communications Lab
Module Leader – Dr David Selviah

**BTC** – Broadband Technologies and Components
Module Leader – Dr Cyril Renaud

**CSM** – Communications Systems Modeling
Module Leader – Dr Kit Wong

**AP** – Antennas and Propagation
Module Leader – Professor Paul Brennan

**RFC** – RF Circuits and Sub-Systems
Module Leader – Dr Chin-Pang Liu

**PSS** – Photonic Sub-Systems
Module Leader - Dr David Selviah

**APD** – Advanced Photonics Devices
Module Leader - Dr David Selviah

**RS** – Radar Systems
Module Leader – Professor Hugh Griffiths

**SC** – Satellite Communications
Module Leader – Professor Karl Woodbridge

**OTN** – Optical Transmission and Networks
Module Leader – Professor Polina Bayvel

### 3. Scheme of Award and Award Categories

For the award of the MSc degree students must have completed 180 UCL credits and passed at least 75% of assessed work with a pass mark of 50%. A maximum of 25% of a programme’s taught element, excluding the dissertation, may be condoned at 40–49%.

**Pass:** Students must obtain an average of at least 50% across all taught modules (with not more than 2 marks condoned (40% < 49%), and at least 50% in the Research Project.

**Merit:** An award of Merit will be made where: the overall mark, based on 180 credits, is 60% or greater and the mark for the dissertation is 65% or greater and there are no marks below 50%, no condoned marks, no re-sits, and all marks are based on first attempts.

**Distinction:** The criteria for the award of a distinction are that the mark for the dissertation is 70% or more, and the overall weighted mark (combining the taught elements and the dissertation) is 70% or greater and there are no marks below 50%, no condoned marks, no re-sits, and all marks are based on first attempts.