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Context

Machine learning for “big data”

• Large-scale machine learning: large p, large n

– p : dimension of each observation (input)

– n : number of observations

• Examples: computer vision, bioinformatics, advertising

– Ideal running-time complexity: O(pn)

– Going back to simple methods

– Stochastic gradient methods (Robbins and Monro, 1951)

– Mixing statistics and optimization

– Using smoothness to go beyond stochastic gradient descent
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Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as a linear function 〈θ,Φ(x)〉 of features Φ(x) ∈ R
p

• (regularized) empirical risk minimization: find θ̂ solution of

min
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• Two fundamental questions: (1) computing θ̂ and (2) analyzing θ̂
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• A twice differentiable function g : Rp → R is µ-strongly convex if

and only if

∀θ ∈ R
p, g′′(θ) < µ · Id

• Machine learning

– with g(θ) = 1
n

∑n
i=1 ℓ(yi, 〈θ,Φ(xi)〉)

– Hessian ≈ covariance matrix 1
n

∑n
i=1Φ(xi)⊗ Φ(xi)

– Data with invertible covariance matrix (low correlation/dimension)

• Adding regularization by µ
2‖θ‖2

– creates additional bias unless µ is small



Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on R
p

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−ρt) convergence rate for strongly convex functions
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Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on R
p

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−ρt) convergence rate for strongly convex functions

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

convergence rate

• Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below statistical error

2. In machine learning, cost functions are averages

⇒ Stochastic approximation
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– given only unbiased estimates f ′

n(θn) of its gradients f ′(θn) at

certain points θn ∈ R
p
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• Goal: Minimizing a function f defined on R
p

– given only unbiased estimates f ′

n(θn) of its gradients f ′(θn) at

certain points θn ∈ R
p

• Machine learning - statistics

– f(θ) = Efn(θ) = E ℓ(yn, 〈θ,Φ(xn)〉) = generalization error

– Loss for a single pair of observations: fn(θ) = ℓ(yn, 〈θ,Φ(xn)〉)
– Expected gradient:

f ′(θ) = Ef ′

n(θ) = E
{

ℓ′(yn, 〈θ,Φ(xn)〉)Φ(xn)
}

• Beyond convex optimization: see, e.g., Benveniste et al. (2012)



Convex stochastic approximation

• Key assumption: smoothness and/or strong convexity

• Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γn f
′

n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n+1

∑n
k=0 θk

– Which learning rate sequence γn? Classical setting: γn = Cn−α
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• Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γn f
′

n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n+1

∑n
k=0 θk

– Which learning rate sequence γn? Classical setting: γn = Cn−α

• Running-time = O(np)

– Single pass through the data

– One line of code among many



Convex stochastic approximation

Existing work

• Known global minimax rates of convergence for non-smooth

problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2
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– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

• Asymptotic analysis of averaging (Polyak and Juditsky, 1992;

Ruppert, 1988)

– All step sizes γn = Cn−α with α ∈ (1/2, 1) lead to O(n−1) for

smooth strongly convex problems

• A single algorithm for smooth problems with convergence rate

O(1/n) in all situations?



Least-mean-square algorithm

• Least-squares: f(θ) = 1
2E

[

(yn − 〈Φ(xn), θ〉)2
]

with θ ∈ R
p

– SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)

– usually studied without averaging and decreasing step-sizes

– with strong convexity assumption E
[

Φ(xn)⊗Φ(xn)
]

= H < µ · Id
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• Least-squares: f(θ) = 1
2E

[

(yn − 〈Φ(xn), θ〉)2
]

with θ ∈ R
p

– SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)

– usually studied without averaging and decreasing step-sizes

– with strong convexity assumption E
[

Φ(xn)⊗Φ(xn)
]

= H < µ · Id

• New analysis for averaging and constant step-size γ = 1/(4R2)

– Assume ‖Φ(xn)‖ 6 R and |yn − 〈Φ(xn), θ∗〉| 6 σ almost surely

– No assumption regarding lowest eigenvalues of H

– Main result: Ef(θ̄n−1)− f(θ∗) 6
4σ2p

n
+

4R2‖θ0 − θ∗‖2
n

• Matches statistical lower bound (Tsybakov, 2003)

– Non-asymptotic robust version of Györfi and Walk (1996)



Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(
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)2

θn = θn−1 − γ
(
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)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

- For least-squares, θ̄γ = θ∗
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Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

• For least-squares, θ̄γ = θ∗

– θn does not converge to θ∗ but oscillates around it

– oscillations of order
√
γ

• Ergodic theorem:

– Averaged iterates converge to θ̄γ = θ∗ at rate O(1/n)



Simulations - synthetic examples

• Gaussian distributions - p = 20
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Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)
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Beyond least-squares - Markov chain interpretation

• Recursion θn = θn−1 − γf ′

n(θn−1) also defines a Markov chain

– Stationary distribution πγ such that
∫

f ′(θ)πγ(dθ) = 0

– When f ′ is not linear, f ′(
∫

θπγ(dθ)) 6=
∫

f ′(θ)πγ(dθ) = 0
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Beyond least-squares - Markov chain interpretation

• Recursion θn = θn−1 − γf ′

n(θn−1) also defines a Markov chain

– Stationary distribution πγ such that
∫

f ′(θ)πγ(dθ) = 0

– When f ′ is not linear, f ′(
∫

θπγ(dθ)) 6=
∫

f ′(θ)πγ(dθ) = 0

• θn oscillates around the wrong value θ̄γ 6= θ∗

– moreover, ‖θ∗ − θn‖ = Op(
√
γ)

• Ergodic theorem

– averaged iterates converge to θ̄γ 6= θ∗ at rate O(1/n)

– moreover, ‖θ∗ − θ̄γ‖ = O(γ) (Bach, 2013)



Simulations - synthetic examples

• Gaussian distributions - p = 20
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Restoring convergence through online Newton steps

• Known facts

1. Averaged SGD with γn ∝ n−1/2 leads to robust rate O(n−1/2)

for all convex functions

2. Averaged SGD with γn constant leads to robust rate O(n−1)

for all convex quadratic functions

3. Newton’s method squares the error at each iteration

for smooth functions

4. A single step of Newton’s method is equivalent to minimizing the

quadratic Taylor expansion

– Online Newton step

– Rate: O((n−1/2)2 + n−1) = O(n−1)

– Complexity: O(p) per iteration
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• The Newton step for f = Efn(θ)
def
= E
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Restoring convergence through online Newton steps

• The Newton step for f = Efn(θ)
def
= E

[

ℓ(yn, 〈θ,Φ(xn)〉)
]

at θ̃ is

equivalent to minimizing the quadratic approximation

g(θ) = f(θ̃) + 〈f ′(θ̃), θ − θ̃〉+ 1
2〈θ − θ̃, f ′′(θ̃)(θ − θ̃)〉

= f(θ̃) + 〈Ef ′

n(θ̃), θ − θ̃〉+ 1
2〈θ − θ̃,Ef ′′

n(θ̃)(θ − θ̃)〉

= E

[

f(θ̃) + 〈f ′

n(θ̃), θ − θ̃〉+ 1
2〈θ − θ̃, f ′′

n(θ̃)(θ − θ̃)〉
]

• Complexity of least-mean-square recursion for g is O(p)

θn = θn−1 − γ
[

f ′

n(θ̃) + f ′′

n(θ̃)(θn−1 − θ̃)
]

– f ′′

n(θ̃) = ℓ′′(yn, 〈θ̃,Φ(xn)〉)Φ(xn)⊗ Φ(xn) has rank one

– New online Newton step without computing/inverting Hessians



Choice of support point for online Newton step

• Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain θ̃

(2) Run n/2 iterations of averaged constant step-size LMS

– Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)

– Provable convergence rate of O(p/n) for logistic regression

– Additional assumptions but no strong convexity



Choice of support point for online Newton step

• Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain θ̃

(2) Run n/2 iterations of averaged constant step-size LMS

– Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)

– Provable convergence rate of O(p/n) for logistic regression

– Additional assumptions but no strong convexity

• Update at each iteration using the current averaged iterate

– Recursion: θn = θn−1 − γ
[

f ′

n(θ̄n−1) + f ′′

n(θ̄n−1)(θn−1 − θ̄n−1)
]

– No provable convergence rate (yet) but best practical behavior

– Note (dis)similarity with regular SGD: θn = θn−1 − γf ′

n(θn−1)



Simulations - synthetic examples

• Gaussian distributions - p = 20
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Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)
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Conclusions

• Constant-step-size averaged stochastic gradient descent

– Reaches convergence rate O(1/n) in all regimes

– Improves on the O(1/
√
n) lower-bound of non-smooth problems

– Efficient online Newton step for non-quadratic problems

– Robustness to step-size selection



Conclusions

• Constant-step-size averaged stochastic gradient descent

– Reaches convergence rate O(1/n) in all regimes

– Improves on the O(1/
√
n) lower-bound of non-smooth problems

– Efficient online Newton step for non-quadratic problems

– Robustness to step-size selection

• Extensions and future work

– Going beyond a single pass

– Pre-conditioning

– Proximal extensions fo non-differentiable terms

– kernels and non-parametric estimation

– line-search

– parallelization

– Non-convex problems
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