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THERE IS A GROWING NEED FOR DATA ANALYSIS

I We live in an era of abundant data

I The McKinsey Global Institute claim
I “The United States alone faces a shortage of 140,000 to

190,000 people with analytical expertise and 1.5 million
managers and analysts with the skills to understand and
make decisions based on the analysis of big data.”

I Diverse fields increasingly relying on expert statisticians,
machine learning researchers and data scientists e.g.

I Computational sciences (e.g. biology, astronomy, . . . )
I Online advertising
I Quantitative finance
I . . .
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WHAT WOULD AN AUTOMATIC STATISTICIAN DO?

Data Search

Language of models

Evaluation

Model Prediction

Translation

Checking

Report
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GOALS OF THE AUTOMATIC STATISTICIAN PROJECT

I Provide a set of tools for understanding data that require
minimal expert input

I Uncover challenging research problems in e.g.
I Automated inference
I Model construction and comparison
I Data visualisation and interpretation

I Advance the field of machine learning in general
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INGREDIENTS OF AN AUTOMATIC STATISTICIAN

Data Search

Language of models

Evaluation

Model Prediction

Translation

Checking

Report

I An open-ended language of models
I Expressive enough to capture real-world phenomena. . .
I . . . and the techniques used by human statisticians

I A search procedure
I To efficiently explore the language of models

I A principled method of evaluating models
I Trading off complexity and fit to data

I A procedure to automatically explain the models
I Making the assumptions of the models explicit. . .
I . . . in a way that is intelligible to non-experts
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PREVIEW: AN ENTIRELY AUTOMATIC ANALYSIS

Raw data
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Four additive components have been identified in the data

I A linearly increasing function.

I An approximately periodic function with a period of 1.0 years and
with linearly increasing amplitude.

I A smooth function.

I Uncorrelated noise with linearly increasing standard deviation.
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DEFINING A LANGUAGE OF MODELS

Data Search

Language of models

Evaluation

Model Prediction

Translation

Checking

Report
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DEFINING A LANGUAGE OF REGRESSION MODELS

I Regression consists of learning a function f : X → Y
from inputs to outputs from example input / output pairs

I Language should include simple parametric forms. . .
I e.g. Linear functions, Polynomials, Exponential functions

I . . . as well as functions specified by high level properties
I e.g. Smoothness, Periodicity

I Inference should be tractable for all models in language
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WE CAN BUILD REGRESSION MODELS WITH

GAUSSIAN PROCESSES

I GPs are distributions over functions such that any finite
subset of function evaluations, (f (x1), f (x2), . . . f (xN)),
have a joint Gaussian distribution

I A GP is completely specified by
I Mean function, µ(x) = E(f (x))
I Covariance / kernel function, k(x, x′) = Cov(f (x), f (x′))
I Denoted f ∼ GP(µ, k)
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A LANGUAGE OF GAUSSIAN PROCESS KERNELS

I It is common practice to use a zero mean function since the
mean can be marginalised out

I Suppose, f (x) | a ∼ GP(a× µ(x), k(x, x′)) where
a ∼ N (0, 1)

I Then equivalently, f (x) ∼ GP(0, µ(x)µ(x′) + k(x, x′))

I We therefore define a language of GP regression models by
specifying a language of kernels
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THE ATOMS OF OUR LANGUAGE

Five base kernels

0 0

0

0 0

Squared
exp. (SE)

Periodic
(PER)

Linear
(LIN)

Constant
(C)

White
noise (WN)

Encoding for the following types of functions

Smooth
functions

Periodic
functions

Linear
functions

Constant
functions

Gaussian
noise
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THE COMPOSITION RULES OF OUR LANGUAGE

I Two main operations: addition, multiplication

0 0

LIN × LIN
quadratic
functions

SE × PER
locally
periodic

0

0

LIN + PER
periodic plus
linear trend

SE + PER
periodic plus
smooth trend
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MODELING CHANGEPOINTS

Assume f1(x) ∼ GP(0, k1) and f2(x) ∼ GP(0, k2). Define:

f (x) = (1− σ(x)) f1(x) + σ(x) f2(x)

where σ is a sigmoid function between 0 and 1.

Then f ∼ GP(0, k), where

k(x, x′) = (1− σ(x)) k1(x, x′) (1− σ(x′)) + σ(x) k2(x, x′)σ(x′)

We define the changepoint operator k = CP(k1, k2).
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AN EXPRESSIVE LANGUAGE OF MODELS

Regression model Kernel

GP smoothing SE + WN
Linear regression C + LIN + WN
Multiple kernel learning

∑
SE + WN

Trend, cyclical, irregular
∑

SE +
∑

PER + WN
Fourier decomposition C +

∑
cos + WN

Sparse spectrum GPs
∑

cos + WN
Spectral mixture

∑
SE × cos + WN

Changepoints e.g. CP(SE, SE) + WN
Heteroscedasticity e.g. SE + LIN ×WN

Note: cos is a special case of our version of PER
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DISCOVERING A GOOD MODEL VIA SEARCH

Data Search

Language of models

Evaluation

Model Prediction

Translation

Checking

Report
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DISCOVERING A GOOD MODEL VIA SEARCH

I Language defined as the arbitrary composition of five base
kernels (WN,C, LIN, SE, PER) via three operators
(+,×,CP).

I The space spanned by this language is open-ended and can
have a high branching factor requiring a judicious search

I We propose a greedy search for its simplicity and
similarity to human model-building
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EXAMPLE: MAUNA LOA KEELING CURVE
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EXAMPLE: MAUNA LOA KEELING CURVE

( Per + RQ )
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EXAMPLE: MAUNA LOA KEELING CURVE

SE × ( Per + RQ )
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EXAMPLE: MAUNA LOA KEELING CURVE

( SE + SE × ( Per + RQ ) )
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MODEL EVALUATION

Data Search

Language of models

Evaluation

Model Prediction

Translation

Checking

Report
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MODEL EVALUATION

I After proposing a new model its kernel parameters are
optimised by conjugate gradients

I We evaluate each optimised model, M, using the model
evidence (marginal likelihood) which can be computed
analytically for GPs

I We penalise the marginal likelihood for the optimised
kernel parameters using the Bayesian Information
Criterion (BIC):

−0.5× BIC(M) = log p(D |M)− p
2

log n

where p is the number of kernel parameters, D represents
the data, and n is the number of data points.
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AUTOMATIC TRANSLATION OF MODELS

Data Search

Language of models
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Model Prediction

Translation

Checking

Report

James Robert Lloyd and Zoubin Ghahramani 20 / 44



AUTOMATIC TRANSLATION OF MODELS

I Search can produce arbitrarily complicated models from
open-ended language but two main properties allow
description to be automated

I Kernels can be decomposed into a sum of products
I A sum of kernels corresponds to a sum of functions
I Therefore, we can describe each product of kernels

separately

I Each kernel in a product modifies a model in a consistent
way

I Each kernel roughly corresponds to an adjective
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SUM OF PRODUCTS NORMAL FORM

Suppose the search finds the following kernel

SE × (WN × LIN + CP(C, PER))

The changepoint can be converted into a sum of products

SE × (WN × LIN + C × σ + PER × σ̄)

Multiplication can be distributed over addition

SE ×WN × LIN + SE × C × σ + SE × PER × σ̄

Simplification rules are applied

WN × LIN + SE × σ + SE × PER × σ̄
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SUMS OF KERNELS ARE SUMS OF FUNCTIONS

If f1 ∼ GP(0, k1) and independently f2 ∼ GP(0, k2) then

f1 + f2 ∼ GP(0, k1 + k2)

e.g.
Full model posterior with extrapolations
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We can therefore describe each component separately
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PRODUCTS OF KERNELS

PER︸︷︷︸
periodic function

On their own, each kernel is described by a standard noun
phrase
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PRODUCTS OF KERNELS - SE

SE︸︷︷︸
approximately

× PER︸︷︷︸
periodic function

Multiplication by SE removes long range correlations from a
model since SE(x, x′) decreases monotonically to 0 as |x− x′|
increases.
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PRODUCTS OF KERNELS - LIN

SE︸︷︷︸
approximately

× PER︸︷︷︸
periodic function

× LIN︸︷︷︸
with linearly growing amplitude

Multiplication by LIN is equivalent to multiplying the function
being modeled by a linear function. If f (x) ∼ GP(0, k), then
x f (x) ∼ GP (0, k × LIN). This causes the standard deviation of
the model to vary linearly without affecting the correlation.
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PRODUCTS OF KERNELS - CHANGEPOINTS

SE︸︷︷︸
approximately

× PER︸︷︷︸
periodic function

× LIN︸︷︷︸
with linearly growing amplitude

× σ︸︷︷︸
until 1700

Multiplication by σ is equivalent to multiplying the function
being modeled by a sigmoid.
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AUTOMATICALLY GENERATED REPORTS

Data Search

Language of models

Evaluation

Model Prediction

Translation

Checking

Report
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EXAMPLE: AIRLINE PASSENGER VOLUME

Raw data

1950 1952 1954 1956 1958 1960 1962
100

200

300

400

500

600

700
Full model posterior with extrapolations

1950 1952 1954 1956 1958 1960 1962
0

100

200

300

400

500

600

700

Four additive components have been identified in the data

I A linearly increasing function.

I An approximately periodic function with a period of 1.0 years and
with linearly increasing amplitude.

I A smooth function.

I Uncorrelated noise with linearly increasing standard deviation.
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EXAMPLE: AIRLINE PASSENGER VOLUME

This component is linearly increasing.

Posterior of component 1
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EXAMPLE: AIRLINE PASSENGER VOLUME

This component is approximately periodic with a period of 1.0 years and
varying amplitude. Across periods the shape of this function varies very
smoothly. The amplitude of the function increases linearly. The shape of this
function within each period has a typical lengthscale of 6.0 weeks.
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EXAMPLE: AIRLINE PASSENGER VOLUME

This component is a smooth function with a typical lengthscale of 8.1
months.

Posterior of component 3
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EXAMPLE: AIRLINE PASSENGER VOLUME

This component models uncorrelated noise. The standard deviation of the
noise increases linearly.

Posterior of component 4
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EXAMPLE: SOLAR IRRADIANCE

This component is constant.

Posterior of component 1
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EXAMPLE: SOLAR IRRADIANCE

This component is constant. This component applies from 1643 until 1716.

Posterior of component 2
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EXAMPLE: SOLAR IRRADIANCE

This component is a smooth function with a typical lengthscale of 23.1
years. This component applies until 1643 and from 1716 onwards.

Posterior of component 3
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EXAMPLE: SOLAR IRRADIANCE

This component is approximately periodic with a period of 10.8 years.
Across periods the shape of this function varies smoothly with a typical
lengthscale of 36.9 years. The shape of this function within each period is
very smooth and resembles a sinusoid. This component applies until 1643
and from 1716 onwards.
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OTHER EXAMPLES

See http://www.automaticstatistician.com
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GOOD PREDICTIVE PERFORMANCE AS WELL

Standardised RMSE over 13 data sets
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I Tweaks can be made to the algorithm to improve accuracy
or interpretability of models produced. . .

I . . . but both methods are highly competitive at extrapolation
(shown above) and interpolation
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MODEL CHECKING AND CRITICISM

I Good statistical modelling should include model criticism:
I Does the data match the assumptions of the model?
I For example, if the model assumed Gaussian noise, does a

Q-Q plot reveal non-Gaussian residuals?
I Our automatic statistician does posterior predictive checks,

dependence tests and residual tests
I We have also been developing more systematic

nonparametric approaches to model criticism using kernel
two-sample testing with MMD.

Lloyd, J. R., and Ghahramani, Z. (2014) Statistical Model Criticism using Kernel Two Sample

Tests. http://mlg.eng.cam.ac.uk/Lloyd/papers/kernel-model-checking.pdf
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CHALLENGES

I Interpretability / accuracy

I Increasing the expressivity of language
I e.g. Monotonocity, positive functions, symmetries

I Computational complexity of searching through a huge
space of models

I Extending the automatic reports to multidimensional
datasets

I Search and descriptions naturally extend to multiple
dimensions, but automatically generating relevant visual
summaries harder
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CURRENT AND FUTURE DIRECTIONS

I Automatic statistician for:
* One-dimensional time series
* Linear regression (classical)
I Multivariate nonlinear regression (c.f. Duvenaud, Lloyd et

al, ICML 2013)
I Multivariate classification (w/ Nikola Mrksic)
I Completing and interpreting tables and databases (w/ Kee

Chong Tan)

I Probabilistic programming
I Probabilistic models are expressed in a general (Turing

complete) programming language
I A universal inference engine can then be used to infer

unobserved variables given observed data
I This can be used to implement seach over the model space

in an automatic statistician
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SUMMARY

I We have presented the beginnings of an automatic
statistician

I Our system
I Defines an open-ended language of models
I Searches greedily through this space
I Produces detailed reports describing patterns in data
I Performs automatic model criticism

I Extrapolation and interpolation performance highly
competitive

I We believe this line of research has the potential to make
powerful statistical model-building techniques accessible
to non-experts
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