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Compressed Sensing in Inverse Problems

Typical analog/infinite-dimensional inverse problem where
compressed sensing is/can be used:

(i) Magnetic Resonance Imaging (MRI)
(ii) X-ray Computed Tomography
(iii) Thermoacoustic and Photoacoustic Tomography
(iv) Single Photon Emission Computerized Tomography
(v) Electrical Impedance Tomography
(vi) Electron Microscopy
(vii) Reflection seismology
(viii) Radio interferometry
(ix) Fluorescence Microscopy
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Compressed Sensing in Inverse Problems

Most of these problems are modelled by the Fourier transform

F f (ω) =

∫
Rd

f (x)e−2πiω·x dx ,

or the Radon transform Rf : S× R→ C (where S denotes the circle)

Rf (θ, p) =

∫
〈x,θ〉=p

f (x) dm(x),

where dm denotes Lebesgue measure on the hyperplane {x : 〈x , θ〉 = p}.

I Fourier slice theorem ⇒ both problems can be viewed as the
problem of reconstructing f from pointwise samples of its Fourier
transform.

g = F f , f ∈ L2(Rd). (1)
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Compressed Sensing

I Given the linear system

Ux0 = y .

I Solve
min ‖z‖1 subject to PΩUz = PΩy ,

where PΩ is a projection and Ω ⊂ {1, . . . ,N} is subsampled
with |Ω| = m.

If
m ≥ C · N · µ(U) · s · log(ε−1) · log (N) .

then P(z = x0) ≥ 1− ε, where

µ(U) = max
i ,j
|Ui ,j |2

is referred to as the incoherence parameter.
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Pillars of Compressed Sensing

I Sparsity

I Incoherence

I Uniform Random Subsampling

In addition: The Restricted Isometry Property + uniform recovery.

Problem: These concepts are absent in virtually all the problems
listed above. Moreover, uniform random subsampling gives highly
suboptimal results.

Compressed sensing is currently used with great success in many of
these fields, however the current theory does not cover this.
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Uniform Random Subsampling

U = UdftV
−1
dwt.

5% subsamp-map Reconstruction Enlarged
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Sparsity

I The classical idea of sparsity in compressed sensing is that
there are s important coefficients in the vector x0 that we
want to recover.

I The location of these coefficients is arbitrary.
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Sparsity and the Flip Test

Let

x =

and
y = Udfx , A = PΩUdfV

−1
dw ,

where PΩ is a projection and Ω ⊂ {1, . . . ,N} is subsampled with
|Ω| = m. Solve

min ‖z‖1 subject to Az = PΩy .
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Sparsity - The Flip Test
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Figure : Wavelet coefficients and subsampling reconstructions from 10% of Fourier coefficients with

distributions (1 + ω2
1 + ω2

2 )−1 and (1 + ω2
1 + ω2

2 )−3/2.

If sparsity is the right model we should be able to flip the
coefficients. Let

zf =
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Sparsity - The Flip Test

I Let
ỹ = UdfV

−1
dw zf

I Solve
min ‖z‖1 subject to Az = PΩỹ

to get ẑf .

I Flip the coefficients of ẑf back to get ẑ , and let x̂ = V−1
dw ẑ .

I If the ordering of the wavelet coefficients did not matter i.e.
sparsity is the right model, then x̂ should be close to x .
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Sparsity- The Flip Test: Results

Figure : The reconstructions from the reversed coefficients.

Conclusion: The ordering of the coefficients did matter. Moreover, this
phenomenon happens with all wavelets, curvelets, contourlets and
shearlets and any reasonable subsampling scheme.

Question: Is sparsity really the right model?
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Sparsity - The Flip Test
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Sparsity - The Flip Test (contd.)
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Sparsity - The Flip Test (contd.)

CS reconstr. CS reconstr, w/ flip Subsampling
coeffs. pattern

1024, 10%
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−1
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Radio
interferometry
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Lesson Learned!

I The optimal sampling strategy depends on the sparsity
structure of the signal.

I Compressed sensing theorems must therefore show how the
optimal sampling strategy will depend on the structure.

I Such theorems currently do not exists.
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What about the RIP?

I Did any of the matrices used in the examples satisfy the RIP?
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Images are not sparse, they are asymptotically sparse

How to measure asymptotic sparsity: Suppose

f =
∞∑
j=1

βjϕj .

Let
N =

⋃
k∈N
{Mk−1 + 1, . . . ,Mk},

where 0 = M0 < M1 < M2 < . . . and {Mk−1 + 1, . . . ,Mk} is the set of
indices corresponding to the kth scale.
Let ε ∈ (0, 1] and let

sk := sk(ε) = min
{
K :

∥∥∥ K∑
i=1

βπ(i)ϕπ(i)

∥∥∥ ≥ ε∥∥∥ Mk∑
i=Mk−1+1

βjϕj

∥∥∥},
in order words, sk is the effective sparsity at the kth scale. Here
π : {1, . . . ,Mk −Mk−1} → {Mk−1 + 1, . . . ,Mk} is a bijection such that
|βπ(i)| ≥ |βπ(i+1)|.
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Images are not sparse, they are asymptotically sparse
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Figure : Relative sparsity of Daubechies 8 wavelet coefficients. 18 / 42



Analog inverse problems are coherent

Let
Un = UdfV

−1
dw ∈ Cn×n

where Udf is the discrete Fourier transform and Vdw is the discrete
wavelet transform. Then

µ(Un) = 1

for all n and all Daubechies wavelets!
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Analog inverse problems are coherent, why?

Note that
WOT-lim

n→∞
UdfV

−1
dw = U,

where

U =

 〈ϕ1, ψ1〉 〈ϕ2, ψ1〉 · · ·
〈ϕ1, ψ2〉 〈ϕ2, ψ2〉 · · ·

...
...

. . .

.
Thus, we will always have

µ(UdfV
−1
dw ) ≥ c .
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Analog inverse problems are asymptotically
incoherent

Fourier to DB4 Fourier to Legendre Polynomials

Figure : Plots of the absolute values of the entries of the matrix U
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We need a new theory

I Such theory must incorporates asymptotic sparsity and
asymptotic incoherence.

I It must explain the two intriguing phenomena observed in
practice:

I The optimal sampling strategy is signal structure dependent
I The success of compressed sensing is resolution dependent

I The theory cannot be RIP based (at least not with the
classical definition of the RIP)
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New Pillars of Compressed Sensing

I Asymptotic Sparsity

I Asymptotic Incoherence

I Multi-level Subsampling
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Sparsity in levels

Definition
For r ∈ N let M = (M1, . . . ,Mr ) ∈ Nr with 1 ≤ M1 < . . . < Mr

and s = (s1, . . . , sr ) ∈ Nr , with sk ≤ Mk −Mk−1, k = 1, . . . , r ,
where M0 = 0. We say that β ∈ l2(N) is (s,M)-sparse if, for each
k = 1, . . . , r ,

∆k := supp(β) ∩ {Mk−1 + 1, . . . ,Mk},

satisfies |∆k | ≤ sk . We denote the set of (s,M)-sparse vectors by
Σs,M.
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Sparsity in levels

Definition
Let f =

∑
j∈N βjϕj ∈ H, where β = (βj)j∈N ∈ l1(N). Let

σs,M(f ) := min
η∈Σs,M

‖β − η‖l1 . (2)

25 / 42



Multi-level sampling scheme

Definition
Let r ∈ N, N = (N1, . . . ,Nr ) ∈ Nr with 1 ≤ N1 < . . . < Nr ,
m = (m1, . . . ,mr ) ∈ Nr , with mk ≤ Nk − Nk−1, k = 1, . . . , r , and
suppose that

Ωk ⊆ {Nk−1 + 1, . . . ,Nk}, |Ωk | = mk , k = 1, . . . , r ,

are chosen uniformly at random, where N0 = 0. We refer to the set

Ω = ΩN,m := Ω1 ∪ . . . ∪ Ωr .

as an (N,m)-multilevel sampling scheme.
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Local coherence

Definition
Let U ∈ CN×N . If N = (N1, . . . ,Nr ) ∈ Nr and M = (M1, . . . ,Mr ) ∈ Nr

with 1 ≤ N1 < . . .Nr and 1 ≤ M1 < . . . < Mr we define the (k, l)th local
coherence of U with respect to N and M by

µN,M(k , l) =
√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
) · µ(P

Nk−1

Nk
U), k, l = 1, . . . , r ,

where N0 = M0 = 0.
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The optimization problem

inf
η∈`1(N)

‖η‖`1 subject to ‖PΩUη − y‖ ≤ δ. (3)
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Theoretical Results

Let U ∈ CN×N be an isometry and β ∈ CN . Suppose that Ω = ΩN,m is a
multilevel sampling scheme, where N = (N1, . . . ,Nr ) ∈ Nr and
m = (m1, . . . ,mr ) ∈ Nr . Let (s,M), where M = (M1, . . . ,Mr ) ∈ Nr ,
M1 < . . . < Mr , and s = (s1, . . . , sr ) ∈ Nr , be any pair such that the following
holds: for ε > 0 and 1 ≤ k ≤ r ,

1 &
Nk − Nk−1

mk
· log(ε−1) ·

(
r∑

l=1

µN,M(k, l) · sl

)
· log (N) . (4)

Suppose that ξ ∈ CN is a minimizer of (3) with δ = δ̃
√
K−1 and

K = max1≤k≤r{(Nk − Nk−1)/mk}. Then, with probability exceeding 1− sε,
where s = s1 + . . .+ sr , we have that

‖ξ − β‖ ≤ C ·
(
δ̃ ·
(
1 + L ·

√
s
)

+ σs,M(f )
)
,

for some constant C , where σs,M(f ) is as in (2), L = 1 +

√
log2(6ε−1)

log2(4KM
√
s)

and

K = maxk=1,...,r

{
Nk−Nk−1

mk

}
.
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Fourier to wavelets

Number of samples in each level:

mk & log(ε−1)· log(N) · Nk − Nk−1

Nk−1

·

(
ŝk +

k−2∑
l=1

sl · 2−α(k−l) +
r∑

l=k+2

sl · 2−v(l−k)

)
,

where ŝk = max{sk−1, sk , sk+1}. Note that

m & s · log(N), m = m1 + . . .+ mr , s = s1 + . . .+ sr .

Note that this shows how the success of CS will be resolution
dependent.
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r-level Sampling Scheme

Figure : The typical sampling pattern that will be used.
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Resolution Dependence, 5% subsampling

Size: 256× 256, Error = 10.8%

Original CS reconstruction Subsamp. map
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2048× 2048 full sampling and 5% subsampling (DB4)

MRI Data courtesy of Andy Ellison, Boston University. Numerics
taken from: On asymptotic structure in compressed sensing, B. Roman,

B. Adcock, A. C. Hansen, arXiv:1406.4178
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The GLPU-Phantom

The Guerquin-Kern,Lejeune, Pruessmann, Unser-Phantom (ETH
and EPFL)
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Seeing further with compressed sensing

Figure : The figure shows 512× 512 full sampling (= 262144 samples)
with 2048× 2048 zero padding.

Numerics taken from: On asymptotic structure in compressed sensing, B.

Roman, B. Adcock, A. C. Hansen, arXiv:1406.4178 35 / 42



Seeing further with compressed sensing

Figure : The figure shows 6.25% subsampling from 2048× 2048
(= 262144 samples) and DB4.

Numerics taken from: On asymptotic structure in compressed sensing, B.

Roman, B. Adcock, A. C. Hansen, arXiv:1406.4178 36 / 42



Key Question

I Question: Will compressed sensing ever be used in commercial
MRI scanners?
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Siemens

Siemens has implemented our experiments and verified our theory
experimentally on their scanners.

I See the Siemens report: ”Novel Sampling Strategies for
Sparse MR Image Reconstruction,” in Proceedings of the
International Society for Magnetic Resonance in Medicine.
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Siemens Conclusion:

I ”Significant differences in the spatial resolution can be
observed.”

I ”The image resolution has been greatly improved.”

I ”Current results practically demonstrated that it is possible to
break the coherence barrier by increasing the spatial resolution
in MR acquisitions. This likewise implies that the full potential
of the compressed sensing is unleashed only if asymptotic
sparsity and asymptotic incoherence is achieved. Therefore,
compressed sensing might better be used to increase the
spatial resolution rather than accelerating the data acquisition
in the context of non-dynamic 3D MR imaging.”
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Key Question

I Question: Will Compressed sensing ever be used in
commercial MRI scanners?

I Answer: We are closer than ever.
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