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Outline

• Nonparametric additive models

• Faithful variable selection in convex regression

• Algorithm using convex and concave additive models

• Finite sample analysis

• Convexity pattern decoding
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Context

• Great progress in recent years on high dimensional models

• We have been trying to push nonparametric methods further

• Shape-constrained approaches are attractive for many reasons
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High Dimensional Variable Selection

Fully nonparametric models appear hopeless

• Logarithmic scaling, p = log n (e.g., “Rodeo” L. and Wasserman,
2008)

Additive models are useful compromise

• Exponential scaling, p = exp(nc) (e.g., “SpAM” Ravikumar et al.,
2009)

• But do not give faithful variable selection
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Additive Models

420 Chapter 23. Nonparametric Regression
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Figure 23.1. Bone Mineral Density Data
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Figure 23.2. Diabetes DataDifficulty: Choosing smoothing parameters
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Convex Regression: High Level

• Convex regression is fully nonparametric, with no tuning
parameters.

• Shape constraints often natural in economics, marketing,
reinforcement learning, etc.

• Estimation is a convex optimization problem. Efficient, scalable
QP algorithms.

• We can recover sparsity pattern for convex regression assuming
an (incorrect) additive model

• “21st century version of the 4 B’s” (Efron)

Barlow, Bartholomew, Bremner and Brunk (1972), “Statistical inference under order

restrictions”
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Convex Regression

The infinite-dimensional nonparametric convex regression

min
f convex

∑
i

(yi − f (xi))
2

is equivalent to the finite dimensional QP

min
f ,β

∑
i

(yi − fi)2

such that fj ≥ fi + βT
i (xj − xi)

Guntuboyina (2012): minimax analysis for support functions. Rate
n−4/(3+p) equivalent to requiring two derivatives

Minimax analysis for convex regression not yet complete; new results
by Guntuboyina and Sen (2013) in 1-d setting
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Other Previous Work

N. Pya and S. Wood, “Shape constrained additive models,” Statistics
and Computing, February 2014.

• Uses P-splines and requires smoothing parameters

L. Hannah and D. Dunson, (1) “Multivariate convex regression with
adaptive partitioning,” JMLR, 2013; (2) “Bayesian nonparametric
convex regression,” 2011.

(1) partitions data and constructs linear estimates

(2) places prior over piecewise planar functions
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Variable Selection in Convex Regression: Results

• Variable selection using a (potentially mis-specified) convex
additive model is “faithful” — no false negatives

• “Sparsistent” variable selection achievable with sample
complexity

n4/5 ≥ Cs5σ2 log2 p

where s is the number of relevant variables.
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Faithfulness

Additive approximation is

{f ∗k }, µ
∗ := arg min

f1,...,fp,µ

{
E
[(

f (X )−
p∑

k=1

fk (Xk )− µ
)2]

: Efk (Xk ) = 0
}
.

We say f is additively faithful in case f ∗k = 0 implies that f does not
depend on coordinate k .
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Nonconvex and Unfaithful

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−1

−0.5

0

0.5

1

Egg carton: f (x1, x2) = sin(2πx1) sin(2πx2).

An additive approximation would set f1 = 0 and f2 = 0
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Nonconvex and Unfaithful
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Tilting slope: f (x1, x2) = x1x2 for x1 ∈ [−1,1] and x2 ∈ [0,1].

An additive approximation would set f2 = 0
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Faithfulness under Convexity

Theorem. Suppose the data density is supported on [0,1]p and
satisfies the boundary points condition

∂p(x−j | xj)

∂xj
=
∂2p(x−j | xj)

∂x2
j

= 0 at xj = 0, xj = 1.

If f is convex and twice differentiable, then f is additively faithful with
respect to p.

15



Intuition

Suppose the underlying distribution has a product density.

Then the additive approximation zeroes out k when, fixing xk , every
“slice” of f integrates to zero.

The proof of this result shows that “slices” of convex functions that
integrate to zero cannot be “glued together” while still maintaining
convexity.
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Using Shape Constraints

Difficult to estimate optimal additive functions f ∗k —need not be convex

When can a convex additive model be used?

We need to couple with fitting concave functions on the residuals:

g∗k = arg min
{

E
(

f (X )−
∑
k ′ 6=k

f ∗k ′(Xk ′)−gk

)2
: gk ∈ -C1,Egk (Xk ) = 0

}
.
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Faithful Variable Screening

Theorem. Suppose the density satisfies the boundary points
condition, and f is convex and twice differentiable. Then f ∗k = 0 and
g∗k = 0 implies that f does not depend on xk .
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ACEDC Algorithm

1 AC Stage: Estimate an additive convex model

{f̂k}, µ̂ = arg min
f1,...,fp∈C1, µ∈R

1
n

n∑
i=1

(
yi − µ−

p∑
k=1

fk (xik )
)2

+ λ

p∑
k=1

‖fk‖∞

2 DC Stage: If ‖f̂k‖∞ = 0, estimate decoupled concave function:

ĝk = arg min
gk∈-C1

1
n

n∑
i=1

(
yi − µ̂−

∑
k ′

f̂k ′(xik ′)− gk (xik )
)2

+ λ‖gk‖∞

3 Estimated support Ŝn = {k : ‖f̂k‖∞ > 0 or ‖ĝk‖∞ > 0}
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Example simulation
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ACEDC Sparsity Recovery Curves
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Finite Sample Analysis: Assumptions

A1: f0 convex, twice differentiable

A2: ‖f0‖∞ ≤ sB

A3: sub-Gaussian noise

A4: XS and XSc are independent

A5: boundary points condition
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Finite Sample Analysis: Signal-to-Noise

Define

α+ = inf
f∈Cp

1 : ∃k , f∗k 6=0∧ fk=0

{
E
(
f0(X )− f (X )

)2 − E
(
f0(X )− f ∗(X )

)2
}

Smallest excess approximation error if a relevant variable is omitted
in AC stage.

If α+ is small, false negatives may occur in the AC stage.

Plays role of smallest coefficient in lasso theory.
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Finite Sample Analysis: Signal-to-Noise

Define

α− = min
k∈S : g∗k 6=0

{
E
(
f0(X )− f ∗(X )

)2 − E
(
f0(X )− f ∗(X )− g∗k (Xk )

)2
}
.

Smallest excess approximation error if a relevant variable is omitted
in DC stage.

If α− is small, false negatives may occur in the DC stage.
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Finite Sample Analysis: Sparsistency

Theorem. Suppose that the regularization level is

λn = c1sB

√
σ2 log2 np

n

and the signal-to-noise ratio satisfies

α+

σ
,
(α−
σ

)2
≥ c2B3

√
s5 log2 np

n4/5 .

Then for n4/5 ≥ c3σ
2s5 log2 p, the AC/DC algorithm outputs a support

set Ŝn satisfying

P(Ŝn = S) ≥ 1− 1
n
.
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Finite Sample Analysis: Sparsistency

• Allows exponential scaling p = O(exp(nc)) in ambient dimension

• Allows intrinsic dimension to scale as |S| ≡ s = o(n4/25)

• Gives n = O(poly(s)) sample complexity.

• Comminges and Dalalyan (2012) show that under traditional
smoothness constraints, consistent variable selection in high
dimensions is only possible if n ≥ exp(s).
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Finite Sample Analysis: Proof

The proof exploits recent bracketing number bounds for convex
function classes by Kim and Samworth (2014). Specifically, we bound〈

W , f̂ − f ∗ − f ∗
〉

using bracketing entropy, where W is the noise.

This removes some of the limitations of covering number bounds
developed by Guntuboyina and Sen (2013).
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Current Work: Convexity Pattern Decoding

• Suppose we have an additive model with a sum of convex and
concave functions

• Estimation is a QP with no smoothing parameters

• What if we don’t know the convexity pattern—which functions are
convex and which are concave? Can it be learned?
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Convexity Pattern Decoding

Model:

Y =

p∑
j=1

zj fj(xj) + ε

zj ∈ {−1,1}, fj convex

Problem:

Given data {(Xi ,Yi)}ni=1, Xi ∈ Rp, Yi ∈ R,

decode z = (z1, . . . , zp) ∈ {−1,1}p

Solving this problem will lead to a new, useful approach to
high-dimensional nonparametric estimation with no tuning
parameters.
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Mixed Integer SOCP Formulation

min
f ,g,z,w

n∑
i=1

(
Yi −

p∑
j=1

(fij + gij)
)2

such that convexity constraints on fj
concavity constraints on gj√√√√ n∑

i=1

f 2
ij ≤ zjB√√√√ n∑

i=1

g2
ij ≤ wjB

zj + wj ≤ 1
zj ,wj ∈ {0,1}.
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A Better, Convex Approach

min
f ,g,β,γ,z,w

n∑
i=1

(
Yi −

p∑
j=1

(fij + gij)
)2

such that convexity constraints on fj
concavity constraints on gj

p∑
j=1

{
β(n)j − β(1)j + γ(1)j − γ(n)j

}
≤ L

β(1)j , β(n)j , γ(1)j , γ(n)j are first and last subgradient vectors of fj and gj

A nonstandard type of lasso. Works well – requires special analysis.
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Summary

• Gave conditions for additive faithfulness in convex function
estimation

• Proposed AC/DC algorithm for variable selection using convex
additive models

• Analyzed finite sample behavior, giving sparsistency rate of
convergence

• Introduced problem of convexity pattern decoding
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