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Deep Neural Network

given x

h3 = g (W3x)

h2 = g
(
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)
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Mathematically

h3 = g (W3x)

h2 = g
(
W2h3

)
h1 = g

(
W1h2

)
y = w>0 h1



Overfitting

I Potential problem: if number of nodes in two adjacent
layers is big, corresponding W is also very big and there is
the potential to overfit.

I Proposed solution: “dropout”.
I Alternative solution: parameterize W as it’s SVD.

W = UΛV>

or
W = UV>

where if W ∈ <k1×k2 then U ∈ <k1×q and V ∈ <k2×q, i.e. we
have a low rank matrix factorization for the weights.
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Deep Neural Network

given x

z3 = V>3 x

h3 = g
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U3z3
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Mathematically

z3 = V>3 x

h3 = g
(
U3z3

)
z2 = V>2 h3

h2 = g
(
U2z2

)
z1 = V>1 h2

h1 = g
(
U1z1

)
y = w>0 h1



A Cascade of Neural Networks

z3 = V>3 x

z2 = V>2 g
(
U3z3

)
z1 = V>1 g

(
U2z2

)
y = w>0 U1z1



Replace Each Neural Network with a Gaussian Process

z3 = f (x)

z2 = f
(
z3
)

z1 = f
(
z2
)

y = f
(
z1
)

This is equivalent to Gaussian prior over weights and
integrating out all parameters and taking width of each layer to
infinity.



Gaussian Processes: Extremely Short Overview

-6
-4
-2
0
2
4
6

0 2 4 6 8 10



Gaussian Processes: Extremely Short Overview

-6
-4
-2
0
2
4
6

0 2 4 6 8 10



Gaussian Processes: Extremely Short Overview

-6
-4
-2
0
2
4
6

0 2 4 6 8 10



Gaussian Processes: Extremely Short Overview

-6
-4
-2
0
2
4
6

0 2 4 6 8 10
-6
-4
-2
0
2
4
6

0 2 4 6 8 10



Outline

Introduction

Deep Gaussian Process Models

Conclusions



Mathematically

I Composite multivariate function

f(x) = g5(g4(g3(g2(g1(x)))))



Why Deep?

I Gaussian processes give priors over functions.
I Elegant properties:

I e.g. Derivatives of process are also Gaussian distributed (if
they exist).

I For particular covariance functions they are ‘universal
approxiamtors’, i.e. all functions can have support under
the prior.

I Gaussian derivatives might ring alarm bells.
I E.g. a priori they don’t believe in function ‘jumps’.



Difficulty for Probabilistic Approaches

I Propagate a probability distribution through a non-linear
mapping.

I Normalisation of distribution becomes intractable.
x 2

x1

y j = f j(x)
−→

Figure : A three dimensional manifold formed by mapping from a
two dimensional space to a three dimensional space.



Difficulty for Probabilistic Approaches

y 2

y1

z

y1 = f1(z)
−→

y2 = f2(z)

Figure : A string in two dimensions, formed by mapping from one
dimension, z, line to a two dimensional space, [y1, y2] using
nonlinear functions f1(·) and f2(·).



Difficulty for Probabilistic Approaches

p(y)p(z)

y = f (z) + ε
−→

Figure : A Gaussian distribution propagated through a non-linear
mapping. yi = f (zi) + εi. ε ∼ N

(
0, 0.22

)
and f (·) uses RBF basis, 100

centres between -4 and 4 and ` = 0.1. New distribution over y (right)
is multimodal and difficult to normalize.



Analysis of Deep GPs

I Duvenaud et al. (2014) Duvenaud et al show that the
derivative distribution of the process becomes more heavy
tailed as number of layers increase.



Variational Compression

(Lawrence, 2007; Titsias, 2009)

I Complexity of standard GP:
I O(n3) in computation.
I O(n2) in storage.

I Via low rank representations of covariance:
I O(nm2) in computation.
I O(nm) in storage.

I Where m is user chosen number of inducing variables. They
give the rank of the resulting covariance.
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Variational Compression

I Inducing variables are a compression of the real
observations.

I They can live in space of f or a space that is related through
a linear operator (Álvarez et al., 2010) — could be gradient
or convolution.

I There are inducing variables associated with each set of
hidden variables, zi.

I Importantly conditioning on inducing variables renders
the likelihood independent across the data.
I It turns out that this allows us to variationally handle

uncertainty on the kernel (including the inputs to the
kernel).

I It also allows standard scaling approaches: stochastic
variational inference Hensman et al. (2013), parallelization
Gal et al. (2014) and work by Zhenwen Dai on GPUs to be
applied: an engineering challenge?



Structures for Extracting Information from Data
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Abstract

In this paper we introduce deep Gaussian process
(GP) models. Deep GPs are a deep belief net-
work based on Gaussian process mappings. The
data is modeled as the output of a multivariate
GP. The inputs to that Gaussian process are then
governed by another GP. A single layer model is
equivalent to a standard GP or the GP latent vari-
able model (GP-LVM). We perform inference in
the model by approximate variational marginal-
ization. This results in a strict lower bound on the
marginal likelihood of the model which we use
for model selection (number of layers and nodes
per layer). Deep belief networks are typically ap-
plied to relatively large data sets using stochas-
tic gradient descent for optimization. Our fully
Bayesian treatment allows for the application of
deep models even when data is scarce. Model se-
lection by our variational bound shows that a five
layer hierarchy is justified even when modelling
a digit data set containing only 150 examples.

1 Introduction

Probabilistic modelling with neural network architectures
constitute a well studied area of machine learning. The re-
cent advances in the domain of deep learning [Hinton and
Osindero, 2006, Bengio et al., 2012] have brought this kind
of models again in popularity. Empirically, deep models
seem to have structural advantages that can improve the
quality of learning in complicated data sets associated with
abstract information [Bengio, 2009]. Most deep algorithms
require a large amount of data to perform learning, how-
ever, we know that humans are able to perform inductive
reasoning (equivalent to concept generalization) with only
a few examples [Tenenbaum et al., 2006]. This provokes

Appearing in Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2013, Scottsdale,
AZ, USA. Volume 31 of JMLR: W&CP 31. Copyright 2013 by
the authors.

the question as to whether deep structures and the learning
of abstract structure can be undertaken in smaller data sets.
For smaller data sets, questions of generalization arise: to
demonstrate such structures are justified it is useful to have
an objective measure of the model’s applicability.

The traditional approach to deep learning is based around
binary latent variables and the restricted Boltzmann ma-
chine (RBM) [Hinton, 2010]. Deep hierarchies are con-
structed by stacking these models and various approxi-
mate inference techniques (such as contrastive divergence)
are used for estimating model parameters. A significant
amount of work has then to be done with annealed impor-
tance sampling if even the likelihood1 of a data set under
the RBM model is to be estimated [Salakhutdinov and Mur-
ray, 2008]. When deeper hierarchies are considered, the es-
timate is only of a lower bound on the data likelihood. Fit-
ting such models to smaller data sets and using Bayesian
approaches to deal with the complexity seems completely
futile when faced with these intractabilities.

The emergence of the Boltzmann machine (BM) at the core
of one of the most interesting approaches to modern ma-
chine learning is very much a case of a the field going back
to the future: BMs rose to prominence in the early 1980s,
but the practical implications associated with their train-
ing led to their neglect until families of algorithms were
developed for the RBM model with its reintroduction as a
product of experts in the late nineties [Hinton, 1999].

The computational intractabilities of Boltzmann machines
led to other families of methods, in particular kernel meth-
ods such as the support vector machine (SVM), to be con-
sidered for the domain of data classification. Almost con-
temporaneously to the SVM, Gaussian process (GP) mod-
els [Rasmussen and Williams, 2006] were introduced as a
fully probabilistic substitute for the multilayer perceptron
(MLP), inspired by the observation [Neal, 1996] that, un-
der certain conditions, a GP is an MLP with infinite units in
the hidden layer. MLPs also relate to deep learning models:
deep learning algorithms have been used to pretrain autoen-
coders for dimensionality reduction [Hinton and Salakhut-

1We use emphasis to clarify we are referring to the model like-
lihood, not the marginal likelihood required in Bayesian model
selection.

http://jmlr.org/proceedings/papers/v31/damianou13a.pdf


Collapsed Deep GPs

I By sustaining explicity distributions over inducing
variables James Hensman has developed a collapsed GP.

I Exciting thing: it mathematically looks like a deep neural
network, but with inducing variables in the place of basis
functions.

I Additional complexity control term in the objective
function.



Derivative Tails Increase with Layers: Step Function

(a) GP (b) 2 layers (c) 4 layers
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Loop Detection in Robotics
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� Dynamically constrained model
� Correctly detects the loop
� Learns temporal continuity and corner-like features in

different layers



Data fit for Loop Closure

Figure : Example data fits for 2 of the 30 output dimensions



Motion Capture

I ‘High five’ data.
I Model learns structure between two interacting subjects.



Deep hierarchies – motion capture 
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Digits Data Set

I Are deep hierarchies justified for small data sets?
I We can lower bound the evidence for different depths.
I For 150 6s, 0s and 1s from MNIST we found at least 5

layers are required.



Deep hierarchies – MNIST 
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Deep Health
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Summary

I Deep Gaussian Processes allow unsupervised and
supervised deep learning.

I They can be easily adapted to handle multitask learning.
I Data dimensionality turns out to not be a computational

bottleneck.
I Variational compression algorithms show promise for

scaling these models to massive data sets.



References I
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