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Deep Neural Network



Mathematically

h’ = g(W3x)
h? = g(Wzh?)
h! = g(W;h?)

y =wgh!



Overfitting

» Potential problem: if number of nodes in two adjacent
layers is big, corresponding W is also very big and there is
the potential to overfit.

» Proposed solution: “dropout”.
» Alternative solution: parameterize W as it’s SVD.

W =UAV'

or
W=UV'

where if W € Rf1%k2 then U € RF1X7 and V € RF2XT je. we
have a low rank matrix factorization for the weights.
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Deep Neural Network




Mathematically

z° = V3Tx

h® = g(U323)
7> = VZTh3
h? = g(Uzzz)
z! = VlTh2
h! = g(Ulzl)

y:wgh1



A Cascade of Neural Networks

z’ =V, x
Z?=V,g (U3z3)
zZ'=V]g (Uzzz)
y =W, JU 2!



Replace Each Neural Network with a Gaussian Process

2% = f(x)

7’ = f(z3)
z! = f(zz)
y=£(z)

This is equivalent to Gaussian prior over weights and
integrating out all parameters and taking width of each layer to
infinity.



Gaussian Processes: Extremely Short Overview
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Deep Gaussian Process Models



Mathematically

» Composite multivariate function

£(x) = gs(g4(g3(82(81(x)))))



Why Deep?

» Gaussian processes give priors over functions.
Elegant properties:

» e.g. Derivatives of process are also Gaussian distributed (if
they exist).

\4

v

For particular covariance functions they are “universal
approxiamtors’, i.e. all functions can have support under
the prior.

v

Gaussian derivatives might ring alarm bells.

» E.g. a priori they don’t believe in function ‘jumps’.



Difficulty for Probabilistic Approaches

» Propagate a probability distribution through a non-linear

mapping.
» Normalisation of distribution becomes intractable.
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Figure : A three dimensional manifold formed by mapping from a
two dimensional space to a three dimensional space.



Difficulty for Probabilistic Approaches

v = fiz)
— S %2/
z Y2 = fo(2)
1
Figure : A string in two dimensions, formed by mapping from one

dimension, z, line to a two dimensional space, [y1, y2] using
nonlinear functions fi(-) and f,(-).



Difficulty for Probabilistic Approaches

y:iz))+e

p(z) p(y)

Figure : A Gaussian distribution propagated through a non-linear
mapping. y; = f(z;) + €. € ~ N (0,0.22) and f(-) uses RBF basis, 100
centres between -4 and 4 and ¢ = 0.1. New distribution over y (right)
is multimodal and difficult to normalize.



Analysis of Deep GPs

» Duvenaud et al. (2014) Duvenaud et al show that the
derivative distribution of the process becomes more heavy
tailed as number of layers increase.



Variational Compression

(Lawrence, 2007; Titsias, 2009)

» Complexity of standard GP:
» O(n%) in computation.
» O(n?) in storage.
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» Via low rank representations of covariance:
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» Where m is user chosen number of inducing variables. They
give the rank of the resulting covariance.
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Variational Compression

» Inducing variables are a compression of the real
observations.

» They can live in space of f or a space that is related through
a linear operator (Alvarez et al., 2010) — could be gradient
or convolution.

» There are inducing variables associated with each set of
hidden variables, z'.

» Importantly conditioning on inducing variables renders
the likelihood independent across the data.

» It turns out that this allows us to variationally handle
uncertainty on the kernel (including the inputs to the
kernel).

» It also allows standard scaling approaches: stochastic
variational inference Hensman et al. (2013), parallelization
Gal et al. (2014) and work by Zhenwen Dai on GPUs to be
applied: an engineering challenge?



Structures for Extracting Information from Data
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Damianou and Lawrence (2013)

Deep Gaussian Processes

Andreas C. Damianou

Neil D. Lawrence

Dept. of Computer Science & Sheffield Institute for Translational Neuroscience,
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Abstract

In this paper we introduce deep Gaussian process
(GP) models. Deep GPs are a deep belief net-
work based on Gaussian process mappings. The
data is modeled as the output of a multivariate
GP. The inputs to that Gaussian process are then
governed by another GP. A single layer model is
equivalent to a standard GP or the GP latent vari-
ahle madel (GP- VM) We nerform inference in

the question as to whether deep structures and the learning
of abstract structure can be undertaken in smaller data sets.
For smaller data sets, questions of generalization arise: to
demonstrate such structures are justified it is useful to have
an objective measure of the model’s applicability.

The traditional approach to deep learning is based around
binary latent variables and the restricted Boltzmann ma-
chine (RBM) [Hinton, 2010]. Deep hierarchies are con-
structed by stacking these models and various approxi-
mate inference technianes (snch as contrastive diversence)


http://jmlr.org/proceedings/papers/v31/damianou13a.pdf

Collapsed Deep GPs

w
-
i

» By sustaining explicity distributions over inducing
variables James Hensman has developed a collapsed GP.

» Exciting thing: it mathematically looks like a deep neural
network, but with inducing variables in the place of basis
functions.

» Additional complexity control term in the objective
function.



Derivative Tails Increase with Layers: Step Function

s s
s i
(a) GP (b) 2 layers (c) 4 layers

N
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(d) Hidden spaces for 4 layer model



Loop Detection in Robotics

(e) True path (f) Hidden layer 1 (g) Hidden layer 2

. Dynamically constrained model
. Correctly detects the loop

. Learns temporal continuity and corner-like features in
different layers



Data fit for Loop Closure

0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0

Figure : Example data fits for 2 of the 30 output dimensions



Motion Capture

» ‘High five’ data.

» Model learns structure between two interacting subjects.



Deep hierarchies — motion capture

Y(l)
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Digits Data Set

» Are deep hierarchies justified for small data sets?
» We can lower bound the evidence for different depths.

» For 150 6s, Os and 1s from MNIST we found at least 5
layers are required.



Deep hierarchies — MNIST
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Summary

» Deep Gaussian Processes allow unsupervised and
supervised deep learning.

» They can be easily adapted to handle multitask learning.

» Data dimensionality turns out to not be a computational
bottleneck.

» Variational compression algorithms show promise for
scaling these models to massive data sets.
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