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Y LeCun
55 years of hand-crafted features

The traditional model of pattern recognition (since the late 50's)
Fixed/engineered features (or fixed kernel) + trainable classifier

Perceptron

“Simple” Trainable 
Classifier

hand-crafted
Feature Extractor
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Architecture of “Classical” Recognition Systems

“Classic” architecture for pattern recognition
Speech, and Object recognition (until recently)
Handwriting recognition (long ago)
Graphical model has latent variables (locations of parts)

fixed unsupervised supervised

(linear)
Classifier

MFCC
SIFT, HoG
Cuboids

Gaussians
K-Means

Sparse Coding
Pooling

Low-level
Features

Mid-level
Features

Graphical
Model

parts, 
phones, 

characters

Object,
Utterance,

word

fixed fixed
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Architecture of Deep Learning-Based Recognition Systems 

“Deep” architecture for pattern recognition
Speech, and Object recognition (recently)
Handwriting recognition (since the 1990s)
Convolutional Net with optional Graphical Model on top
Trained purely supervised
Graphical model has latent variables (locations of parts)

supervised supervised supervised

Filters
+

ReLU
Pooling

Low-level
Features

Mid-level
Features

Graphical
Model

parts, 
phones, 

characters

Object,
Utterance,

word

fixed fixed

Pooling
Filters

+
ReLU

Filters
+

ReLU

fixed
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Future Systems

Globally-trained deep architecture
Handwriting recognition (since the mid 1990s)
All the modules are trained with a combination of unsupervised and 
supervised learning
End-to-end training == deep structured prediction

Unsup +
supervised

Filters
+

ReLU
Pooling

Low-level
Features

Mid-level
Features

Graphical
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phones, 
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word

fixed

Pooling
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Filters
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supervised

Unsup +
supervised

Unsup +
supervised



Y LeCun
Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Trainable Feature Hierarchy

Hierarchy of representations with increasing level of abstraction

Each stage is a kind of trainable feature transform

Image recognition
Pixel  edge  texton  motif  part  object→ → → → →

Text
Character  word  word group  clause  sentence  story→ → → → →

Speech
Sample  spectral band  sound  …  phone  phoneme  word→ → → → → →
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Learning Representations: a challenge for
ML, CV, AI, Neuroscience, Cognitive Science...

How do we learn representations of the perceptual world?
How can a perceptual system build itself by looking 
at the world?
How much prior structure is necessary

ML/AI: how do we learn features or feature hierarchies?
What is the fundamental principle? What is the 
learning algorithm? What is the architecture?

Neuroscience: how does the cortex learn perception?
Does the cortex “run” a single, general learning 
algorithm? (or a small number of them)

CogSci: how does the mind learn abstract concepts on top 
of less abstract ones?

Deep Learning addresses the problem of learning 
hierarchical representations with a single algorithm

or perhaps with a few algorithms

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform
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The Mammalian Visual Cortex is Hierarchical

[picture from Simon Thorpe]

[Gallant & Van Essen] 

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT ....
Lots of intermediate representations
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Shallow vs Deep == lookup table vs multi-step algorithm

“shallow & wide” vs “deep and narrow”  ==  “more memory” vs “more time”
Look-up table vs algorithm
Few functions can be computed in two steps without an 
exponentially large lookup table
Using more than 2 steps can reduce the “memory” by an 
exponential factor.

Step 1

Step 2

Step 3

Step 4

Step 1 (look up table/templates)

Step 2
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Which Models are Deep?

2-layer models are not deep (even if you train 
the first layer) 

Because there is no feature hierarchy

Neural nets with 1 hidden layer are not deep

SVMs and Kernel methods are not deep
Layer1: kernels; layer2: linear
The first layer is “trained” in with the 
simplest unsupervised method ever 
devised: using the samples as templates 
for the kernel functions.
“glorified template matching”

Classification trees are not deep
No hierarchy of features. All decisions are 
made in the input space
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What Are
Good Feature?



Y LeCun

Discovering the Hidden Structure in High-Dimensional Data
The manifold hypothesis

Learning Representations of Data:

Discovering & disentangling the independent 
explanatory factors

The Manifold Hypothesis:
Natural data lives in a low-dimensional (non-linear) manifold

Because variables in natural data are mutually dependent
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Discovering the Hidden Structure in High-Dimensional Data

Example: all face images of a person
1000x1000 pixels = 1,000,000 dimensions

But the face has 3 cartesian coordinates and 3 Euler angles

And humans have less than about 50 muscles in the face

Hence the manifold of face images for a person has <56 dimensions

The perfect representations of a face image:
Its coordinates on the face manifold

Its coordinates away from the manifold

We do not have good and general methods to learn functions that turns an 
image into this kind of representation

Ideal
Feature

Extractor [
1 . 2
−3
0 . 2

−2 .. .
]

Face/not face
Pose
Lighting
Expression
-----



Y LeCun
Basic Idea for Invariant Feature Learning

Embed the input non-linearly into a high(er) dimensional space
In the new space, things that were non separable may become 
separable

Pool regions of the new space together
Bringing together things that are semantically similar. Like pooling.

Non-Linear
Function

Pooling
Or

Aggregation

Input
high-dim

Unstable/non-smooth 
 features

Stable/invariant
features
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Sparse Non-Linear Expansion → Pooling

Use clustering to break things apart, pool together similar things

Clustering,
Quantization,
Sparse Coding

Pooling.
Aggregation
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Overall Architecture: multiple stages of 
Normalization → Filter Bank → Non-Linearity → Pooling

Normalization: variation on whitening (optional)

– Subtractive: average removal, high pass filtering
– Divisive: local contrast normalization, variance normalization
Filter Bank: dimension expansion, projection on overcomplete basis
Non-Linearity: sparsification, saturation, lateral inhibition....

– Rectification (ReLU), Component-wise shrinkage, tanh,..

Pooling: aggregation over space or feature type

– Max, Lp norm, log prob. 

MAX : Max i( X i) ; L p :
p√ X i

p ; PROB :
1
b

log(∑i

e
bX i)

Classifier
feature

Pooling 

Non-

Linear

Filter

Bank 
Norm

feature

Pooling 

Non-

Linear

Filter

Bank 
Norm

ReLU (x )=max (x , 0)
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Deep Nets with ReLUs and Max Pooling

Stack of linear transforms interspersed with Max operators

Point-wise ReLUs:

Max Pooling
“switches” from one layer to the next

14

22

3

31

W14,3

W22,14

W31,22

Z3

ReLU (x )=max (x , 0)
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Supervised Training: Stochastic (Sub)Gradient Optimization
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Loss Function for a simple network

1-1-1 network 
– Y = W1*W2*X 

trained to compute the identity function with quadratic loss
– Single sample X=1, Y=1  L(W) = (1-W1*W2)^2

Solution

Saddle point
Solution

X

X

Y

W2

W1
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Deep Nets with ReLUs

Single output:

Wij: weight from j to i

P: path in network from input to output
P=(3,(14,3),(22,14),(31,22))

di: 1 if ReLU i is linear, 0 if saturated. 

Xpstart: input unit for path P.

Ŷ =∑
P

δP (W , X )( ∏
(ij)∈P

W ij ) X P start

14

22

3

31

W14,3

W22,14

W31,22

Z3
Dp(W,X): 1 if path P is “active”, 0 if inactive

Input-output function is piece-wise linear

Polynomial in W with random coefficients

Ŷ =∑
P

δP (W , X )( ∏
(ij)∈P

W ij ) X P start
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Deep Convolutional Nets (and other deep neural nets)

Training sample: (Xi,Yi)  k=1 to K

Objective function (with margin-type loss = ReLU)

Polynomial in W of degree l (number of adaptive layers) 

Continuous, piece-wise polynomial with “switched” and partially random 
coefficients

Coefficients are switched in an out depending on W

L (W )=∑
k

ReLU (1−Y k ∑
P

δP(W , X k
)( ∏

(ij)∈P

W ij ) X P start

k
)

L (W )=∑
k
∑

P

( X P start

k Y k
)δP (W , X k

)(∏
(ij)∈P

W ij)

L (W )=∑
P

[∑
k

( X P start

k Y k )δP (W , X k )]( ∏
(ij)∈P

W ij )

L (W )=∑
P

C p( X ,Y ,W )( ∏
(ij)∈P

W ij )
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Deep Nets with ReLUs: 
Objective Function is Piecewise Polynomial

If we use a hinge loss, delta now depends on label Yk:

Piecewise polynomial in W with random 
coefficients

A lot is known about the distribution of critical 
points of polynomials on the sphere with random 
(Gaussian) coefficients [Ben Arous et al.]

High-order spherical spin glasses
Random matrix theory

14

22

3

31

W14,3

W22,14

W31,22

Z3

L(W)

Histogram of minima

L (W )=∑
P

C p( X ,Y ,W )( ∏
(ij)∈P

W ij )
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Convolutional
Networks
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Convolutional Network

[LeCun et al. NIPS 1989]

Filter Bank +non-linearity

Filter Bank +non-linearity

Pooling

Pooling

Filter Bank +non-linearity
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Early Hierarchical Feature Models for Vision

[Hubel & Wiesel 1962]: 
simple cells detect local features

complex cells “pool” the outputs of simple 
cells within a retinotopic neighborhood. 

Cognitron & Neocognitron [Fukushima 1974-1982]

pooling 
subsampling

“Simple cells”
“Complex 
cells”

Multiple 
convolutions
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The Convolutional Net Model 
(Multistage Hubel-Wiesel system)

pooling 
subsampling

“Simple cells”
“Complex cells”

Multiple 
convolutions

Retinotopic Feature Maps

[LeCun et al. 89]
[LeCun et al. 98]

Training is supervised
With stochastic gradient 
descent
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Convolutional Network (ConvNet)

Non-Linearity: half-wave rectification (ReLU), shrinkage function, sigmoid
Pooling: max, average, L1, L2, log-sum-exp
Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)

input

83x83

Layer 1

64x75x75 Layer 2

64@14x14

Layer 3

256@6x6 Layer 4

256@1x1 Output

101

9x9

convolution

(64 kernels)

9x9

convolution

(4096 kernels)

10x10 pooling,

5x5 subsampling
6x6 pooling

4x4 subsamp
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Convolutional Network (vintage 1990) 

filters → tanh → average-tanh → filters → tanh → average-tanh → filters → tanh

Curved
manifold

Flatter
manifold
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LeNet1 Demo from 1993

Running on a 486 PC with an AT&T DSP32C add-on board (20 Mflops!)
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Brute Force Approach
To 

Multiple Object Recognition
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Idea #1: Sliding Window ConvNet + Weighted FSM

“Space Displacement Neural Net”.

Convolutions are applied to a large image

Output and feature maps are extended/replicated accordingly
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Idea #1: Sliding Window ConvNet + Weighted FSM
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Idea #1: Sliding Window ConvNet + Weighted FSM
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Idea #1: Sliding Window ConvNet + Weighted FSM
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Convolutional Networks
In

Visual Object Recognition
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We knew ConvNet worked well with characters and small images

Traffic Sign Recognition (GTSRB)
German Traffic Sign Reco Bench 

99.2% accuracy (IDSIA)

House Number Recognition (Google) 
Street View House Numbers

94.3 % accuracy (NYU)
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NORB Dataset (2004): 5 categories, multiple views and illuminations

Training instances Test instances

291,600 training samples, 
58,320 test samples

Less than 6% error on 
test set with cluttered 
backgrounds
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x93%86%Schneiderman & Kanade

x96%89%Rowley et al

x83%70%xJones & Viola (profile)

xx95%90%Jones & Viola (tilted)

88%83%83%67%97%90%Our Detector

1.280.53.360.4726.94.42

MIT+CMUPROFILETILTEDData Set->

False positives per image->

mid 2000s: state of the art results on face detection

[Vaillant et al. IEE 1994][Osadchy et al. 2004] [Osadchy et al, JMLR 2007]
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Simultaneous face detection and pose estimation

[Vaillant et al. IEE 1994][Osadchy et al. 2004] [Osadchy et al, JMLR 2007]
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Simultaneous face detection and pose estimation
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Visual Object Recognition with Convolutional Nets

In the mid 2000s, ConvNets were getting decent results on 
object classification

Dataset: “Caltech101”: 
101 categories
30 training samples per category

But the results were slightly worse than more “traditional” 
computer vision methods, because

1. the datasets were too small 
2. the computers were too slow

an
t

backgroun
d

wild 
cat

cougar body

beaver

lotus
cellphon
ew. 

chair

minar
et joshua 

t.

face

dollar

metronom
e
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Late 2000s: we could get decent results on object recognition

← like HMAX model

But we couldn't beat the state of the art because the datasets were too small
Caltech101: 101 categories, 30 samples per category.
But we learned that rectification and max pooling are useful! [Jarrett et al. ICCV 2009]
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Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

CONV 11x11/ReLU 96fm
LOCAL CONTRAST NORM

MAX POOL 2x2sub

FULL 4096/ReLU
FULL CONNECT

CONV 11x11/ReLU 256fm
LOCAL CONTRAST NORM

MAX POOLING 2x2sub

CONV 3x3/ReLU 384fm
CONV 3x3ReLU 384fm

CONV 3x3/ReLU 256fm
MAX POOLING

FULL 4096/ReLU

Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops
4M

16M
37M

442K

1.3M
884K

307K

35K

4Mflop

16M
37M

74M

224M
149M

223M

105M
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Then., two things happened...

The ImageNet dataset [Fei-Fei et al. 2012]
1.5 million training samples
1000 categories

Fast Graphical Processing Units (GPU)
Capable of 1 trillion operations/second

Backpack

Flute

Strawberry

Bathing 
cap

Matchstick

Racket

Sea lion
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ImageNet Large-Scale Visual Recognition Challenge

The ImageNet dataset
1.5 million training samples
1000 fine-grained categories (breeds of dogs....)
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Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Method: large convolutional net
650K neurons, 832M synapses, 60M parameters 

Trained with backprop on GPU

Trained “with all the tricks Yann came up with in 
the last 20 years, plus dropout” (Hinton, NIPS 
2012)

Rectification, contrast normalization,...

Error rate: 15% (whenever correct class isn't in top 5)
Previous state of the art: 25% error

A REVOLUTION IN COMPUTER VISION

Acquired by Google in Jan 2013
Deployed in Google+ Photo Tagging in May 2013
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ConvNet-Based Google+ Photo Tagger

Searched my personal collection for “bird”

Samy
Bengio
???
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NYU ConvNet Trained on ImageNet: OverFeat

[Sermanet et al. arXiv:1312.6229]  

Trained on GPU using Torch7

Uses a number of new tricks

Classification 1000 categories:
13.8% error (top 5) with an ensemble of 
7 networks (Krizhevsky: 15%)
15.4% error (top 5) with a single 
network (Krizhevksy: 18.2%)

Classification+Localization
30% error (Krizhevsky: 34%)

Detection (200 categories)
19% correct

Dowloadable code (running, no training)
Search for “overfeat NYU” on Google
http://cilvr.nyu.edu  software→

CONV 7x7/ReLU 96fm

MAX POOL 3x3sub

FULL 4096/ReLU
FULL 1000/Softmax

CONV 7x7/ReLU 256fm
MAX POOLING 2x2sub

CONV 3x3/ReLU 384fm
CONV 3x3ReLU 384fm

CONV 3x3/ReLU 256fm
MAX POOLING 3x3sub

FULL 4096/ReLU
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Kernels: Layer 1 (7x7)and Layer 2 (7x7) 

Layer 1: 3x96 kernels, RGB->96 feature maps, 7x7 Kernels, stride 2

Layer 2: 96x256 kernels, 7x7
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Kernels: Layer 1 (11x11) 

Layer 1: 3x96 kernels, RGB->96 feature maps, 11x11 Kernels, stride 4
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ImageNet 2013: Classification

Give the name of the dominant object in the image

Top-5 error rates: if correct class is not in top 5, count as error

 (NYU Teams in Purple) 
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Classification+Localization. Results
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Classification+Localization. Error Rates

It's best to propose several categories for the same window
One of them might be right
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Classification + Localization: 
multiscale sliding window

Apply convnet with a sliding window over the image at multiple scales

Important note: it's very cheap to slide a convnet over an image
Just compute the convolutions over the whole image and replicate the 
fully-connected layers
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96x96

input:120x120 

output: 3x3

 Traditional Detectors/Classifiers must be applied to every location on 
a large input image, at multiple scales.
 Convolutional nets can replicated over large images very cheaply.
 Simply apply the convolutions to the entire image and spatially 
replicate the fully-connected layers

Applying a ConvNet on Sliding Windows is Very Cheap!
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Classification + Localization: 
sliding window + bounding box regression

Apply convnet with a sliding window over the image at multiple scales

For each window, predict a class and bounding box parameters
Evenif the object is not completely contained in the viewing window, 
the convnet can predict where it thinks the object is.



Y LeCun

Classification + Localization: 
sliding window + bounding box regression + bbox voting

Apply convnet with a sliding window over the image at multiple scales

For each window, predict a class and bounding box parameters

Compute an “average” bounding box, weighted by scores
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Localization: Sliding Window + bbox vote + multiscale
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Detection / Localization

OverFeat • Pierre Sermanet • New York University
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Detection / Localization

OverFeat • Pierre Sermanet • New York University
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Detection / Localization

OverFeat • Pierre Sermanet • New York University
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Detection / Localization

OverFeat • Pierre Sermanet • New York University
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Detection / Localization

OverFeat • Pierre Sermanet • New York University
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Detection: Examples

200 broad categories

There is a penalty for false 
positives

Some examples are easy 
some are 
impossible/ambiguous

Some classes are well 
detected

Burritos?
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Detection: Examples

Groundtruth is sometimes ambiguous or incomplete

Large overlap between objects stops non-max suppression from working
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ImageNet 2013: Detection

200 categories. System must give 5 bounding boxes with categories

OverFeat: pre-trained on ImageNet 1K, fine-tuned on ImageNet Detection.

Post-deadline result: 0.243 mean average precision 
(best known result until May 2014)
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Results: pre-trained on ImageNet1K,
fine-tuned on ImageNet Detection
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Detection Examples
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Detection Examples
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Detection Examples
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Detection Examples
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Detection Examples
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Detection Examples
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Detection: Difficult Examples

Groundtruth is 
sometimes ambiguous 
or incomplete
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Detection: Difficult Examples

Non-max suppression makes us 
miss many objects

Person behind instrument

A bit of contextual post-processing 
would fix many errors
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Detection: Interesting Failures

Snake → Corkscrew
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Detection: Bad Groundtruth

One of the labelers likes ticks.....
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ConvNets
As Generic 

Feature Extractors
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Cats vs Dogs

● Kaggle competition: Dog vs Cats
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Cats vs Dogs

● Won by Pierre Sermanet (NYU):
● ImageNet network (OverFeat) last layers retrained on cats and dogs
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State of the art with 
only 6 training examples

Features are generic: Caltech 256

Network first 
trained on 
ImageNet.

Last layer 
chopped off

Last layer 
trained on 
Caltech 256,

first layers N-1 
kept fixed.

State of the art 
accuracy with 
only 6 training 
samples/class

3: [Bo, Ren, Fox. CVPR, 2013]   16: [Sohn, Jung, Lee, Hero ICCV 2011]
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OverFeat Features ->Trained Classifier on other datasets

A. S. Razavian , H. Azizpour , J. Sullivan , S. Carlsson "CNN features off-the-shelf: An 
astounding baseline for recogniton", CVPR 2014, DeepVision Workshop.

http://www.csc.kth.se/cvap/cvg/DL/ots/
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OverFeat Features + Classifer on various datasets
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Other ConvNet Results
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Other ConvNet Results

Results compiled by Pierre Sermanet
http://cs.nyu.edu/~sermanet/papers/Deep_ConvNets_for_Vision-Results.pdf
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Image Similarity Matching
With Siamese Networks

Embedding, DrLIM



Y LeCunDrLIM: Metric Learning

Dimensionality Reduction by Learning an Invariant Mapping
– Step 1: Construct neighborhood graph.
– Step 2: Choose a parameterized family of functions.
– Step 3: Optimize the parameters such that:

• Outputs for similar samples are pulled closer.
• Outputs for dissimilar samples are pushed away.

joint work with Sumit Chopra: Hadsell et al. CVPR 06; Chopra et al., CVPR 05

Gw



Y LeCunDrLIM: Contrative Loss function

Dimensionality Reduction by Learning an Invariant Mapping
– Step 1: Construct neighborhood graph.
– Step 2: Choose a parameterized family of functions.
– Step 3: Optimize the parameters such that:

• Outputs for similar samples are pulled closer.
• Outputs for dissimilar samples are pushed away.

– Loss function for inputs X
1
 and X

2 
 with binary label Y and 

D
W

 = ||G
W

(X
1
) - G

W
(X

2
)||

2
: 

joint work with Sumit Chopra: Hadsell et al. CVPR 06; Chopra et al., CVPR 05



Y LeCunDrLIM: Contrative Loss function

Dimensionality Reduction by Learning an Invariant Mapping
– Step 1: Construct neighborhood graph.
– Step 2: Choose a parameterized family of functions.
– Step 3: Optimize the parameters such that:

• Outputs for similar samples are pulled closer.
• Outputs for dissimilar samples are pushed away.

joint work with Sumit Chopra: Hadsell et al. CVPR 06; Chopra et al., CVPR 05

Gw



Y LeCunSiamese Architecture

Siamese Architecture [Bromley, Sackinger, Shah, LeCun 1994]

 

∥GWX1−GWX2∥2

WGWX GWX

X1 X2

EW
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Siamese Architecture and loss function

Loss function:
– Outputs 

corresponding to 
input samples 
that are neighbors 
in the 
neigborhood 
graph should be 
nearby

– Outputs for input 
samples that are 
not neighbors 
should be far 
away from each 
other

∥G
W
x

1
−G

w
 x

2
∥

D
W

G
W
 x

1
 G

W
 x

2


x
1

x
2

∥G
W
x

1
−G

w
 x

2
∥

D
W

G
W
 x

1
 G

W
 x

2


x
1

x
2

Similar images (neighbors 

in the neighborhood graph)

Dissimilar images 

(non-neighbors in the 
neighborhood graph)

Make this small Make this large
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Loss function

Loss function:
– Pay quadratically 

for making 
outputs of 
neighbors far 
apart

– Pay quadratically 
for making 
outputs of 
non-neighbors 
smaller than a 
margin m

∥G
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1
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w
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w
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∥

D
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G
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 x

1
 G

W
 x

2

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1
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2
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1
2
Dw
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1
2

{max 0,m−DW}2
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Face Recognition:DeepFace (Facebook AI Research)

[Taigman et al. CVPR 2014]
Alignment
Convnet
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Face Recognition:DeepFace (Facebook AI Research)

Performance on Labeled Face in the Wild dataset (LFW)
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DeepFace: performance

http://cilvr.nyu.edu/


Y LeCun
Depth Estimation from Stereo Pairs

Using a ConvNet to learn a similarity measure 
between image patches/

Record holder on KITTI dataset (Sept 2014):

Original image

             SADD

           Census

         ConvNet
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Depth Estimation from Stereo Pairs: Results

[Zbontar & LeCun Arxiv '14]

Presentation at ECCV 
workshop Saturday 9/6



Y LeCun

Body Pose Estimation
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Pose Estimation and Attribute Recovery with ConvNets

Body pose estimation [Tompson et al. ICLR, 2014]

Real-time hand pose recovery

[Tompson et al. Trans. on Graphics 14]

Pose-Aligned Network for Deep Attribute Modeling

 [Zhang et al. CVPR 2014] (Facebook AI Research)
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Other Tasks for Which Deep Convolutional Nets are the Best

Handwriting recognition MNIST (many), Arabic HWX (IDSIA)
OCR in the Wild [2011]: StreetView House Numbers (NYU and others)
Traffic sign recognition [2011] GTSRB competition (IDSIA, NYU)
Asian handwriting recognition [2013] ICDAR competition (IDSIA)
Pedestrian Detection [2013]: INRIA datasets and others (NYU)
Volumetric brain image segmentation [2009] connectomics (IDSIA, MIT)
Human Action Recognition [2011] Hollywood II dataset (Stanford)
Object Recognition [2012] ImageNet competition (Toronto)
Scene Parsing [2012] Stanford bgd, SiftFlow, Barcelona datasets (NYU) 
Scene parsing from depth images [2013] NYU RGB-D dataset (NYU)
Speech Recognition [2012] Acoustic modeling (IBM and Google)
Breast cancer cell mitosis detection [2011] MITOS (IDSIA)

The list of perceptual tasks for which ConvNets hold the record is growing.
Most of these tasks (but not all) use purely supervised convnets. 
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Deep Learning and
Convolutional Networks in
Speech, Audio, and Signals
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Feature

Extraction

Neural
Network

Decoder

Transducer
&

Language
Model

Hi, how  are you?
Acoustic Modeling in Speech Recognition (Google)

A typical speech recognition architecture with DL-based acoustic modeling
Features: log energy of a filter bank (e.g. 40 filters)
Neural net acoustic modeling (convolutional or not)
Input window: typically 10 to 40 acoustic frames
Fully-connected neural net: 10 layers, 2000-4000 hidden units/layer
But convolutional nets do better....
Predicts phone state, typically 2000 to 8000 categories 

Mohamed et al. “DBNs for phone recognition” NIPS Workshop 2009
Zeiler et al. “On rectified linear units for speech recognition” ICASSP 2013
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Speech Recognition with Convolutional Nets (NYU/IBM)

Acoustic Model: ConvNet with 7 layers. 54.4 million parameters.

Classifies acoustic signal into 3000 context-dependent subphones categories

ReLU units + dropout for last layers

Trained on GPU. 4 days of training
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Speech Recognition with Convolutional Nets (NYU/IBM)

Subphone-level classification error (sept 2013):
Cantonese: phone: 20.4% error;  subphone: 33.6% error (IBM DNN: 
37.8%)

Subphone-level classification error (march 2013)
Cantonese: subphone: 36.91%
Vietnamese: subphone 48.54%
Full system performance (token error rate on conversational 
speech):
76.2% (52.9% substitution, 13.0% deletion, 10.2% insertion)
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Speech Recognition with Convolutional Nets (NYU/IBM)

Training samples. 
40 MEL-frequency Cepstral Coefficients
Window: 40 frames, 10ms each
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Speech Recognition with Convolutional Nets (NYU/IBM)

Convolution Kernels at Layer 1:
64 kernels of size 9x9



Y LeCun

Convolutional Networks
In

Image Segmentation,
& Scene Labeling
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ConvNets for Image Segmentation

Biological Image Segmentation 
[Ning et al. IEEE-TIP 2005]

Pixel labeling with large context 
using a convnet

ConvNet takes a window of pixels and 
produces a label for the central pixel

Cleanup using a kind of conditional 
random field (CRF)

Similar to a field of expert
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ConvNet in Connectomics [Jain, Turaga, Seung 2007-present]

3D ConvNet

Volumetric

Images

Each voxel 
labeled as 
“membrane” 
or 
“non-membra
ne using a 
7x7x7 voxel 
neighborhood

Has become a 
standard 
method in 
connectomics
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Semantic Labeling / Scene Parsing:
Labeling every pixel with the object it belongs to

[Farabet et al. ICML 2012, PAMI 2013]

Would help identify obstacles, targets, landing sites, dangerous areas
Would help line up depth map with edge maps
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Scene Parsing/Labeling: ConvNet Architecture

Each output sees a large input context:

46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez

[7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

Trained supervised on fully-labeled images

Laplacian

Pyramid

Level 1 

Features

Level 2

Features

Upsampled

Level 2 Features

Categories
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Method 1: majority over super-pixel regions

[Farabet et al. IEEE T. PAMI 2013]
M

ulti-sca le C
onvN

et
Super-pix el bound ary hype theses

C
onvolut ional clas sifier

Majority

Vote

Over

Superpixels

Input image

Superpixel boundaries

Features from

Convolutional net

(d=768 per pixel)

“soft” categories scores

Categories aligned

With region

boundaries
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Scene Parsing/Labeling: Performance

Stanford Background Dataset [Gould 1009]: 8 categories

[Farabet et al. IEEE T. PAMI 2013]
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Scene Parsing/Labeling: Performance

[Farabet et al. IEEE T. PAMI 2012]

SIFT Flow Dataset
[Liu 2009]: 
33 categories

Barcelona dataset
[Tighe 2010]: 
170 categories.



Y LeCun
Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

Samples from the SIFT-Flow dataset (Liu)

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

[Farabet et al. ICML 2012, PAMI 2013]



Y LeCun
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labeling

No post-processing
Frame-by-frame
ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

But communicating the features over ethernet limits system 
performance
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Temporal Consistency

Spatio-Temporal Super-Pixel segmentation 
[Couprie et al ICIP 2013]
[Couprie et al JMLR under review]
Majority vote over super-pixels
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Scene Parsing/Labeling: Temporal Consistency

Causal method for temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
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NYU RGB-D Dataset

Captured with a Kinect on a steadycam
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Results

Depth helps a bit
Helps a lot for floor and props
Helps surprisingly little for structures, and hurts for furniture

[C. Cadena, J. Kosecka “Semantic Parsing for Priming Object Detection in RGB-D Scenes”
Semantic Perception Mapping and Exploration (SPME), Karlsruhe 2013] 
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Scene Parsing/Labeling on RGB+Depth Images

With temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
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Scene Parsing/Labeling on RGB+Depth Images

With temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
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Labeling Videos

Temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013]
[Couprie, Farabet, Najman, LeCun ICIP 2013]
[Couprie, Farabet, Najman, LeCun submitted to JMLR]
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Semantic Segmentation on RGB+D Images and Videos

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
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Commercial Applications of Convolutional Nets

Form Reading: AT&T 1994

Check reading: AT&T/NCR 1996 (read 10-20% of all US checks in 2000)

Handwriting recognition: Microsoft early 2000

Face and person detection: NEC 2005, France Telecom late 2000s.

Gender and age recognition: NEC 2010 (vending machines)

OCR in natural images: Google 2013 (StreetView house numbers)

Photo tagging: Google 2013

Image Search by Similarity: Baidu 2013

Since early 2014, the number of deployed applications of ConvNets has 
exploded

Many applications at Facebook, Google, Baidu, Microsoft, IBM, NEC, Yahoo..... 
Speech recognition, face recognition, image search, content 
filtering/ranking,....

Tens of thousands of servers run ConvNets continuously every day.
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Software Platform for Deep Learning: Torch7

Torch7
based on the LuaJIT language 
Simple and lightweight dynamic language (widely used for games)
Multidimensional array library with CUDA and OpenMP backends
FAST: Has a native just-in-time compiler
Has an unbelievably nice foreign function interface to call C/C++ 
functions from Lua

Torch7 is an extension of Lua with
Multidimensional array engine
A machine learning library that implements multilayer nets, 
convolutional nets, unsupervised pre-training, etc
Various libraries for data/image manipulation and computer vision
Used at Facebook Ai Research, Google (Deep Mind, Brain), Intel, and 
many academic groups and startups

Single-line installation on Ubuntu and Mac OSX:
http://torch.ch

Torch7 Cheat sheet (with links to libraries and tutorials):
– https://github.com/torch/torch7/wiki/Cheatsheet
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Unsupervised Learning
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Energy-Based Unsupervised Learning

Learning an energy function (or contrast function) that takes
Low values on the data manifold
Higher values everywhere else

Y1

Y2
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Learning the Energy Function

parameterized energy function E(Y,W)
Make the energy low on the samples
Make the energy higher everywhere else
Making the energy low on the samples is easy
But how do we make it higher everywhere else?
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Seven Strategies to Shape the Energy Function

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA

 2. push down of the energy of data points, push up everywhere else
Max likelihood (needs tractable partition function)

 3. push down of the energy of data points, push up on chosen locations
 contrastive divergence, Ratio Matching, Noise Contrastive Estimation, 
Minimum Probability Flow

 4. minimize the gradient and maximize the curvature around data points 
score matching

 5. train a dynamical system so that the dynamics goes to the manifold
denoising auto-encoder

 6. use a regularizer that limits the volume of space that has low energy
Sparse coding, sparse auto-encoder, PSD

 7. if E(Y) = ||Y - G(Y)||^2, make G(Y) as "constant" as possible.
Contracting auto-encoder, saturating auto-encoder
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#1: constant volume of low energy
Energy surface for PCA and K-means

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA...

E (Y )=∥W T WY −Y∥
2

PCA K-Means,  
Z constrained to 1-of-K code

E (Y )=minz∑i
∥Y −W i Z i∥

2
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#2: push down of the energy of data points, 
push up everywhere else

Max likelihood (requires a tractable partition function)

Y

P(Y)

Y

E(Y)

Maximizing P(Y|W) on training samples

make this big

make this bigmake this small

Minimizing -log P(Y,W) on training samples

make this small
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#2: push down of the energy of data points, 
push up everywhere else

Gradient of the  negative log-likelihood loss for one sample Y:

Pushes down on the
energy of the samples

Pulls up on the
energy of low-energy Y's

Y

Y

E(Y)Gradient descent:
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#3. push down of the energy of data points, 
push up on chosen locations

contrastive divergence, Ratio Matching, Noise Contrastive Estimation, Minimum 
Probability Flow

Contrastive divergence: basic idea
Pick a training sample, lower the energy at that point
From the sample, move down in the energy surface with noise
Stop after a while
Push up on the energy of the point where we stopped
This creates grooves in the energy surface around data manifolds
CD can be applied to any energy function (not just RBMs)

Persistent CD: use a bunch of “particles” and remember their positions
Make them roll down the energy surface with noise
Push up on the energy wherever they are
Faster than CD

RBM 

E (Y , Z )=−Z T WY E (Y )=−log∑z
eZ T WY
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Dictionary Learning With 
Fast Approximate Inference:

Sparse Auto-Encoders
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Sparse Modeling: Sparse Coding + Dictionary Learning

Sparse linear reconstruction

Energy  = reconstruction_error + code_prediction_error + code_sparsity

E (Y i , Z )=∥Y i
−W d Z∥

2
+ λ∑ j

∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES 

∑ j
.

Y → Ẑ=argmin Z E (Y , Z )

Inference is expensive: ISTA/FISTA, CGIHT, coordinate descent....

DETERMINISTIC

FUNCTION
FACTOR

VARIABLE
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#6. use a regularizer that limits 
the volume of space that has low energy

 Sparse coding, sparse auto-encoder, Predictive Saprse Decomposition
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Learning to Perform
Approximate Inference:

Predictive Sparse Decomposition
Sparse Auto-Encoders
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 Sparse auto-encoder: Predictive Sparse Decomposition (PSD)

Prediction the optimal code with a trained encoder

Energy  = reconstruction_error + code_prediction_error + code_sparsity

E Y i , Z =∥Y i
−W d Z∥

2
∥Z−ge W e ,Y i

∥
2
∑ j

∣z j∣

ge (W e , Y i
)=shrinkage(W e Y i

)

[Kavukcuoglu, Ranzato, LeCun, 2008 → arXiv:1010.3467],

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES 

∑ j
.

∥Z− Z∥
2ge W e ,Y i


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Regularized Encoder-Decoder Model (auto-Encoder) 
for Unsupervised Feature Learning

Encoder: computes feature vector Z from input X
Decoder: reconstructs input X from feature vector Z
Feature vector: high dimensional and regularized (e.g. sparse)
Factor graph with energy function E(X,Z) with 3 terms:

Linear decoding function and reconstruction error

Non-Linear encoding function and prediction error term

Pooling function and regularization term (e.g. sparsity)

INPUT Y Z

∥Y i
−Ỹ∥

2 W d Z

FEATURES 

λ∑ .

∥Z− Z̃∥
2g e (W e ,Y i)

√ (∑ Z k
2 )

L2 norm within 
each pool

E (Y,Z )=∥Y −W d Z∥2+∥Z−g e (W e ,Y )∥2+∑
j √ ∑

k∈P j

Z k
2
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PSD: Basis Functions on MNIST

Basis functions (and encoder matrix) are digit parts
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Training on natural images 
patches. 

12X12
256 basis functions

Predictive Sparse Decomposition (PSD): Training
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Learned Features on natural patches: 
V1-like receptive fields
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Learning to Perform
Approximate Inference

LISTA
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ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT Y ZW e sh()

S

+

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

Lateral Inhibition

Better Idea: Give the “right” structure to the encoder

ISTA/FISTA reparameterized:

LISTA (Learned ISTA): learn the We and S matrices to get fast solutions
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Think of the FISTA flow graph as a recurrent neural net where We and S are 
trainable parameters

INPUT Y ZW e sh()

S

+

Time-Unfold the flow graph for K iterations

Learn the We and S matrices with “backprop-through-time”

Get the best approximate solution within K iterations

Y

Z

W e

sh()+ S sh()+ S

LISTA: Train We and S matrices 
to give a good approximation quickly
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Learning ISTA (LISTA) vs ISTA/FISTA

Number of LISTA or FISTA iterations

R
ec

on
st

ru
ct

io
n 

Er
ro

r
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LISTA with partial mutual inhibition matrix

Proportion of S matrix elements that are non zero

R
ec

on
st

ru
ct

io
n 

Er
ro

r

Smallest elements
removed
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Learning Coordinate Descent (LcoD): faster than LISTA

Number of LISTA or FISTA iterations

R
ec

on
st

ru
ct

io
n 

Er
ro

r
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Replace the dot products with dictionary element by convolutions.
Input Y is a full image
Each code component Zk is a feature map (an image)
Each dictionary element is a convolution kernel

Regular sparse coding

Convolutional S.C.

∑
k

. * Zk

Wk

Y =

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]

Convolutional Sparse Coding
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Convolutional Formulation
Extend sparse coding from PATCH to IMAGE

PATCH based learning CONVOLUTIONAL learning

Convolutional PSD: Encoder with a soft sh() Function 
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Convolutional Sparse Auto-Encoder on Natural Images

Filters and Basis Functions obtained with 1, 2, 4, 8, 16, 32, and 64 filters.
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Phase 1: train first layer using PSD

FEATURES 

Y Z

∥Y i
−Ỹ∥

2

∣z j∣

W d Z λ∑ .

∥Z−Z̃∥
2g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features
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Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

FEATURES 

Y ∣z j∣

g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features
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Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

FEATURES 

Y ∣z j∣

g e (W e ,Y i)

Y Z

∥Y i
−Ỹ∥

2

∣z j∣

W d Z λ∑ .

∥Z−Z̃∥
2g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features
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Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

FEATURES 

Y ∣z j∣

g e (W e ,Y i)

∣z j∣

g e (W e ,Y i )

Using PSD to Train a Hierarchy of Features
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Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

Phase 5: train a supervised classifier on top

Phase 6 (optional): train the entire system with supervised back-propagation

FEATURES 

Y ∣z j∣

g e (W e ,Y i)

∣z j∣

g e (W e ,Y i )

classifier

Using PSD to Train a Hierarchy of Features
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Unsupervised + Supervised
For

Pedestrian Detection
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[Osadchy,Miller LeCun JMLR 2007],[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. CVPR 2013]

Pedestrian Detection, Face Detection
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Feature maps from all stages are pooled/subsampled and sent to the final 
classification layers

Pooled low-level features: good for textures and local motifs
High-level features: good for “gestalt” and global shape

[Sermanet, Chintala, LeCun CVPR 2013]

7x7 filter+tanh

38 feat maps

Input

78x126xYUV

L2 Pooling

3x3

2040 9x9

filters+tanh

68 feat maps

Av Pooling

2x2 filter+tanh

ConvNet Architecture with Multi-Stage Features
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[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]

ConvNet

Color+Skip

Supervised

ConvNet

Color+Skip

Unsup+Sup

ConvNet

B&W

Unsup+Sup

ConvNet

B&W

Supervised

Pedestrian Detection: INRIA Dataset. Miss rate vs false 
positives
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128 stage-1 filters on Y channel. 

Unsupervised training with convolutional predictive sparse decomposition

Unsupervised pre-training with convolutional PSD 



Y LeCun

Stage 2 filters. 

Unsupervised training with convolutional predictive sparse decomposition

Unsupervised pre-training with convolutional PSD 
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VIDEOS
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VIDEOS
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[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]

ConvNet

Color+Skip

Supervised

ConvNet

Color+Skip

Unsup+Sup

ConvNet

B&W

Unsup+Sup

ConvNet

B&W

Supervised

Pedestrian Detection: INRIA Dataset. Miss rate vs false 
positives
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Unsupervised Learning:
Invariant Features
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Learning Invariant Features with L2 Group Sparsity

Unsupervised PSD ignores the spatial pooling step.
Could we devise a similar method that learns the pooling layer as well?
Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features

Minimum number of pools must be non-zero

Number of features that are on within a pool doesn't matter

Pools tend to regroup similar features

INPUT Y Z

∥Y i
−Ỹ∥

2 W d Z

FEATURES 

λ∑ .

∥Z−Z̃∥
2g e (W e ,Y i )

√ (∑ Z k
2 )

L2 norm within 
each pool

E (Y,Z )=∥Y −W d Z∥2+∥Z−g e (W e ,Y )∥
2+∑

j √ ∑
k∈P j

Z k
2
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Learning Invariant Features with L2 Group Sparsity

Idea: features are pooled in group. 
Sparsity: sum over groups of L2 norm of activity in group.

[Hyvärinen Hoyer 2001]: “subspace ICA” 
decoder only, square

[Welling, Hinton, Osindero NIPS 2002]: pooled product of experts 
encoder only, overcomplete, log student-T penalty on L2 pooling

[Kavukcuoglu, Ranzato, Fergus LeCun, CVPR 2010]: Invariant PSD
encoder-decoder (like PSD), overcomplete, L2 pooling

[Le et al. NIPS 2011]: Reconstruction ICA
Same as [Kavukcuoglu 2010] with linear encoder and tied decoder 

[Gregor & LeCun arXiv:1006:0448,  2010] [Le et al. ICML 2012]
Locally-connect non shared (tiled) encoder-decoder

INPUT

Y
Encoder only (PoE, ICA),

Decoder Only or

Encoder-Decoder (iPSD, RICA)
Z INVARIANT

FEATURES 

λ∑ .

√ (∑ Z k
2 )

L2 norm within 
each pool

SIMPLE 
FEATURES 
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Groups are local in a 2D Topographic Map

The filters arrange 
themselves spontaneously 
so that similar filters enter 
the same pool.
The pooling units can be 
seen as complex cells
Outputs of pooling units are 
invariant to local 
transformations of the input

For some it's 
translations, for others 
rotations, or other 
transformations.
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Image-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across 
space!)

[Gregor & LeCun 2010]

Local receptive fields

No shared weights

4x overcomplete

L2 pooling

Group sparsity over pools

Input

Reconstructed Input

(Inferred) Code

Predicted Code

Decoder

Encoder
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Image-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across space!)
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119x119 Image Input
100x100 Code

20x20 Receptive field size
sigma=5 Michael C. Crair, et. al. The Journal of Neurophysiology 

Vol. 77 No. 6 June 1997, pp. 3381-3385 (Cat)

K Obermayer and GG Blasdel, Journal of 
Neuroscience, Vol 13, 4114-4129 (Monkey)Topographic Maps



Y LeCun
Image-level training, local filters but no weight sharing

Color indicates orientation (by fitting Gabors)
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Invariant Features Lateral Inhibition

Replace the L1 sparsity term by a lateral inhibition matrix
Easy way to impose some structure on the sparsity 

[Gregor, Szlam, LeCun NIPS 2011]
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Invariant Features via Lateral Inhibition: Structured Sparsity

 Each edge in the tree indicates a zero in the S matrix (no mutual inhibition)

Sij is larger if two neurons are far away in the tree
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Invariant Features via Lateral Inhibition: Topographic Maps

Non-zero values in S form a ring in a 2D topology
Input patches are high-pass filtered
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Invariant Features through Temporal Constancy 

Object is cross-product of object type and instantiation parameters
Mapping units [Hinton 1981], capsules [Hinton 2011]

small medium large

Object type Object size[Karol Gregor et al.]
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What-Where Auto-Encoder Architecture

St St-1 St-2

C
1
t C

1
t-1 C

1
t-2 C

2
t

Decoder

W1 W1 W1 W2

Predicted
input

C
1
t C

1
t-1 C

1
t-2 C

2
t

St St-1 St-2

Inferred 
code

Predicted
code

InputEncoder

f ∘ W̃ 1 f ∘ W̃ 1 f ∘ W̃ 1

W̃ 2

f

W̃ 2

W̃ 2
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Low-Level Filters Connected to Each Complex Cell

C1
(where)

C2
(what)
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Input

Generating Images

Generating images
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Future
Challenges
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Future Challenges

Integrated feed-forward and feedback
Deep Boltzmann machine do this, but there are issues of scalability.

Integrating supervised and unsupervised learning in a single algorithm
Again, deep Boltzmann machines do this, but....

Integrating deep learning and structured prediction (“reasoning”)
This has been around since the 1990's but needs to be revived

Learning representations for complex reasoning
“recursive” networks that operate on vector space representations 
of knowledge [Pollack 90's] [Bottou 2010] [Socher, Manning, Ng 
2011]

Representation learning in natural language processing
[Y. Bengio 01],[Collobert Weston 10], [Mnih Hinton 11] [Socher 12]

Better theoretical understanding of deep learning and convolutional nets
e.g. Stephane Mallat's “scattering transform”, work on the sparse 
representations from the applied math community....
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Towards Practical AI: Challenges

Applying deep learning to NLP (requires “structured prediction”)

Video analysis/understanding (requires unsupervised learning) 

High-performance/low power embedded systems for ConvNets (FPGA/ASIC?)

Very-large-scale deep learning (distributed optimization)

Integrating reasoning with DL (“energy-based models”, recursive neural nets)

Then we can have
Automatically-created high-performance data analytics systems
Vector-space embedding of everything (language, users,...)
Multimedia content understanding, search and indexing
Multilingual speech dialog systems
Driver-less cars
Autonomous maintenance robots / personal care robots
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The Future: Unification
Feed-Forward & Feedback; Supervised & Unsupervised

Marrying feed-forward convolutional nets with 
generative “deconvolutional nets”

Deconvolutional networks

[Zeiler-Graham-Fergus ICCV 2011]

Feed-forward/Feedback networks allow 
reconstruction, multimodal prediction, restoration, 
etc...

Deep Boltzmann machines can do this, but 
there are scalability issues with training

Finding a single rule for supervised and 
unsupervised learning

Deep Boltzmann machines can also do this, 
but there are scalability issues with training

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform
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The Graph of Deep Learning  Sparse Modeling  Neuroscience↔ ↔

Architecture of V1

[Hubel, Wiesel 62]

Basis/Matching Pursuit

[Mallat 93; Donoho 94]

Sparse Modeling

[Olshausen-Field 97]

Neocognitron

[Fukushima 82]
Backprop

[many 85]

Convolutional Net

[LeCun 89]

Sparse Auto-Encoder

[LeCun 06; Ng 07]

Restricted 

Boltzmann

Machine 

[Hinton 05]

Normalization

[Simoncelli 94]

Speech Recognition

[Goog, IBM, MSFT 12]

Object Recog

[Hinton 12]
Scene Labeling

[LeCun 12]

Connectomics

[Seung 10]

Object Reco

[LeCun 10]

Compr. Sensing

[Candès-Tao 04]

L2-L1 optim

[Nesterov,

Nemirovski

Daubechies,

Osher....]

Scattering

Transform

[Mallat 10]

Stochastic Optimization

[Nesterov, Bottou

Nemirovski,....]

Sparse Modeling

[Bach, Sapiro. Elad]
MCMC, HMC

Cont. Div.

[Neal, Hinton]

Visual Metamers

[Simoncelli 12]
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