
Y LeCun

The Unreasonable
Effectiveness of
Deep Learning

Yann LeCun
Facebook AI Research &
Center for Data Science, NYU
yann@cs.nyu.edu
http://yann.lecun.com

mailto:yann@cs.nyu.edu
http://yann.lecun.com/

Y LeCun
55 years of hand-crafted features

The traditional model of pattern recognition (since the late 50's)
Fixed/engineered features (or fixed kernel) + trainable classifier

Perceptron

“Simple” Trainable
Classifier

hand-crafted
Feature Extractor

Y LeCun
Architecture of “Classical” Recognition Systems

“Classic” architecture for pattern recognition
Speech, and Object recognition (until recently)
Handwriting recognition (long ago)
Graphical model has latent variables (locations of parts)

fixed unsupervised supervised

(linear)
Classifier

MFCC
SIFT, HoG
Cuboids

Gaussians
K-Means

Sparse Coding
Pooling

Low-level
Features

Mid-level
Features

Graphical
Model

parts,
phones,

characters

Object,
Utterance,

word

fixed fixed

Y LeCun
Architecture of Deep Learning-Based Recognition Systems

“Deep” architecture for pattern recognition
Speech, and Object recognition (recently)
Handwriting recognition (since the 1990s)
Convolutional Net with optional Graphical Model on top
Trained purely supervised
Graphical model has latent variables (locations of parts)

supervised supervised supervised

Filters
+

ReLU
Pooling

Low-level
Features

Mid-level
Features

Graphical
Model

parts,
phones,

characters

Object,
Utterance,

word

fixed fixed

Pooling
Filters

+
ReLU

Filters
+

ReLU

fixed

Y LeCun
Future Systems

Globally-trained deep architecture
Handwriting recognition (since the mid 1990s)
All the modules are trained with a combination of unsupervised and
supervised learning
End-to-end training == deep structured prediction

Unsup +
supervised

Filters
+

ReLU
Pooling

Low-level
Features

Mid-level
Features

Graphical
Model

parts,
phones,

characters

Object,
Utterance,

word

fixed

Pooling
Filters

+
ReLU

Filters
+

ReLU

fixed
Unsup +
supervised

Unsup +
supervised

Unsup +
supervised

Y LeCun
Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Y LeCun
Trainable Feature Hierarchy

Hierarchy of representations with increasing level of abstraction

Each stage is a kind of trainable feature transform

Image recognition
Pixel edge texton motif part object→ → → → →

Text
Character word word group clause sentence story→ → → → →

Speech
Sample spectral band sound … phone phoneme word→ → → → → →

Y LeCun

Learning Representations: a challenge for
ML, CV, AI, Neuroscience, Cognitive Science...

How do we learn representations of the perceptual world?
How can a perceptual system build itself by looking
at the world?
How much prior structure is necessary

ML/AI: how do we learn features or feature hierarchies?
What is the fundamental principle? What is the
learning algorithm? What is the architecture?

Neuroscience: how does the cortex learn perception?
Does the cortex “run” a single, general learning
algorithm? (or a small number of them)

CogSci: how does the mind learn abstract concepts on top
of less abstract ones?

Deep Learning addresses the problem of learning
hierarchical representations with a single algorithm

or perhaps with a few algorithms

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Y LeCun
The Mammalian Visual Cortex is Hierarchical

[picture from Simon Thorpe]

[Gallant & Van Essen]

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT
Lots of intermediate representations

Y LeCun

Shallow vs Deep == lookup table vs multi-step algorithm

“shallow & wide” vs “deep and narrow” == “more memory” vs “more time”
Look-up table vs algorithm
Few functions can be computed in two steps without an
exponentially large lookup table
Using more than 2 steps can reduce the “memory” by an
exponential factor.

Step 1

Step 2

Step 3

Step 4

Step 1 (look up table/templates)

Step 2

Y LeCun
Which Models are Deep?

2-layer models are not deep (even if you train
the first layer)

Because there is no feature hierarchy

Neural nets with 1 hidden layer are not deep

SVMs and Kernel methods are not deep
Layer1: kernels; layer2: linear
The first layer is “trained” in with the
simplest unsupervised method ever
devised: using the samples as templates
for the kernel functions.
“glorified template matching”

Classification trees are not deep
No hierarchy of features. All decisions are
made in the input space

Y LeCun

What Are
Good Feature?

Y LeCun

Discovering the Hidden Structure in High-Dimensional Data
The manifold hypothesis

Learning Representations of Data:

Discovering & disentangling the independent
explanatory factors

The Manifold Hypothesis:
Natural data lives in a low-dimensional (non-linear) manifold

Because variables in natural data are mutually dependent

Y LeCun
Discovering the Hidden Structure in High-Dimensional Data

Example: all face images of a person
1000x1000 pixels = 1,000,000 dimensions

But the face has 3 cartesian coordinates and 3 Euler angles

And humans have less than about 50 muscles in the face

Hence the manifold of face images for a person has <56 dimensions

The perfect representations of a face image:
Its coordinates on the face manifold

Its coordinates away from the manifold

We do not have good and general methods to learn functions that turns an
image into this kind of representation

Ideal
Feature

Extractor [
1 . 2
−3
0 . 2

−2 .. .
]

Face/not face
Pose
Lighting
Expression

Y LeCun
Basic Idea for Invariant Feature Learning

Embed the input non-linearly into a high(er) dimensional space
In the new space, things that were non separable may become
separable

Pool regions of the new space together
Bringing together things that are semantically similar. Like pooling.

Non-Linear
Function

Pooling
Or

Aggregation

Input
high-dim

Unstable/non-smooth
 features

Stable/invariant
features

Y LeCun
Sparse Non-Linear Expansion → Pooling

Use clustering to break things apart, pool together similar things

Clustering,
Quantization,
Sparse Coding

Pooling.
Aggregation

Y LeCun

Overall Architecture: multiple stages of
Normalization → Filter Bank → Non-Linearity → Pooling

Normalization: variation on whitening (optional)

– Subtractive: average removal, high pass filtering
– Divisive: local contrast normalization, variance normalization
Filter Bank: dimension expansion, projection on overcomplete basis
Non-Linearity: sparsification, saturation, lateral inhibition....

– Rectification (ReLU), Component-wise shrinkage, tanh,..

Pooling: aggregation over space or feature type

– Max, Lp norm, log prob.

MAX : Max i(X i) ; L p :
p√ X i

p ; PROB :
1
b

log(∑i

e
bX i)

Classifier
feature

Pooling

Non-

Linear

Filter

Bank
Norm

feature

Pooling

Non-

Linear

Filter

Bank
Norm

ReLU (x)=max (x , 0)

Y LeCun
Deep Nets with ReLUs and Max Pooling

Stack of linear transforms interspersed with Max operators

Point-wise ReLUs:

Max Pooling
“switches” from one layer to the next

14

22

3

31

W14,3

W22,14

W31,22

Z3

ReLU (x)=max (x , 0)

Y LeCun
Supervised Training: Stochastic (Sub)Gradient Optimization

Y LeCun
Loss Function for a simple network

1-1-1 network
– Y = W1*W2*X

trained to compute the identity function with quadratic loss
– Single sample X=1, Y=1 L(W) = (1-W1*W2)^2

Solution

Saddle point
Solution

X

X

Y

W2

W1

Y LeCun
Deep Nets with ReLUs

Single output:

Wij: weight from j to i

P: path in network from input to output
P=(3,(14,3),(22,14),(31,22))

di: 1 if ReLU i is linear, 0 if saturated.

Xpstart: input unit for path P.

Ŷ =∑
P

δP (W , X)(∏
(ij)∈P

W ij) X P start

14

22

3

31

W14,3

W22,14

W31,22

Z3
Dp(W,X): 1 if path P is “active”, 0 if inactive

Input-output function is piece-wise linear

Polynomial in W with random coefficients

Ŷ =∑
P

δP (W , X)(∏
(ij)∈P

W ij) X P start

Y LeCun
Deep Convolutional Nets (and other deep neural nets)

Training sample: (Xi,Yi) k=1 to K

Objective function (with margin-type loss = ReLU)

Polynomial in W of degree l (number of adaptive layers)

Continuous, piece-wise polynomial with “switched” and partially random
coefficients

Coefficients are switched in an out depending on W

L (W)=∑
k

ReLU (1−Y k ∑
P

δP(W , X k
)(∏

(ij)∈P

W ij) X P start

k
)

L (W)=∑
k
∑

P

(X P start

k Y k
)δP (W , X k

)(∏
(ij)∈P

W ij)

L (W)=∑
P

[∑
k

(X P start

k Y k)δP (W , X k)](∏
(ij)∈P

W ij)

L (W)=∑
P

C p(X ,Y ,W)(∏
(ij)∈P

W ij)

Y LeCun

Deep Nets with ReLUs:
Objective Function is Piecewise Polynomial

If we use a hinge loss, delta now depends on label Yk:

Piecewise polynomial in W with random
coefficients

A lot is known about the distribution of critical
points of polynomials on the sphere with random
(Gaussian) coefficients [Ben Arous et al.]

High-order spherical spin glasses
Random matrix theory

14

22

3

31

W14,3

W22,14

W31,22

Z3

L(W)

Histogram of minima

L (W)=∑
P

C p(X ,Y ,W)(∏
(ij)∈P

W ij)

Y LeCun

Convolutional
Networks

Y LeCun
Convolutional Network

[LeCun et al. NIPS 1989]

Filter Bank +non-linearity

Filter Bank +non-linearity

Pooling

Pooling

Filter Bank +non-linearity

Y LeCun
Early Hierarchical Feature Models for Vision

[Hubel & Wiesel 1962]:
simple cells detect local features

complex cells “pool” the outputs of simple
cells within a retinotopic neighborhood.

Cognitron & Neocognitron [Fukushima 1974-1982]

pooling
subsampling

“Simple cells”
“Complex
cells”

Multiple
convolutions

Y LeCun

The Convolutional Net Model
(Multistage Hubel-Wiesel system)

pooling
subsampling

“Simple cells”
“Complex cells”

Multiple
convolutions

Retinotopic Feature Maps

[LeCun et al. 89]
[LeCun et al. 98]

Training is supervised
With stochastic gradient
descent

Y LeCun
Convolutional Network (ConvNet)

Non-Linearity: half-wave rectification (ReLU), shrinkage function, sigmoid
Pooling: max, average, L1, L2, log-sum-exp
Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)

input

83x83

Layer 1

64x75x75 Layer 2

64@14x14

Layer 3

256@6x6 Layer 4

256@1x1 Output

101

9x9

convolution

(64 kernels)

9x9

convolution

(4096 kernels)

10x10 pooling,

5x5 subsampling
6x6 pooling

4x4 subsamp

Y LeCun
Convolutional Network (vintage 1990)

filters → tanh → average-tanh → filters → tanh → average-tanh → filters → tanh

Curved
manifold

Flatter
manifold

Y LeCun
LeNet1 Demo from 1993

Running on a 486 PC with an AT&T DSP32C add-on board (20 Mflops!)

Y LeCun

Brute Force Approach
To

Multiple Object Recognition

Y LeCun
Idea #1: Sliding Window ConvNet + Weighted FSM

“Space Displacement Neural Net”.

Convolutions are applied to a large image

Output and feature maps are extended/replicated accordingly

Y LeCun
Idea #1: Sliding Window ConvNet + Weighted FSM

Y LeCun
Idea #1: Sliding Window ConvNet + Weighted FSM

Y LeCun
Idea #1: Sliding Window ConvNet + Weighted FSM

Y LeCun

Convolutional Networks
In

Visual Object Recognition

Y LeCun
We knew ConvNet worked well with characters and small images

Traffic Sign Recognition (GTSRB)
German Traffic Sign Reco Bench

99.2% accuracy (IDSIA)

House Number Recognition (Google)
Street View House Numbers

94.3 % accuracy (NYU)

Y LeCun
NORB Dataset (2004): 5 categories, multiple views and illuminations

Training instances Test instances

291,600 training samples,
58,320 test samples

Less than 6% error on
test set with cluttered
backgrounds

Y LeCun

x93%86%Schneiderman & Kanade

x96%89%Rowley et al

x83%70%xJones & Viola (profile)

xx95%90%Jones & Viola (tilted)

88%83%83%67%97%90%Our Detector

1.280.53.360.4726.94.42

MIT+CMUPROFILETILTEDData Set->

False positives per image->

mid 2000s: state of the art results on face detection

[Vaillant et al. IEE 1994][Osadchy et al. 2004] [Osadchy et al, JMLR 2007]

Y LeCun
Simultaneous face detection and pose estimation

[Vaillant et al. IEE 1994][Osadchy et al. 2004] [Osadchy et al, JMLR 2007]

Y LeCun
Simultaneous face detection and pose estimation

Y LeCun
Visual Object Recognition with Convolutional Nets

In the mid 2000s, ConvNets were getting decent results on
object classification

Dataset: “Caltech101”:
101 categories
30 training samples per category

But the results were slightly worse than more “traditional”
computer vision methods, because

1. the datasets were too small
2. the computers were too slow

an
t

backgroun
d

wild
cat

cougar body

beaver

lotus
cellphon
ew.

chair

minar
et joshua

t.

face

dollar

metronom
e

Y LeCun

Late 2000s: we could get decent results on object recognition

← like HMAX model

But we couldn't beat the state of the art because the datasets were too small
Caltech101: 101 categories, 30 samples per category.
But we learned that rectification and max pooling are useful! [Jarrett et al. ICCV 2009]

Y LeCun
Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

CONV 11x11/ReLU 96fm
LOCAL CONTRAST NORM

MAX POOL 2x2sub

FULL 4096/ReLU
FULL CONNECT

CONV 11x11/ReLU 256fm
LOCAL CONTRAST NORM

MAX POOLING 2x2sub

CONV 3x3/ReLU 384fm
CONV 3x3ReLU 384fm

CONV 3x3/ReLU 256fm
MAX POOLING

FULL 4096/ReLU

Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops
4M

16M
37M

442K

1.3M
884K

307K

35K

4Mflop

16M
37M

74M

224M
149M

223M

105M

Y LeCun
Then., two things happened...

The ImageNet dataset [Fei-Fei et al. 2012]
1.5 million training samples
1000 categories

Fast Graphical Processing Units (GPU)
Capable of 1 trillion operations/second

Backpack

Flute

Strawberry

Bathing
cap

Matchstick

Racket

Sea lion

Y LeCun
ImageNet Large-Scale Visual Recognition Challenge

The ImageNet dataset
1.5 million training samples
1000 fine-grained categories (breeds of dogs....)

Y LeCun
Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Method: large convolutional net
650K neurons, 832M synapses, 60M parameters

Trained with backprop on GPU

Trained “with all the tricks Yann came up with in
the last 20 years, plus dropout” (Hinton, NIPS
2012)

Rectification, contrast normalization,...

Error rate: 15% (whenever correct class isn't in top 5)
Previous state of the art: 25% error

A REVOLUTION IN COMPUTER VISION

Acquired by Google in Jan 2013
Deployed in Google+ Photo Tagging in May 2013

Y LeCun
ConvNet-Based Google+ Photo Tagger

Searched my personal collection for “bird”

Samy
Bengio
???

Y LeCun
NYU ConvNet Trained on ImageNet: OverFeat

[Sermanet et al. arXiv:1312.6229]

Trained on GPU using Torch7

Uses a number of new tricks

Classification 1000 categories:
13.8% error (top 5) with an ensemble of
7 networks (Krizhevsky: 15%)
15.4% error (top 5) with a single
network (Krizhevksy: 18.2%)

Classification+Localization
30% error (Krizhevsky: 34%)

Detection (200 categories)
19% correct

Dowloadable code (running, no training)
Search for “overfeat NYU” on Google
http://cilvr.nyu.edu software→

CONV 7x7/ReLU 96fm

MAX POOL 3x3sub

FULL 4096/ReLU
FULL 1000/Softmax

CONV 7x7/ReLU 256fm
MAX POOLING 2x2sub

CONV 3x3/ReLU 384fm
CONV 3x3ReLU 384fm

CONV 3x3/ReLU 256fm
MAX POOLING 3x3sub

FULL 4096/ReLU

Y LeCun
Kernels: Layer 1 (7x7)and Layer 2 (7x7)

Layer 1: 3x96 kernels, RGB->96 feature maps, 7x7 Kernels, stride 2

Layer 2: 96x256 kernels, 7x7

Y LeCun
Kernels: Layer 1 (11x11)

Layer 1: 3x96 kernels, RGB->96 feature maps, 11x11 Kernels, stride 4

Y LeCun
ImageNet 2013: Classification

Give the name of the dominant object in the image

Top-5 error rates: if correct class is not in top 5, count as error

 (NYU Teams in Purple)

Y LeCun
Classification+Localization. Results

Y LeCun
Classification+Localization. Error Rates

It's best to propose several categories for the same window
One of them might be right

Y LeCun

Classification + Localization:
multiscale sliding window

Apply convnet with a sliding window over the image at multiple scales

Important note: it's very cheap to slide a convnet over an image
Just compute the convolutions over the whole image and replicate the
fully-connected layers

Y LeCun

96x96

input:120x120

output: 3x3

 Traditional Detectors/Classifiers must be applied to every location on
a large input image, at multiple scales.
 Convolutional nets can replicated over large images very cheaply.
 Simply apply the convolutions to the entire image and spatially
replicate the fully-connected layers

Applying a ConvNet on Sliding Windows is Very Cheap!

Y LeCun

Classification + Localization:
sliding window + bounding box regression

Apply convnet with a sliding window over the image at multiple scales

For each window, predict a class and bounding box parameters
Evenif the object is not completely contained in the viewing window,
the convnet can predict where it thinks the object is.

Y LeCun

Classification + Localization:
sliding window + bounding box regression + bbox voting

Apply convnet with a sliding window over the image at multiple scales

For each window, predict a class and bounding box parameters

Compute an “average” bounding box, weighted by scores

Y LeCun
Localization: Sliding Window + bbox vote + multiscale

Y LeCun
Detection / Localization

OverFeat • Pierre Sermanet • New York University

Y LeCun
Detection / Localization

OverFeat • Pierre Sermanet • New York University

Y LeCun
Detection / Localization

OverFeat • Pierre Sermanet • New York University

Y LeCun
Detection / Localization

OverFeat • Pierre Sermanet • New York University

Y LeCun
Detection / Localization

OverFeat • Pierre Sermanet • New York University

Y LeCun
Detection: Examples

200 broad categories

There is a penalty for false
positives

Some examples are easy
some are
impossible/ambiguous

Some classes are well
detected

Burritos?

Y LeCun
Detection: Examples

Groundtruth is sometimes ambiguous or incomplete

Large overlap between objects stops non-max suppression from working

Y LeCun
ImageNet 2013: Detection

200 categories. System must give 5 bounding boxes with categories

OverFeat: pre-trained on ImageNet 1K, fine-tuned on ImageNet Detection.

Post-deadline result: 0.243 mean average precision
(best known result until May 2014)

Y LeCun

Results: pre-trained on ImageNet1K,
fine-tuned on ImageNet Detection

Y LeCun
Detection Examples

Y LeCun
Detection Examples

Y LeCun
Detection Examples

Y LeCun
Detection Examples

Y LeCun
Detection Examples

Y LeCun
Detection Examples

Y LeCun
Detection Examples

Y LeCun
Detection: Difficult Examples

Groundtruth is
sometimes ambiguous
or incomplete

Y LeCun
Detection: Difficult Examples

Non-max suppression makes us
miss many objects

Person behind instrument

A bit of contextual post-processing
would fix many errors

Y LeCun
Detection: Interesting Failures

Snake → Corkscrew

Y LeCun
Detection: Bad Groundtruth

One of the labelers likes ticks.....

Y LeCun

ConvNets
As Generic

Feature Extractors

Y LeCun
Cats vs Dogs

● Kaggle competition: Dog vs Cats

Y LeCun
Cats vs Dogs

● Won by Pierre Sermanet (NYU):
● ImageNet network (OverFeat) last layers retrained on cats and dogs

Y LeCun

State of the art with
only 6 training examples

Features are generic: Caltech 256

Network first
trained on
ImageNet.

Last layer
chopped off

Last layer
trained on
Caltech 256,

first layers N-1
kept fixed.

State of the art
accuracy with
only 6 training
samples/class

3: [Bo, Ren, Fox. CVPR, 2013] 16: [Sohn, Jung, Lee, Hero ICCV 2011]

Y LeCun
OverFeat Features ->Trained Classifier on other datasets

A. S. Razavian , H. Azizpour , J. Sullivan , S. Carlsson "CNN features off-the-shelf: An
astounding baseline for recogniton", CVPR 2014, DeepVision Workshop.

http://www.csc.kth.se/cvap/cvg/DL/ots/

Y LeCun
OverFeat Features + Classifer on various datasets

Y LeCun
Other ConvNet Results

Y LeCun
Other ConvNet Results

Results compiled by Pierre Sermanet
http://cs.nyu.edu/~sermanet/papers/Deep_ConvNets_for_Vision-Results.pdf

Y LeCun

Image Similarity Matching
With Siamese Networks

Embedding, DrLIM

Y LeCunDrLIM: Metric Learning

Dimensionality Reduction by Learning an Invariant Mapping
– Step 1: Construct neighborhood graph.
– Step 2: Choose a parameterized family of functions.
– Step 3: Optimize the parameters such that:

• Outputs for similar samples are pulled closer.
• Outputs for dissimilar samples are pushed away.

joint work with Sumit Chopra: Hadsell et al. CVPR 06; Chopra et al., CVPR 05

Gw

Y LeCunDrLIM: Contrative Loss function

Dimensionality Reduction by Learning an Invariant Mapping
– Step 1: Construct neighborhood graph.
– Step 2: Choose a parameterized family of functions.
– Step 3: Optimize the parameters such that:

• Outputs for similar samples are pulled closer.
• Outputs for dissimilar samples are pushed away.

– Loss function for inputs X
1
 and X

2
 with binary label Y and

D
W

 = ||G
W

(X
1
) - G

W
(X

2
)||

2
:

joint work with Sumit Chopra: Hadsell et al. CVPR 06; Chopra et al., CVPR 05

Y LeCunDrLIM: Contrative Loss function

Dimensionality Reduction by Learning an Invariant Mapping
– Step 1: Construct neighborhood graph.
– Step 2: Choose a parameterized family of functions.
– Step 3: Optimize the parameters such that:

• Outputs for similar samples are pulled closer.
• Outputs for dissimilar samples are pushed away.

joint work with Sumit Chopra: Hadsell et al. CVPR 06; Chopra et al., CVPR 05

Gw

Y LeCunSiamese Architecture

Siamese Architecture [Bromley, Sackinger, Shah, LeCun 1994]

∥GWX1−GWX2∥2

WGWX GWX

X1 X2

EW

Y LeCun
Siamese Architecture and loss function

Loss function:
– Outputs

corresponding to
input samples
that are neighbors
in the
neigborhood
graph should be
nearby

– Outputs for input
samples that are
not neighbors
should be far
away from each
other

∥G
W
x

1
−G

w
 x

2
∥

D
W

G
W
 x

1
 G

W
 x

2


x
1

x
2

∥G
W
x

1
−G

w
 x

2
∥

D
W

G
W
 x

1
 G

W
 x

2


x
1

x
2

Similar images (neighbors

in the neighborhood graph)

Dissimilar images

(non-neighbors in the
neighborhood graph)

Make this small Make this large

Y LeCun
Loss function

Loss function:
– Pay quadratically

for making
outputs of
neighbors far
apart

– Pay quadratically
for making
outputs of
non-neighbors
smaller than a
margin m

∥G
W
x

1
−G

w
 x

2
∥

D
W

G
W
 x

1
 G

W
 x

2


x
1

x
2

∥G
W
x

1
−G

w
 x

2
∥

D
W

G
W
 x

1
 G

W
 x

2


x
1

x
2

Lsimilar=
1
2
Dw

2 Ldissimilar=
1
2

{max 0,m−DW}2

Margin
m

Y LeCun
Face Recognition:DeepFace (Facebook AI Research)

[Taigman et al. CVPR 2014]
Alignment
Convnet

Y LeCun
Face Recognition:DeepFace (Facebook AI Research)

Performance on Labeled Face in the Wild dataset (LFW)

Y LeCun
DeepFace: performance

http://cilvr.nyu.edu/

Y LeCun
Depth Estimation from Stereo Pairs

Using a ConvNet to learn a similarity measure
between image patches/

Record holder on KITTI dataset (Sept 2014):

Original image

 SADD

 Census

 ConvNet

Y LeCun
Depth Estimation from Stereo Pairs: Results

[Zbontar & LeCun Arxiv '14]

Presentation at ECCV
workshop Saturday 9/6

Y LeCun

Body Pose Estimation

Y LeCun
Pose Estimation and Attribute Recovery with ConvNets

Body pose estimation [Tompson et al. ICLR, 2014]

Real-time hand pose recovery

[Tompson et al. Trans. on Graphics 14]

Pose-Aligned Network for Deep Attribute Modeling

 [Zhang et al. CVPR 2014] (Facebook AI Research)

Y LeCun
Other Tasks for Which Deep Convolutional Nets are the Best

Handwriting recognition MNIST (many), Arabic HWX (IDSIA)
OCR in the Wild [2011]: StreetView House Numbers (NYU and others)
Traffic sign recognition [2011] GTSRB competition (IDSIA, NYU)
Asian handwriting recognition [2013] ICDAR competition (IDSIA)
Pedestrian Detection [2013]: INRIA datasets and others (NYU)
Volumetric brain image segmentation [2009] connectomics (IDSIA, MIT)
Human Action Recognition [2011] Hollywood II dataset (Stanford)
Object Recognition [2012] ImageNet competition (Toronto)
Scene Parsing [2012] Stanford bgd, SiftFlow, Barcelona datasets (NYU)
Scene parsing from depth images [2013] NYU RGB-D dataset (NYU)
Speech Recognition [2012] Acoustic modeling (IBM and Google)
Breast cancer cell mitosis detection [2011] MITOS (IDSIA)

The list of perceptual tasks for which ConvNets hold the record is growing.
Most of these tasks (but not all) use purely supervised convnets.

Y LeCun

Deep Learning and
Convolutional Networks in
Speech, Audio, and Signals

Y LeCun

Feature

Extraction

Neural
Network

Decoder

Transducer
&

Language
Model

Hi, how are you?
Acoustic Modeling in Speech Recognition (Google)

A typical speech recognition architecture with DL-based acoustic modeling
Features: log energy of a filter bank (e.g. 40 filters)
Neural net acoustic modeling (convolutional or not)
Input window: typically 10 to 40 acoustic frames
Fully-connected neural net: 10 layers, 2000-4000 hidden units/layer
But convolutional nets do better....
Predicts phone state, typically 2000 to 8000 categories

Mohamed et al. “DBNs for phone recognition” NIPS Workshop 2009
Zeiler et al. “On rectified linear units for speech recognition” ICASSP 2013

Y LeCun
Speech Recognition with Convolutional Nets (NYU/IBM)

Acoustic Model: ConvNet with 7 layers. 54.4 million parameters.

Classifies acoustic signal into 3000 context-dependent subphones categories

ReLU units + dropout for last layers

Trained on GPU. 4 days of training

Y LeCun
Speech Recognition with Convolutional Nets (NYU/IBM)

Subphone-level classification error (sept 2013):
Cantonese: phone: 20.4% error; subphone: 33.6% error (IBM DNN:
37.8%)

Subphone-level classification error (march 2013)
Cantonese: subphone: 36.91%
Vietnamese: subphone 48.54%
Full system performance (token error rate on conversational
speech):
76.2% (52.9% substitution, 13.0% deletion, 10.2% insertion)

Y LeCun
Speech Recognition with Convolutional Nets (NYU/IBM)

Training samples.
40 MEL-frequency Cepstral Coefficients
Window: 40 frames, 10ms each

Y LeCun
Speech Recognition with Convolutional Nets (NYU/IBM)

Convolution Kernels at Layer 1:
64 kernels of size 9x9

Y LeCun

Convolutional Networks
In

Image Segmentation,
& Scene Labeling

Y LeCun
ConvNets for Image Segmentation

Biological Image Segmentation
[Ning et al. IEEE-TIP 2005]

Pixel labeling with large context
using a convnet

ConvNet takes a window of pixels and
produces a label for the central pixel

Cleanup using a kind of conditional
random field (CRF)

Similar to a field of expert

Y LeCun

ConvNet in Connectomics [Jain, Turaga, Seung 2007-present]

3D ConvNet

Volumetric

Images

Each voxel
labeled as
“membrane”
or
“non-membra
ne using a
7x7x7 voxel
neighborhood

Has become a
standard
method in
connectomics

Y LeCun

Semantic Labeling / Scene Parsing:
Labeling every pixel with the object it belongs to

[Farabet et al. ICML 2012, PAMI 2013]

Would help identify obstacles, targets, landing sites, dangerous areas
Would help line up depth map with edge maps

Y LeCun
Scene Parsing/Labeling: ConvNet Architecture

Each output sees a large input context:

46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez

[7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

Trained supervised on fully-labeled images

Laplacian

Pyramid

Level 1

Features

Level 2

Features

Upsampled

Level 2 Features

Categories

Y LeCun

Method 1: majority over super-pixel regions

[Farabet et al. IEEE T. PAMI 2013]
M

ulti-sca le C
onvN

et
Super-pix el bound ary hype theses

C
onvolut ional clas sifier

Majority

Vote

Over

Superpixels

Input image

Superpixel boundaries

Features from

Convolutional net

(d=768 per pixel)

“soft” categories scores

Categories aligned

With region

boundaries

Y LeCun
Scene Parsing/Labeling: Performance

Stanford Background Dataset [Gould 1009]: 8 categories

[Farabet et al. IEEE T. PAMI 2013]

Y LeCun
Scene Parsing/Labeling: Performance

[Farabet et al. IEEE T. PAMI 2012]

SIFT Flow Dataset
[Liu 2009]:
33 categories

Barcelona dataset
[Tighe 2010]:
170 categories.

Y LeCun
Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

Samples from the SIFT-Flow dataset (Liu)

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling

No post-processing
Frame-by-frame
ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

But communicating the features over ethernet limits system
performance

Y LeCun
Temporal Consistency

Spatio-Temporal Super-Pixel segmentation
[Couprie et al ICIP 2013]
[Couprie et al JMLR under review]
Majority vote over super-pixels

Y LeCun
Scene Parsing/Labeling: Temporal Consistency

Causal method for temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Y LeCun
NYU RGB-D Dataset

Captured with a Kinect on a steadycam

Y LeCun
Results

Depth helps a bit
Helps a lot for floor and props
Helps surprisingly little for structures, and hurts for furniture

[C. Cadena, J. Kosecka “Semantic Parsing for Priming Object Detection in RGB-D Scenes”
Semantic Perception Mapping and Exploration (SPME), Karlsruhe 2013]

Y LeCun
Scene Parsing/Labeling on RGB+Depth Images

With temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Y LeCun
Scene Parsing/Labeling on RGB+Depth Images

With temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Y LeCun
Labeling Videos

Temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013]
[Couprie, Farabet, Najman, LeCun ICIP 2013]
[Couprie, Farabet, Najman, LeCun submitted to JMLR]

Y LeCun
Semantic Segmentation on RGB+D Images and Videos

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Y LeCun
Commercial Applications of Convolutional Nets

Form Reading: AT&T 1994

Check reading: AT&T/NCR 1996 (read 10-20% of all US checks in 2000)

Handwriting recognition: Microsoft early 2000

Face and person detection: NEC 2005, France Telecom late 2000s.

Gender and age recognition: NEC 2010 (vending machines)

OCR in natural images: Google 2013 (StreetView house numbers)

Photo tagging: Google 2013

Image Search by Similarity: Baidu 2013

Since early 2014, the number of deployed applications of ConvNets has
exploded

Many applications at Facebook, Google, Baidu, Microsoft, IBM, NEC, Yahoo.....
Speech recognition, face recognition, image search, content
filtering/ranking,....

Tens of thousands of servers run ConvNets continuously every day.

Y LeCun
Software Platform for Deep Learning: Torch7

Torch7
based on the LuaJIT language
Simple and lightweight dynamic language (widely used for games)
Multidimensional array library with CUDA and OpenMP backends
FAST: Has a native just-in-time compiler
Has an unbelievably nice foreign function interface to call C/C++
functions from Lua

Torch7 is an extension of Lua with
Multidimensional array engine
A machine learning library that implements multilayer nets,
convolutional nets, unsupervised pre-training, etc
Various libraries for data/image manipulation and computer vision
Used at Facebook Ai Research, Google (Deep Mind, Brain), Intel, and
many academic groups and startups

Single-line installation on Ubuntu and Mac OSX:
http://torch.ch

Torch7 Cheat sheet (with links to libraries and tutorials):
– https://github.com/torch/torch7/wiki/Cheatsheet

Y LeCun

Unsupervised Learning

Y LeCun
Energy-Based Unsupervised Learning

Learning an energy function (or contrast function) that takes
Low values on the data manifold
Higher values everywhere else

Y1

Y2

Y LeCun
Learning the Energy Function

parameterized energy function E(Y,W)
Make the energy low on the samples
Make the energy higher everywhere else
Making the energy low on the samples is easy
But how do we make it higher everywhere else?

Y LeCun
Seven Strategies to Shape the Energy Function

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA

 2. push down of the energy of data points, push up everywhere else
Max likelihood (needs tractable partition function)

 3. push down of the energy of data points, push up on chosen locations
 contrastive divergence, Ratio Matching, Noise Contrastive Estimation,
Minimum Probability Flow

 4. minimize the gradient and maximize the curvature around data points
score matching

 5. train a dynamical system so that the dynamics goes to the manifold
denoising auto-encoder

 6. use a regularizer that limits the volume of space that has low energy
Sparse coding, sparse auto-encoder, PSD

 7. if E(Y) = ||Y - G(Y)||^2, make G(Y) as "constant" as possible.
Contracting auto-encoder, saturating auto-encoder

Y LeCun

#1: constant volume of low energy
Energy surface for PCA and K-means

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA...

E (Y)=∥W T WY −Y∥
2

PCA K-Means,
Z constrained to 1-of-K code

E (Y)=minz∑i
∥Y −W i Z i∥

2

Y LeCun

#2: push down of the energy of data points,
push up everywhere else

Max likelihood (requires a tractable partition function)

Y

P(Y)

Y

E(Y)

Maximizing P(Y|W) on training samples

make this big

make this bigmake this small

Minimizing -log P(Y,W) on training samples

make this small

Y LeCun

#2: push down of the energy of data points,
push up everywhere else

Gradient of the negative log-likelihood loss for one sample Y:

Pushes down on the
energy of the samples

Pulls up on the
energy of low-energy Y's

Y

Y

E(Y)Gradient descent:

Y LeCun

#3. push down of the energy of data points,
push up on chosen locations

contrastive divergence, Ratio Matching, Noise Contrastive Estimation, Minimum
Probability Flow

Contrastive divergence: basic idea
Pick a training sample, lower the energy at that point
From the sample, move down in the energy surface with noise
Stop after a while
Push up on the energy of the point where we stopped
This creates grooves in the energy surface around data manifolds
CD can be applied to any energy function (not just RBMs)

Persistent CD: use a bunch of “particles” and remember their positions
Make them roll down the energy surface with noise
Push up on the energy wherever they are
Faster than CD

RBM

E (Y , Z)=−Z T WY E (Y)=−log∑z
eZ T WY

Y LeCun

Dictionary Learning With
Fast Approximate Inference:

Sparse Auto-Encoders

Y LeCun
Sparse Modeling: Sparse Coding + Dictionary Learning

Sparse linear reconstruction

Energy = reconstruction_error + code_prediction_error + code_sparsity

E (Y i , Z)=∥Y i
−W d Z∥

2
+ λ∑ j

∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES

∑ j
.

Y → Ẑ=argmin Z E (Y , Z)

Inference is expensive: ISTA/FISTA, CGIHT, coordinate descent....

DETERMINISTIC

FUNCTION
FACTOR

VARIABLE

Y LeCun

#6. use a regularizer that limits
the volume of space that has low energy

 Sparse coding, sparse auto-encoder, Predictive Saprse Decomposition

Y LeCun

Learning to Perform
Approximate Inference:

Predictive Sparse Decomposition
Sparse Auto-Encoders

Y LeCun
 Sparse auto-encoder: Predictive Sparse Decomposition (PSD)

Prediction the optimal code with a trained encoder

Energy = reconstruction_error + code_prediction_error + code_sparsity

E Y i , Z =∥Y i
−W d Z∥

2
∥Z−ge W e ,Y i

∥
2
∑ j

∣z j∣

ge (W e , Y i
)=shrinkage(W e Y i

)

[Kavukcuoglu, Ranzato, LeCun, 2008 → arXiv:1010.3467],

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES

∑ j
.

∥Z− Z∥
2ge W e ,Y i



Y LeCun

Regularized Encoder-Decoder Model (auto-Encoder)
for Unsupervised Feature Learning

Encoder: computes feature vector Z from input X
Decoder: reconstructs input X from feature vector Z
Feature vector: high dimensional and regularized (e.g. sparse)
Factor graph with energy function E(X,Z) with 3 terms:

Linear decoding function and reconstruction error

Non-Linear encoding function and prediction error term

Pooling function and regularization term (e.g. sparsity)

INPUT Y Z

∥Y i
−Ỹ∥

2 W d Z

FEATURES

λ∑ .

∥Z− Z̃∥
2g e (W e ,Y i)

√ (∑ Z k
2)

L2 norm within
each pool

E (Y,Z)=∥Y −W d Z∥2+∥Z−g e (W e ,Y)∥2+∑
j √ ∑

k∈P j

Z k
2

Y LeCun
PSD: Basis Functions on MNIST

Basis functions (and encoder matrix) are digit parts

Y LeCun

Training on natural images
patches.

12X12
256 basis functions

Predictive Sparse Decomposition (PSD): Training

Y LeCun

Learned Features on natural patches:
V1-like receptive fields

Y LeCun

Learning to Perform
Approximate Inference

LISTA

Y LeCun

ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT Y ZW e sh()

S

+

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

Lateral Inhibition

Better Idea: Give the “right” structure to the encoder

ISTA/FISTA reparameterized:

LISTA (Learned ISTA): learn the We and S matrices to get fast solutions

Y LeCun

Think of the FISTA flow graph as a recurrent neural net where We and S are
trainable parameters

INPUT Y ZW e sh()

S

+

Time-Unfold the flow graph for K iterations

Learn the We and S matrices with “backprop-through-time”

Get the best approximate solution within K iterations

Y

Z

W e

sh()+ S sh()+ S

LISTA: Train We and S matrices
to give a good approximation quickly

Y LeCun
Learning ISTA (LISTA) vs ISTA/FISTA

Number of LISTA or FISTA iterations

R
ec

on
st

ru
ct

io
n

Er
ro

r

Y LeCun
LISTA with partial mutual inhibition matrix

Proportion of S matrix elements that are non zero

R
ec

on
st

ru
ct

io
n

Er
ro

r

Smallest elements
removed

Y LeCun
Learning Coordinate Descent (LcoD): faster than LISTA

Number of LISTA or FISTA iterations

R
ec

on
st

ru
ct

io
n

Er
ro

r

Y LeCun

Replace the dot products with dictionary element by convolutions.
Input Y is a full image
Each code component Zk is a feature map (an image)
Each dictionary element is a convolution kernel

Regular sparse coding

Convolutional S.C.

∑
k

. * Zk

Wk

Y =

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]

Convolutional Sparse Coding

Y LeCun

Convolutional Formulation
Extend sparse coding from PATCH to IMAGE

PATCH based learning CONVOLUTIONAL learning

Convolutional PSD: Encoder with a soft sh() Function

Y LeCun
Convolutional Sparse Auto-Encoder on Natural Images

Filters and Basis Functions obtained with 1, 2, 4, 8, 16, 32, and 64 filters.

Y LeCun

Phase 1: train first layer using PSD

FEATURES

Y Z

∥Y i
−Ỹ∥

2

∣z j∣

W d Z λ∑ .

∥Z−Z̃∥
2g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features

Y LeCun

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

FEATURES

Y ∣z j∣

g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features

Y LeCun

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

FEATURES

Y ∣z j∣

g e (W e ,Y i)

Y Z

∥Y i
−Ỹ∥

2

∣z j∣

W d Z λ∑ .

∥Z−Z̃∥
2g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features

Y LeCun

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

FEATURES

Y ∣z j∣

g e (W e ,Y i)

∣z j∣

g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features

Y LeCun

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

Phase 5: train a supervised classifier on top

Phase 6 (optional): train the entire system with supervised back-propagation

FEATURES

Y ∣z j∣

g e (W e ,Y i)

∣z j∣

g e (W e ,Y i)

classifier

Using PSD to Train a Hierarchy of Features

Y LeCun

Unsupervised + Supervised
For

Pedestrian Detection

Y LeCun

[Osadchy,Miller LeCun JMLR 2007],[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. CVPR 2013]

Pedestrian Detection, Face Detection

Y LeCun

Feature maps from all stages are pooled/subsampled and sent to the final
classification layers

Pooled low-level features: good for textures and local motifs
High-level features: good for “gestalt” and global shape

[Sermanet, Chintala, LeCun CVPR 2013]

7x7 filter+tanh

38 feat maps

Input

78x126xYUV

L2 Pooling

3x3

2040 9x9

filters+tanh

68 feat maps

Av Pooling

2x2 filter+tanh

ConvNet Architecture with Multi-Stage Features

Y LeCun

[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]

ConvNet

Color+Skip

Supervised

ConvNet

Color+Skip

Unsup+Sup

ConvNet

B&W

Unsup+Sup

ConvNet

B&W

Supervised

Pedestrian Detection: INRIA Dataset. Miss rate vs false
positives

Y LeCun

128 stage-1 filters on Y channel.

Unsupervised training with convolutional predictive sparse decomposition

Unsupervised pre-training with convolutional PSD

Y LeCun

Stage 2 filters.

Unsupervised training with convolutional predictive sparse decomposition

Unsupervised pre-training with convolutional PSD

Y LeCun

VIDEOS

Y LeCun

VIDEOS

Y LeCun

[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]

ConvNet

Color+Skip

Supervised

ConvNet

Color+Skip

Unsup+Sup

ConvNet

B&W

Unsup+Sup

ConvNet

B&W

Supervised

Pedestrian Detection: INRIA Dataset. Miss rate vs false
positives

Y LeCun

Unsupervised Learning:
Invariant Features

Y LeCun
Learning Invariant Features with L2 Group Sparsity

Unsupervised PSD ignores the spatial pooling step.
Could we devise a similar method that learns the pooling layer as well?
Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features

Minimum number of pools must be non-zero

Number of features that are on within a pool doesn't matter

Pools tend to regroup similar features

INPUT Y Z

∥Y i
−Ỹ∥

2 W d Z

FEATURES

λ∑ .

∥Z−Z̃∥
2g e (W e ,Y i)

√ (∑ Z k
2)

L2 norm within
each pool

E (Y,Z)=∥Y −W d Z∥2+∥Z−g e (W e ,Y)∥
2+∑

j √ ∑
k∈P j

Z k
2

Y LeCun

Learning Invariant Features with L2 Group Sparsity

Idea: features are pooled in group.
Sparsity: sum over groups of L2 norm of activity in group.

[Hyvärinen Hoyer 2001]: “subspace ICA”
decoder only, square

[Welling, Hinton, Osindero NIPS 2002]: pooled product of experts
encoder only, overcomplete, log student-T penalty on L2 pooling

[Kavukcuoglu, Ranzato, Fergus LeCun, CVPR 2010]: Invariant PSD
encoder-decoder (like PSD), overcomplete, L2 pooling

[Le et al. NIPS 2011]: Reconstruction ICA
Same as [Kavukcuoglu 2010] with linear encoder and tied decoder

[Gregor & LeCun arXiv:1006:0448, 2010] [Le et al. ICML 2012]
Locally-connect non shared (tiled) encoder-decoder

INPUT

Y
Encoder only (PoE, ICA),

Decoder Only or

Encoder-Decoder (iPSD, RICA)
Z INVARIANT

FEATURES

λ∑ .

√ (∑ Z k
2)

L2 norm within
each pool

SIMPLE
FEATURES

Y LeCun
Groups are local in a 2D Topographic Map

The filters arrange
themselves spontaneously
so that similar filters enter
the same pool.
The pooling units can be
seen as complex cells
Outputs of pooling units are
invariant to local
transformations of the input

For some it's
translations, for others
rotations, or other
transformations.

Y LeCun
Image-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across
space!)

[Gregor & LeCun 2010]

Local receptive fields

No shared weights

4x overcomplete

L2 pooling

Group sparsity over pools

Input

Reconstructed Input

(Inferred) Code

Predicted Code

Decoder

Encoder

Y LeCun
Image-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across space!)

Y LeCun

119x119 Image Input
100x100 Code

20x20 Receptive field size
sigma=5 Michael C. Crair, et. al. The Journal of Neurophysiology

Vol. 77 No. 6 June 1997, pp. 3381-3385 (Cat)

K Obermayer and GG Blasdel, Journal of
Neuroscience, Vol 13, 4114-4129 (Monkey)Topographic Maps

Y LeCun
Image-level training, local filters but no weight sharing

Color indicates orientation (by fitting Gabors)

Y LeCun
Invariant Features Lateral Inhibition

Replace the L1 sparsity term by a lateral inhibition matrix
Easy way to impose some structure on the sparsity

[Gregor, Szlam, LeCun NIPS 2011]

Y LeCun
Invariant Features via Lateral Inhibition: Structured Sparsity

 Each edge in the tree indicates a zero in the S matrix (no mutual inhibition)

Sij is larger if two neurons are far away in the tree

Y LeCun
Invariant Features via Lateral Inhibition: Topographic Maps

Non-zero values in S form a ring in a 2D topology
Input patches are high-pass filtered

Y LeCun
Invariant Features through Temporal Constancy

Object is cross-product of object type and instantiation parameters
Mapping units [Hinton 1981], capsules [Hinton 2011]

small medium large

Object type Object size[Karol Gregor et al.]

Y LeCun
What-Where Auto-Encoder Architecture

St St-1 St-2

C
1
t C

1
t-1 C

1
t-2 C

2
t

Decoder

W1 W1 W1 W2

Predicted
input

C
1
t C

1
t-1 C

1
t-2 C

2
t

St St-1 St-2

Inferred
code

Predicted
code

InputEncoder

f ∘ W̃ 1 f ∘ W̃ 1 f ∘ W̃ 1

W̃ 2

f

W̃ 2

W̃ 2

Y LeCun
Low-Level Filters Connected to Each Complex Cell

C1
(where)

C2
(what)

Y LeCun

Input

Generating Images

Generating images

Y LeCun

Future
Challenges

Y LeCun
Future Challenges

Integrated feed-forward and feedback
Deep Boltzmann machine do this, but there are issues of scalability.

Integrating supervised and unsupervised learning in a single algorithm
Again, deep Boltzmann machines do this, but....

Integrating deep learning and structured prediction (“reasoning”)
This has been around since the 1990's but needs to be revived

Learning representations for complex reasoning
“recursive” networks that operate on vector space representations
of knowledge [Pollack 90's] [Bottou 2010] [Socher, Manning, Ng
2011]

Representation learning in natural language processing
[Y. Bengio 01],[Collobert Weston 10], [Mnih Hinton 11] [Socher 12]

Better theoretical understanding of deep learning and convolutional nets
e.g. Stephane Mallat's “scattering transform”, work on the sparse
representations from the applied math community....

Y LeCun
Towards Practical AI: Challenges

Applying deep learning to NLP (requires “structured prediction”)

Video analysis/understanding (requires unsupervised learning)

High-performance/low power embedded systems for ConvNets (FPGA/ASIC?)

Very-large-scale deep learning (distributed optimization)

Integrating reasoning with DL (“energy-based models”, recursive neural nets)

Then we can have
Automatically-created high-performance data analytics systems
Vector-space embedding of everything (language, users,...)
Multimedia content understanding, search and indexing
Multilingual speech dialog systems
Driver-less cars
Autonomous maintenance robots / personal care robots

Y LeCun

The Future: Unification
Feed-Forward & Feedback; Supervised & Unsupervised

Marrying feed-forward convolutional nets with
generative “deconvolutional nets”

Deconvolutional networks

[Zeiler-Graham-Fergus ICCV 2011]

Feed-forward/Feedback networks allow
reconstruction, multimodal prediction, restoration,
etc...

Deep Boltzmann machines can do this, but
there are scalability issues with training

Finding a single rule for supervised and
unsupervised learning

Deep Boltzmann machines can also do this,
but there are scalability issues with training

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Y LeCun
The Graph of Deep Learning Sparse Modeling Neuroscience↔ ↔

Architecture of V1

[Hubel, Wiesel 62]

Basis/Matching Pursuit

[Mallat 93; Donoho 94]

Sparse Modeling

[Olshausen-Field 97]

Neocognitron

[Fukushima 82]
Backprop

[many 85]

Convolutional Net

[LeCun 89]

Sparse Auto-Encoder

[LeCun 06; Ng 07]

Restricted

Boltzmann

Machine

[Hinton 05]

Normalization

[Simoncelli 94]

Speech Recognition

[Goog, IBM, MSFT 12]

Object Recog

[Hinton 12]
Scene Labeling

[LeCun 12]

Connectomics

[Seung 10]

Object Reco

[LeCun 10]

Compr. Sensing

[Candès-Tao 04]

L2-L1 optim

[Nesterov,

Nemirovski

Daubechies,

Osher....]

Scattering

Transform

[Mallat 10]

Stochastic Optimization

[Nesterov, Bottou

Nemirovski,....]

Sparse Modeling

[Bach, Sapiro. Elad]
MCMC, HMC

Cont. Div.

[Neal, Hinton]

Visual Metamers

[Simoncelli 12]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 19
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 38
	Slide 40
	Slide 41
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 89
	Slide 91
	Slide 92
	Slide 93
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 132
	Slide 133
	Slide 134
	Slide 139
	Slide 141
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 207
	Slide 209
	Slide 225
	Slide 226
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 237
	Slide 239
	Slide 240
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 275
	Slide 276
	Slide 277
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311

