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• How to define � ? Should we learn it ?

• In high dimension kx� x

0k is not a good similarity measure

  High-Dimensional Classification

• Estimate a label y(x) of x 2 Rd
given examples {xi, yi}i

• Compute �x 2 RD
so that k�x� �x

0k measures similarity

then a linear classifier applied to �x is highly e↵ective.

�xx � Linear Classifier
Supervised

ỹ(x)
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Abstract— Intelligent tasks, such as visual perception, auditory
perception, and language understanding require the construction
of good internal representations of the world (or ”features”),
which must be invariant to irrelevant variations of the input
while, preserving relevant information. A major question for
Machine Learning is how to learn such good features auto-
matically. Convolutional Networks (ConvNets) are a biologically-
inspired trainable architecture that can learn invariant features.
Each stage in a ConvNets is composed of a filter bank, some
non-linearities, and feature pooling layers. With multiple stages,
a ConvNet can learn multi-level hierarchies of features. While
ConvNets have been successfully deployed in many commercial
applications from OCR to video surveillance, they require large
amounts of labeled training samples. We describe new unsu-
pervised learning algorithms, and new non-linear stages that
allow ConvNets to be trained with very few labeled samples.
Applications to visual object recognition and vision navigation
for off-road mobile robots are described.

I. LEARNING INTERNAL REPRESENTATIONS

One of the key questions of Vision Science (natural and
artificial) is how to produce good internal representations of
the visual world. What sort of internal representation would
allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination,
conformation, and clutter? More interestingly, how could an
artificial vision system learn appropriate internal representa-
tions automatically, the way animals and human seem to learn
by simply looking at the world? In the time-honored approach
to computer vision (and to pattern recognition in general),
the question is avoided: internal representations are produced
by a hand-crafted feature extractor, whose output is fed to a
trainable classifier. While the issue of learning features has
been a topic of interest for many years, considerable progress
has been achieved in the last few years with the development
of so-called deep learning methods.

Good internal representations are hierarchical. In vision,
pixels are assembled into edglets, edglets into motifs, motifs
into parts, parts into objects, and objects into scenes. This
suggests that recognition architectures for vision (and for
other modalities such as audio and natural language) should
have multiple trainable stages stacked on top of each other,
one for each level in the feature hierarchy. This raises two
new questions: what to put in each stage? and how to train
such deep, multi-stage architectures? Convolutional Networks
(ConvNets) are an answer to the first question. Until recently,
the answer to the second question was to use gradient-based
supervised learning, but recent research in deep learning has
produced a number of unsupervised methods which greatly
reduce the need for labeled samples.

Convolutional Networks
Convolutional Networks [1], [2] are trainable multistage

architectures composed of multiple stages. The input and
output of each stage are sets of arrays called feature maps. For
example, if the input is a color image, each feature map would
be a 2D array containing a color channel of the input image
(for an audio input each feature map would be a 1D array,
and for a video or volumetric image, it would be a 3D array).
At the output, each feature map represents a particular feature

Fig. 1. A typical ConvNet architecture with two feature stages

extracted at all locations on the input. Each stage is composed
of three layers: a filter bank layer, a non-linearity layer, and a
feature pooling layer. A typical ConvNet is composed of one,
two or three such 3-layer stages, followed by a classification
module. Each layer type is now described for the case of image
recognition.
Filter Bank Layer - F : the input is a 3D array with n1 2D
feature maps of size n2×n3. Each component is denoted xijk,
and each feature map is denoted xi. The output is also a 3D
array, y composed of m1 feature maps of size m2 × m3. A
trainable filter (kernel) kij in the filter bank has size l1 × l2
and connects input feature map xi to output feature map yj .
The module computes yj = bj +

∑
i kij ∗ xi where ∗ is

the 2D discrete convolution operator and bj is a trainable
bias parameter. Each filter detects a particular feature at every
location on the input. Hence spatially translating the input of
a feature detection layer will translate the output but leave it
otherwise unchanged.
Non-Linearity Layer: In traditional ConvNets this simply
consists in a pointwise tanh() sigmoid function applied to
each site (ijk). However, recent implementations have used
more sophisticated non-linearities. A useful one for natural im-
age recognition is the rectified sigmoid Rabs: abs(gi.tanh())
where gi is a trainable gain parameter. The rectified sigmoid is
sometimes followed by a subtractive and divisive local normal-
ization N , which enforces local competition between adjacent
features in a feature map, and between features at the same
spatial location. The subtractive normalization operation for a
given site xijk computes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q,

where wpq is a normalized truncated Gaussian weighting
window (typically of size 9x9). The divisive normalization
computes yijk = vijk/max(mean(σjk),σjk) where σjk =
(
∑

ipq wpq.v2i,j+p,k+q)
1/2. The local contrast normalization

layer is inspired by visual neuroscience models [3], [4].
Feature Pooling Layer: This layer treats each feature map
separately. In its simplest instance, called PA, it computes
the average values over a neighborhood in each feature map.
The neighborhoods are stepped by a stride larger than 1
(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced
by a max PM . Traditional ConvNets use a pointwise tanh()
after the pooling layer, but more recent models do not. Some
ConvNets dispense with the separate pooling layer entirely, but
use strides larger than one in the filter bank layer to reduce
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Genericity: one network (Alex net) yields state of the art

on very di↵erent image classification problems.

    Deep Convolution Networks
Y. LeCun 1989
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• One can learn physical interactions: quantum chemistry.

• No need to learn deep net for structured signals (images)

• Deep wavelet networks are signal coders.

just wavelet filters derived from geometry.

   Overview of Outrageous Claims



x(u) x

0(u)

Invariant to translations

• Low-dimensional ”geometric shapes”

            Image Metrics

Grenander, Trouvé, Younes

Deformation metric:

�(x, x0) ⇠ min
⌧

kD⌧x� x

0k+ kr⌧k1 kxk

di↵eomorphism

amplitude

Deformation: D⌧x(u) = x(u� ⌧(u))



• High dimensional textures: ergodic stationary processes

What metric on stationary processes ?

- �(x

0
, x) = 0 for realisations of a ”same stationary process”

Reverse inequality is wrong

�(x, x0)  min
⌧

kD⌧x� x

0k+ kr⌧k1 kxk

            Image Metrics

- Invariant to translations and stable to deformations

x

x

0



• High dimensional ”structured” images

What metric on images ?

- What else ?

   Image Geometry and Metric

- Invariant to translations and stable to deformations



• Embedding: find an equivalent Euclidean metric

k�x� �x0k ⇠ �(x, x0)

with �(x, x0)  min
⌧

kD⌧x� x

0k+ kr⌧k1 kxk

• Equivalent conditions on �:

k�x� �x0k  C kx� x

0k- Stable in L2:

- Lipschitz stable to di↵eomorphisms

k�D⌧x� �xk  C kr⌧k1 kxk

Failure of classical math invariants: Fourier, canonical...

D⌧ = Id )

x

0 = D⌧x )

    Euclidean Metric Embedding

) Invariance to translation



rotated and dilated:

real parts imaginary parts

 �(t) = 2�j  (2�jr✓t) with � = (2j , ✓)

• Complex wavelet:  (t) = g(t) exp i⇠t , t = (t1, t2)

     Wavelet Transform of Images

|�̂�(⇥)|2

�1

�2

Wx =

✓
x ? �2J (t)
x ?  �(t)

◆

�2J
• Wavelet transform:

Preserves norm:

�Wx�2 = �x�2 .
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      Fast Wavelet Transform
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Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.
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     Fast Wavelet Transform

|W1|
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x(t)

W1x =

✓
x ? �2J

x ?  �1

◆

�1
|W1|x =

✓
x ? �2J

|x ?  �1 |

◆

�1

First wavelet transform

Modulus improves invariance:

    Wavelet Translation Invariance

x ?  �1(t) = x ?  

a
�1

(t) + i x ?  

b
�1

(t)|x ?  �1(t)| =
q

|x ?  a
�1

(t)|2 + |x ?  b
�1

(t)|2

|x ?  �1 | ? �2J (t)

Second wavelet transform modulus

|W2| |x ?  �1 |=
✓

|x ?  �1 | ? �2J (t)
||x ?  �1 | ?  �2(t)|

◆

�2

2J

local translation invariance

x ? �2J (t)

full translation invariance

2J = 1



x

|x ?  �1 |

|W4| |W3| |W2| |W1| x

|W2|

|W3|

|W4|

SJx = |WJ |...

20

21

22

23

|x ?  �0
1
|

2J

  Wavelet Scattering Network

Scale

||x ?  �1 | ?  �2 |

|||x ?  �1 | ?  �2 | ?  �3 |

|W1|

x ? �J |x ?  �1 | ? �J |||x ?  �1 | ?  �2 | ? �J|x ?  �0
1
| ? �J



|x ⇥ ��000
1

(t)||x ⇥ ��00
1
(t)||x ⇥ ��0

1
(t)||x ⇥ ��1(t)|

x

x ? �2J

     Scattering Neuronal Network

|W1|



x

x ? �2J

|x ?  �1 | ? �2J

||x ?  �1 | ?  �2(t)|

     Scattering Neuronal Network

|W1|

|W2|



x

x ? �2J

|||x ?  �1 | ?  �2 | ?  �3 |

||x ?  �1 | ?  �2 | ? �2J

|W3|

     Scattering Neuronal Network

|x ?  �1 | ? �2J
|W2|

|W1|



SJx =

0

BBBB@

x ? �2J

|x ?  �1 | ? �2J
||x ?  �1 | ?  �2 | ? �2J

|||x ?  �2 | ?  �2 | ?  �3 | ? �2J
. . .

1

CCCCA

�1,�2,�3

Scattering operator:

         Wavelet Scattering

J ! 1

0

BBBB@

R
x(u)du

kx ?  �1k1
k|x ?  �1 | ?  �2k1

k||x ?  �2 | ?  �2 | ?  �3k1
. . .

1

CCCCA

�1,�2,�3

x

x ? �2J

||x ?  �1 | ?  �2 | ? �2J

|W3|

|x ?  �1 | ? �2J

|W2|

|W1|

Theorem: The total energy of coe�cients converge to 0

as the depth (number of modulus) increases.



= . . . |W3| |W2| |W1|xSJx =

0

BBBB@

x ? �2J

|x ?  �1 | ? �2J
||x ?  �1 | ?  �2 | ? �2J

|||x ?  �2 | ?  �2 | ?  �3 | ? �2J
...

1

CCCCA

�1,�2,�3,...

contractive kSJx� SJyk  kx� yk (L2
stability)

preserves norms kSJxk = kxk

stable to deformations D⌧x(u) = x(u� ⌧(u))

kSJD⌧x� SJxk  C

⇣
kr⌧k1 kxk+ 2�Jk⌧k1

⌘

) kSx� Sx

0k  C

⇣
min
⌧

kx�D⌧x
0k+ kr⌧k1 kxk

⌘

J ! 1

      Scattering  Properties

Theorem: For appropriate wavelets, a scattering is



MNIST:
6 104 chi�res

0.4% errors

SJx

2J = 23

2J = image size

    Image Classification
Joan Bruna

Linear Classif.
SVM

yx

0.2% errorsCUREt

61 classes 



SX =

0

BBBB@

E(X)
E(|X ?  �1 |)

E(||X ?  �1 | ?  �2 |)
E(|||X ?  �2 | ?  �2 | ?  �3 |)

...

1

CCCCA

�1,�2,�3,...

The scattering transform of a stationary process X(t)

SJX =

0

BBBB@

X ? �2J
|X ?  �1 | ? �2J

||X ?  �1 | ?  �2 | ? �2J
|||X ?  �2 | ?  �2 | ?  �3 | ? �2J

...

1

CCCCA

�1,�2,�3,...

and SX �! SX
J ! 1

if X is ergodic.

is a low-variance estimator of the scattering moments of X(t)

• But does SX ”characterize” X ?

Scattering  Moments of Processes



x(t) |W1| |W2|

4D space

1st order

  Adapt Convolutions to Invariants 
Laurent Sifre

|x ?  j,✓(t)|= x1(j, ✓, t)

translation

|x1(j, ✓, .) ?  j0(t)|

translation

j

t = (t1, t2)

✓

along (t1, t2)

W2 computes wavelet convolutions



t = (t1, t2)

✓

   Rotation-Translation Invariance 
Laurent Sifre

j

x(t) |x ?  j,✓(t)|= x1(j, ✓, t)

translation

|W1| |x1 ?  j0,l0(j, ✓, t)|

W2 computes wavelet convolutions

along (t1, t2, ✓)

roto-translation

|W2|

4D space

1st order



t = (t1, t2)

✓

along (t1, t2, ✓, j)

scalo-roto-translation

Scalo-Roto-Translation Invariance 
Laurent Sifre

j

x(t) |x ?  j,✓(t)|= x1(j, ✓, t)

translation

|W1| |x1 ?  j0,l0(j, ✓, t)|

W2 computes wavelet convolutions

|W2|

4D space

1st order



UIUC database:
25 classes

Scattering classification errors

Training Translation Transl + Rotation + Scaling

20 20 % 2% 0.6%

  Rotation and Scaling Invariance
Laurent Sifre



Classification Accuracy

Data Basis 2012 Deep-Net Scat.-1 Scat.-2
CalTech-101 80% 85% 50% 80%
CalTech-256 50% 70% 30% 50%
CIFAR-10 80% 90% 55% 80%

SJx

2J = 25

  Complex Image Classification

BateauNénuphareMetronome CastoreArbre de Joshua
Ancre

CalTech 101 data-basis:

Roto-Trans.

Linear Classif. yx

Edouard Oyallon



Classification Accuracy

SJx

2J = 25

Data Basis 2012 Deep-Net Scat.-2
CalTech-101 80%
CalTech-256 50%
CIFAR-10 80%

Data Basis 2012 Deep-Net Scat.-2
CalTech-101 85%
CalTech-256 70%
CIFAR-10 90%

Data Basis 2012 Deep-Net Scat.-2
CalTech-101 80%
CalTech-256 50%
CIFAR-10 80%

  Complex Image Classification

BateauNénuphareMetronome CastoreArbre de Joshua
Ancre

CalTech 101 data-basis:

Roto-Trans.

Linear Classif. yx

Edouard Oyallon
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0

BB@

x ? �2J

|x ?  �1 | ? �2J
...

|||x ?  �1 | ? ..| ?  �m | ? �2J

1

CCA

�1,...,�m

0

BB@

x̃ ? �2J

|x̃ ?  �1 | ? �2J
...

|||x̃ ?  �1 | ? ..| ?  �m | ? �2J

1

CCA

�1,...,�m

SJ x̃ = = SJx

• Given SJx we want to compute x̃ such that:

with kx̃k minimum.

  Inverse Scattering Transform
Joan Bruna

Non convex optimisation problem.

8�1 , kx̃ ?  �1k1 = kx ?  �1k1

• For m = 1 and 2

J
= 1,

minimize kx̃k subject to:R
x̃(u) du =

R
x(u) du

then x̃ is equal to x up to a translation.

• If x(u) is a Dirac, or a straight edge or a sinusoid



With a gradient descent algorithm:

Original images of N2 pixels:

   Sparse Shape Reconstruction
Joan Bruna

m = 2, 2

J
= N : reconstruction from O(log

2
2 N) scattering coe↵.

m = 1, 2

J
= N : reconstruction from O(log2 N) scattering coe↵.



Original Textures

Gaussian process model with same second order moments

 Ergodic Texture Reconstructions
Joan Bruna

m = 2, 2

J
= N : reconstruction from O(log

2
2 N) scattering coe↵.



2J = 16

2J = 32

2J = 64

2J = 128 = N

Scattering
Reconstruction

N2
pixels

1.4N2
coe↵.

0.5N2
coe↵.

Multiscale Scattering Reconstructions
Original
Images



Original
Images

Scat-2.

Reconstr.

2J = 32

            Scattering Reconstructions



• Energy of d interacting bodies:

Can we learn the interaction energy f(x) of a system

with x =

n

positions, values

o

?

Astronomy

Quantum Chemistry

 Learning Physics: N-Body Problem

Matthew Hirn
N. Poilvert



f(x) =
dX

k=1

dX

k0=1

qk qk0

|pk � pk0 |�

Each particle interacts with O(log d) groups

If x(u) =
dX

k=1

qk �(u� pk) then

• Classic energy of d interacting bodies:

 Learning Physics: N-Body Problem

Matthew Hirn

For any ✏ > 0 there exists wavelets with

f(x) =
MX

m=0

X

�1,�m

↵(�1, ..,�m)S2
x(�1, ...,�m)(1 + ✏)

Theorem:

N. Poilvert



kf � fMk = 9kcal/mole

logM

log kf � fMk

   Quantum Chemistry

• Complex orbital interactions: no analytical energy f(x).

• Best M -term scattering approximation fM of f :

fM (x) =
MX

n=1

↵n �n(x)

where the �n(x) is a 1st or 2nd order term

• Data basis {xi , f(xi)}i of 700 2D molecules (about 20 atoms).

d ⇡ 60 degrees of freedom

Invariant to translations, rotations, stable to deformations.

Matthew Hirn

   Quantum Chemistry
N. Poilvert

kfM � fk ⇡ CM�1/2 ⌧ M�1/d

M = 80



• Do we need to learn deep net filters ?

• How much physics can we learn and why ?

www.di.ens.fr/data/scattering

Looking for Post-Doc!

• Can we analyse geometry in Euclidean spaces ?

        Conclusion


