Pattern encoding on the Poincaré Sphere

Aleksandra Pižurica

Statistical Image Modeling Lab, IPI-TELIN Ghent University

aleksandra.pizurica@ugent.be

SAHD, UCL-Duke 2014

A graphical tool for pattern encoding

Inspiration: Encoding Polarization States

S₃

,Q

^s₁

Η

R

L

$$\left(\frac{E_x}{a_x}\right)^2 + \left(\frac{E_y}{a_y}\right)^2 - 2\frac{E_x}{a_x}\frac{E_y}{a_y}\cos\delta = (\sin\delta)^2$$

Applications in communications

Optical communications with **POLarization Shift Keying** (**POLSK**) modulation [S. Benedetto and P. Pogiolini, 1992]

Spherical codes and lattice coding [N.J.A. Sloane, 1981]; [J.H. Conway, R.H. Hardin and N.J.A. Sloane, 1996]; [A.R. Calderbank, R.H. Hardin, E.M. Rains, P.W. Shor and N.J.A. Sloane, 1999]

Examples of 6-D constellations extracted from the E₆ lattice [AP, V. Pizurica, V. Šenk, 1998]

Visual patterns on the Poincaré sphere?

Visual patterns on the Poincaré sphere?

Some parallels with polarization encoding

Two examples with different formulations of the elevation angle

Formulation 1

Formulation 2

Scale cylinder

Take an intersection of the sphere with any plane parallel to the equatorial plane

Any point on the resulting circle is a projection of a 4D line → The circle extends to a scale cylinder

Scale hypersphere

Take from each scale cylinder a cross section at distance s_k from its base \rightarrow All the resulting circles make a new sphere for scale s_k The resulting spheres constitute a scale hypersphere

Unfolding and packing together the scales

Pool the scale cylinder out \rightarrow unfold the scales in 4th dimension Make the scale cylinder collapse \rightarrow project 4D space on a 3D space where each point corresponds to a variety of scales

Constructing a toy example

Dominant direction estimation: idea

Consider a zero mean image patch $\mathbf{w} = \{w_{i,j}\}$, $w_{i,j} = I_{i,j} - \mu_I$

Dominant direction estimation: idea

Consider a zero mean image patch $\mathbf{w} = \{w_{i,j}\}$, $w_{i,j} = I_{i,j} - \mu_I$

Design a direction estimation method based on the ratio of R_v and R_h .

Dominant direction estimation: idea

Consider a zero mean image patch $\mathbf{w} = \{w_{i,j}\}$, $w_{i,j} = I_{i,j} - \mu_I$

Two diagonal projectors are sufficient to remove mirroring ambiguity.

Dominant direction estimation: method

Absolute value of the sum of elements, normalized by their number $\mathbf{w} = \{w_{i,j}\}$ zero-mean image patch

Normalization:

$$r_{h,v} = \frac{R_{h,v}}{(R_h^2 + R_v^2)^{\frac{1}{2}}}$$

$$r_{d_1,d_2} = \frac{R_{d_1,d_2}}{(R_{d_1}^2 + R_{d_2}^2)^{\frac{1}{2}}}$$

Dominant direction estimation: method

Absolute value of the sum of elements, normalized by their number

$$d_{corr} = \begin{cases} 0, & \text{if } r_{d1} \ge r_{d2}, \\ 1, & \text{otherwise.} \end{cases}$$

Encoding the level of grey

Let T denote a normalized mean intensity of an image patch $I = \{I_{i,j}\}$

$$T=\frac{\sum_{i=1}^M\sum_{j=1}^N I_{i,j}}{255MN}$$
 , $~0\leq T\leq 1$, and define

$$\Theta = 2\chi = (T - 0.5)\pi$$

Encoding patch regularity

 $E_I = -\sum_j p_j log_2(p_j)$

with 2 levels: $max{E_I}=1$; with 256 levels: $max{E_I}=8$

relative occurrence of grey level j

$$\rho_E = \min\Bigl(1 - \frac{E_I - 1}{7}, 1\Bigr)$$

Encoding patch regularity

Think of the degree of regularity as the degree of orientedness and examine local directional consistency (LDC).

Let ψ_i denote dominant orientation of a sub-block *i* and let h_{ψ} denote the histogram of $\psi = \{\psi_i \dots \psi_i\}$.

$$\rho_{LDC} = \frac{B-b}{B-1}$$

B – total number of bins in h_{ψ} b – number of populated bins (with counts above a small threshold)

Patch encoding example

with ho_{LDC} :

with ho_E

Some possible applications

- Patch clustering
- Analyzing learned dictionaries of image atoms
- Generating dictionaries of image atoms

Applications: Patch clustering

Random patches of size 16x16 taken from four image regions highlighted with the corresponding colors.

Applications: Dictionary analysis

Examples of multiscale dictionaries from [Mairal, Sapiro and Elad, 2008]

Dictionary analysis: Zoom In

Notice lack of diagonal highly oriented atoms – this is visible in the Poincaré representation!

Dictionary analysis: Zoom In

Notice many diagonal atoms - reflected in the Poincaré code

Applications: Encoding image atoms

Applications: Encoding image atoms

Applications: Encoding image atoms

Examples with atom size 8x8

Examples with atom size 8x8

Extract from the three Stokes parameters the regularity, direction and elevation (mean grey tone) and generate randomly the corresponding patterns

Examples with atom size 16x16

Examples with atom size 8x8

Extract from the three Stokes parameters the regularity, direction and elevation (mean grey tone) and generate randomly the corresponding patterns

Examples with atom size 16x16

Examples with atom size 8x8

Extract from the three Stokes parameters the regularity, direction and elevation (mean grey tone) and generate randomly the corresponding patterns

Examples with atom size 16x16

ating un		U			C 3					BC	. 0		/ 	12		
		V	$\sum_{i=1}^{n}$	22	M	-	Ф.	\sim	812	110	2	-	82		>	N.
ς	\mathbb{C}^{∞}		2	\mathcal{O}	2	3	8	1		01	\mathcal{U}	\mathbb{Z}	2	10	0	N
	2	$^{\prime\prime}$	m	Ľ	\mathcal{O}	\sim	S	1		п	8	//	m	22	Ø,	8
200 S	23			1	-		х		Ц	ш	83	is.	Ľ	10		W
438	88			Ø,	U	Ŵ	1			5	\mathbb{Z}		\geq	7		Ν
	4	2	8	ll	W	/	10	N	N	-	-	_	0	<u>7</u> 7	7	C
	\mathbf{n}	1	8	Ŵ	Ø	W			51. ₇₀ .	\mathbf{C}	3		Ĩ	88	N	يست
	1	8.2	8	h.		2	λ.		l			\mathbf{Z}	55	Ø	S	9
0	11		Ν.		2			2	7 3		27	11		\mathbb{Z}		77
-1 S ₁	\mathbf{r}	4	N	II	N2		8	I		٨.			ſ	8	1	U.
	4	~	W		0		8	\mathbb{Z}	2	ų	9	\mathcal{O}	\sim	N	\mathbb{S}	m
	\mathbf{N}	3	M	Ľ.		Σ.,		S	П	Ű	n	U,	1		/	LII
	\sim	8	a t	N	LØ.	II	5	82	200	11	Л	n	33	=	h	17
	10	ı		ß	2		2	8	10	2	m	Ũ	17	/	8	
		W		1		S	8	١	<u>8.1</u>	2	\sim	\mathcal{D}	8	88	п	9
PD ₂₅₆ (8x8)		2 .)		1.2	\mathcal{L}				λ.	Ω¥.			м:	11	-	<u>n :</u>

Image reconstruction examples

In all reconstructions:

atom size: 8x8; sparsity: 5; reconstruction method: OMP

PSNR= 31.62 dB

Image reconstruction examples

PSNR= 33.63 dB

In all reconstructions:

atom size: 8x8; sparsity: 5; reconstruction method: OMP

Image reconstruction examples

In all reconstructions:

atom size: 8x8; sparsity: 5; reconstruction method: OMP

PSNR= 34.33 dB

2 random dictionaries (2x256)

Reconstruction performance

atom size: 8x8; sparsity: 5; reconstruction method: OMP

Sphere packings

N.A.J. Sloane http://neilsloane.com/icosahedral.codes/index.html

Tables of Spherical Codes with Icosahedral Symmetry R. H. Hardin, N. J. A. Sloane and W. D. Smith

Example dictionary from a spherical code

icover 1082

PD-i1082 (8x8)

Reconstruction performance

atom size: 8x8; sparsity: 5; reconstruction method: OMP

Summary

- A graphical tool was presented for encoding visual patterns
- Possible applications include
 - Patch clustering

- Visualizing properties of learned dictionaries of image atoms

References

Material from this presentation:

A. Pizurica. Pattern encoding on the Poincaré sphere, arXiv:1410.0243 [cs.CV], 2014.

Spherical codes, packings, lattice coding

N. J. A. Sloane. Tables of sphere packings and spherical codes, IEEE Trans. Inf. Theory, 27:327-338, 1981.

J. H. Conway, R. H. Hardin and N. J. A. Sloane. **Packing Lines, Planes, etc.: Packings in Grassmannian Spaces,** *Experimental Mathematics,* 5(2):139-159, 1996.

R. Calderbank, R. H. Hardin, E. M. Rains, P. W. Shor and N. J. A. Sloane. A Group-Theoretic Framework for the Construction of Packings in Grassmannian Spaces, J. Algebraic Combinatorics, 9:129-140, 1999.

POLSK systems with spherical codes

S. Benedetto and P. Poggiolini. **Theory of polarization shift keying modulation**, IEEE Trans. Commun., 40(4):708-721, 1992.

A. Pizurica, V. Senk and V. Pizurica. **An Application of Spherical Codes to Polarization Shift Keying Modulation**, Facta Universitatis, 11(2):207-221, 1998.

Learning dictionaries of image atoms

J. Mairal, G. Sapiro and M. Elad. Learning multiscale sparse representations for image and video restoration, Multiscale Model. Simul, 7(1):214-241, 2008.