CGIHT for compressed sensing and matrix completion

Jared Tanner

SAHD 2014 4th September 2014

University of Oxford¹ Joint with Blanchard & Wei

¹Supported by: Leverhulme Trust, EPSRC, NVIDIA, & SELEX-Galileo

Jared Tanner CGIHT for compressed sensing and matrix completion

The simplicity of large data sets

Understanding and working with large data sets is built on simple models:

- Time series such as audio
- Images of natural scenes
- Low rank matrix approximation
- Piecewise linear embeddings

The SAHD community is developing methods using the underlying simplicity to more efficiently capture the essential information.

The simplicity of large data sets

Understanding and working with large data sets is built on simple models:

- Time series such as audio
- Images of natural scenes
- Low rank matrix approximation
- Piecewise linear embeddings

▶ ...

Examples include compressed sensing, upcoming talks by: Hansen, Kutyniok, and Tropp

The simplicity of large data sets

Understanding and working with large data sets is built on simple models:

- Time series such as audio
- Images of natural scenes
- Low rank matrix approximation
- Piecewise linear embeddings

And matrix completion where low rank assumption enforces correlation between entries. A quick recap of CS and MC...

Compressed Sensing [Donoho, Candes & Tao 04]

- Data is known to be simple is a known representation, e.g. time-frequency for audio or dct/wavelets for images
- Which are the dominant coefficient in the representation is unknown, and we would like non-adaptive sensing

х

"row" of A

Compressed Sensing [Donoho, Candes & Tao 04]

- Data is known to be simple is a known representation, e.g. time-frequency for audio or dct/wavelets for images
- Which are the dominant coefficient in the representation is unknown, and we would like non-adaptive sensing
- ► Linear Encoder (non-adaptive): Discrete signal of length *n*, *x*
 - \bullet Transform matrix under which class of signals are sparse, Φ
 - "Random" matrix to mix transform coefficients, A
 - Measurements through $A\Phi$, $m \times n$ with $m \ll n$, $y := A\Phi x$

 Each measurement interacts equally with all elements of the simplifying representation

Φχ

Matrix Completion [Fazel 02, Candes & Recht 07]

 Compressed sensing extends to matrices trivially if the matrix is sparse with known linear transform.
 What if the transform is unknown? Use adaptive simplicity.

Matrix Completion [Fazel 02, Candes & Recht 07]

- Compressed sensing extends to matrices trivially if the matrix is sparse with known linear transform.
 What if the transform is unknown? Use adaptive simplicity.
- Simplicity model: $X \in \mathbb{R}^{m \times n}$, of rank r
- ► Linear Encoder (non-adaptive): A(·) linear from ℝ^{m×n} to ℝ^p Compressed sensing analogue via "dense" matrix products

$$\mathcal{A}(X)_{\ell} = trace(A_{\ell}X) \quad \text{ for } \quad \ell = 1, 2, \cdots, p$$

"Matrix completion" moniker inspired by entry sensing

$$\mathcal{A}(X)_{\ell} = X(i,j)$$
 for $\ell = 1, 2, \cdots, p$

Matrix Completion [Fazel 02, Candes & Recht 07]

- Compressed sensing extends to matrices trivially if the matrix is sparse with known linear transform.
 What if the transform is unknown? Use adaptive simplicity.
- Simplicity model: $X \in \mathbb{R}^{m \times n}$, of rank r
- ► Linear Encoder (non-adaptive): A(·) linear from R^{m×n} to R^p Compressed sensing analogue via "dense" matrix products

$$\mathcal{A}(X)_{\ell} = trace(A_{\ell}X)$$
 for $\ell = 1, 2, \cdots, p$

"Matrix completion" moniker inspired by entry sensing

$$\mathcal{A}(X)_{\ell} = X(i,j)$$
 for $\ell = 1, 2, \cdots, p$

Each measurement needs to interact with all singular vectorsCS and MC have simple non-convex recovery formulations.

Explicit search for simple solution from (y, A), NP-hard

Compressed sensing combinatorial search:

$$\min_{x} \|x\|_0 \quad \text{subject to} \quad \|y - Ax\|_2 \le \tau$$

where $\|\cdot\|_0$ counts the number of non-zeros.

Matrix completion minimum rank search:

 $\min_X \operatorname{rank}(X)$ subject to $\|y - \mathcal{A}(X)\|_2 \leq au$

Explicit search for simple solution from (y, A), NP-hard

Compressed sensing combinatorial search:

$$\min_{x} \|x\|_0$$
 subject to $\|y - Ax\|_2 \leq au$

where $\|\cdot\|_0$ counts the number of non-zeros.

Matrix completion minimum rank search:

 $\min_X \operatorname{rank}(X) \quad \text{subject to} \quad \|y - \mathcal{A}(X)\|_2 \leq \tau$

- There is a growing number of practical alternatives to the above, nearly all of which are "easily" proven to have an "optimal order." (More details to come.)
- The most widely studied alternatives are convex relaxations.

Convex relaxations

Replace compressed sensing combinatorial search

$$\min_{x} \|x\|_0 \quad \text{subject to} \quad \|y - Ax\|_2 \le \tau \quad \text{with}$$

 $\min_{x} \|x\|_1 \quad \text{subject to} \quad \|y - Ax\|_2 \le \tau$

which can be reformulated as linear (au=0) or quadratic (au>0) programming.

Convex relaxations

Replace compressed sensing combinatorial search

$$\min_{x} \|x\|_0 \quad \text{subject to} \quad \|y - Ax\|_2 \leq \tau \quad \text{with}$$

$$\min_{x} \|x\|_1 \quad \text{subject to} \quad \|y - Ax\|_2 \le \tau$$

which can be reformulated as linear (au=0) or quadratic (au>0) programming.

Replace matrix completion minimum rank search

$$\min_X \operatorname{rank}(X) \quad \text{subject to} \quad \|y - \mathcal{A}(X)\|_2 \leq \tau$$

with

$$\min_{X} \|X\|_* := \sum \sigma_i(X) \quad \text{subject to} \quad \|y - \mathcal{A}(X)\|_2 \leq \tau$$

which can be reformulated as semi-definite programming.

Optimal order recovery - sampling theorems

- CS characterised by three numbers: $k \le m \le n$
 - n, Signal Length, ambient dimension
 - m, number of inner product measurements
 - k, signal complexity, sparsity

Optimal order recovery - sampling theorems

- CS characterised by three numbers: $k \le m \le n$
 - n, Signal Length, ambient dimension
 - *m*, number of inner product measurements
 - k, signal complexity, sparsity
- MC has four defining numbers: $r \le m \le n$ and p
 - $m \times n$, Matrix size, ambient dimension
 - p, number of inner product or entry measurements
 - r, matrix complexity, rank, with r(m + n r) d.o.f.

Optimal order recovery - sampling theorems

- CS characterised by three numbers: $k \le m \le n$
 - n, Signal Length, ambient dimension
 - *m*, number of inner product measurements
 - k, signal complexity, sparsity
- MC has four defining numbers: $r \le m \le n$ and p
 - $m \times n$, Matrix size, ambient dimension
 - p, number of inner product or entry measurements
 - r, matrix complexity, rank, with r(m + n r) d.o.f.
- Mixed under/over-sampling rates compared to naive/optimal

$$\delta := \frac{\#\text{measurements}}{\text{ambient dimension}}, \qquad \rho := \frac{\text{degrees of freedom}}{\#\text{measurements}}$$

For δ fixed, recovery possible using polynomial complexity algorithms, for ρ bounded away from zero!

CS: ℓ^1 decoder [Donoho & T 05, 07]

- With overwhelming probability on A_{m,n} drawn Gaussian: for any ε > 0, as (k, m, n) → ∞
 - All k-sparse signals if $k/m \le \rho_S(m/n, C)(1-\epsilon)$
 - Most k-sparse signals if $k/m \le \rho_W(m/n, C)(1-\epsilon)$
 - Failure typical if $k/m \ge \rho_W(m/n, C)(1+\epsilon)$

$$\delta = m/n$$

▶ Asymptotic behaviour $\delta \rightarrow 0$: $\rho(m/n) \sim [2(e) \log(n/m)]^{-1}$

MC: Schatten-1 decoder [Amelunxen, Lotz, McCoy, Tropp]

- With overwhelming probability on A(·) drawn Gaussian: for any e > 0, as (r, m, n, p) → ∞,
 - Most matrices if $r(m + n r)/p \le \rho_W(p/mn, N)(1 \epsilon)$
 - Failure typical if $r(m + n r)/p \ge \rho_W(p/mn, N)(1 + \epsilon)$

 $\delta = p/mn$

Many other decoders have been proposed. In particular, Iterative Hard Thresholding (IHT) decoders which are observed to be efficient and simple, but limited theory...

Alternating projection approaches to $\min_{x} \|y - Ax\|_2 \quad \text{subject to} \quad \|x\|_0 = k$

► Normalized Iterated HT (NIHT) [Blumensath & Davies 09] $x_l = H_k(x_{l-1} + \kappa A^T(y - Ax_{l-1}))$

Alternating projection approaches to $\min_{x} \|y - Ax\|_2 \quad \text{subject to} \quad \|x\|_0 = k$

► Normalized Iterated HT (NIHT) [Blumensath & Davies 09] $x_{l} = H_{k}(x_{l-1} + \kappa A^{T}(y - Ax_{l-1}))$

▶ Hard Thresholding Pursuit (HTP) [Maleki 09, Foucart 10]

$$\begin{split} I_l = supp(H_k(x_{l-1} + \kappa A^T(y - Ax_{l-1}))) & \text{Descent supp. sets} \\ x_l = (A_{l_l}^T A_{l_l})^{-1} A_{l_l}^T y & \text{Pseudo-inverse} \end{split}$$

Alternating projection approaches to $\min_{x} \|y - Ax\|_2 \quad \text{subject to} \quad \|x\|_0 = k$

► Normalized Iterated HT (NIHT) [Blumensath & Davies 09] $x_{l} = H_{k}(x_{l-1} + \kappa A^{T}(y - Ax_{l-1}))$

Hard Thresholding Pursuit (HTP) [Maleki 09, Foucart 10]

$$\begin{split} I_l = supp(H_k(x_{l-1} + \kappa A^T(y - Ax_{l-1}))) & \text{Descent supp. sets} \\ x_l = (A_{l_l}^T A_{l_l})^{-1} A_{l_l}^T y & \text{Pseudo-inverse} \end{split}$$

► Two-Stage Thres. [Milenkovic & Dai, Needell & Tropp 08] $v_l = H_{\alpha k}(x_{l-1} + \kappa A^T(y - Ax_{l-1}))$ $I_l = supp(v_l) \cup supp(x_{l-1})$ Join supp. sets $w_l = (A_l^T A_{l_l})^{-1} A_l^T y$ Least squares fit

$$x_l = H_{\beta k}(w_l)$$
 Second threshold

All optimal order, but how effective on typical problems?

Recovery phase transitions: Gaussian matrix, sign vector, $n = 2^{12}$

Algorithm Selection map: Gaussian matrix, sign vector, $n = 2^{12}$, relative residual 10^{-3}

Jared Tanner CGIHT for compressed sensing and matrix completion

- ► Normalized Iterated HT (NIHT) [Blumensath & Davies 09] $x_{l} = H_{k}(x_{l-1} + \kappa A^{T}(y - Ax_{l-1}))$
- Hard Thresholding Pursuit (HTP) [Foucart 10]

$$I_{l} = supp(H_{k}(x_{l-1} + \kappa A^{T}(y - Ax_{l-1})))$$
 Descent supp. sets
$$x_{l} = (A_{l_{l}}^{T}A_{l_{l}})^{-1}A_{l_{l}}^{T}y$$
 Pseudo-inverse

► Two-Stage Thres. [Milenkovic & Dai, Needell & Tropp 08] $v_l = H_{\alpha k}(x_{l-1} + \kappa A^T(y - Ax_{l-1}))$

 $I_l = supp(v_l) \cup supp(x_{l-1})$ Join supp. sets

 $w_l = (A_{l_l}^T A_{l_l})^{-1} A_{l_l}^T y$ Least squares fit

 $x_I = H_{\beta k}(w_I)$ Second threshold

 Low per iteration complexity best at early exploration phase, higher order better at later coefficient value recovery phase
 Can we do better, low per iteration with fast asymptotics?

Balancing the iteration cost with fast asymptotic rate

Conjugate Gradient IHT (CGIHT) [Blanchard, T & Wei 2013] Initialization: Set $T_{-1} = \{\}$, $p_{-1} = 0$, $\nu_0 = A^*y$, $T_0 = \text{DetectSupport}(\nu_0)$, $x_0 = P_{T_0}(\nu_0)$, and l = 1. Iteration: During iteration l, do

1:
$$r_{l-1} = A^*(y - Ax_{l-1})$$
 (compute the residual)
2: if $T_{l-1} \neq T_{l-2}$
 $\beta_{l-1} = 0$ (set orthogonalization weight)

else

$$\beta_{l-1} = \frac{\|P_{T_{l-1}}r_{l-1}\|_2^2}{\|P_{T_{l-1}}r_{l-2}\|_2^2} \quad (\text{compute orthogonalization weight})$$
3: $p_{l-1} = r_{l-1} + \beta_{l-1}p_{l-2} \qquad (\text{define the search direction})$
4: $\alpha_{l-1} = \frac{\|P_{T_{l-1}}(r_{l-1})\|_2^2}{\|AP_{T_{l-1}}(p_{l-1})\|_2^2} \qquad (\text{optimal step size if } T_{l-1} = T_{l-2})$
5: $\nu_{l-1} = x_{l-1} + \alpha_{l-1}p_{l-1} \qquad (\text{conjugate gradient step})$
6: $T_l = \text{DetectSupport}(\nu_{l-1}) \qquad (\text{proxy to the support set})$
7: $x_l = P_{T_l}((\nu_{l-1}))$

Recovery phase transitions: Gaussian matrix, sign vector, $n = 2^{12}$

Jared Tanner CGIHT for compressed sensing and matrix completion

The simplicity of large data sets Directly approaching the non-convex problem Compressed sensing: balancing workload via CGIHT Matrix completion: fast asymptotic rate via CGIHT

Algorithm Selection map: Gaussian matrix, sign vector, $n = 2^{12}$, relative residual 10^{-3}

Algorithm selection map for (\mathcal{N}_{AB}), n=2¹²

Layering with CGIHT and FIHT (ALPS) typically fastest.

Jared Tanner CGIHT for compressed sensing and matrix completion

Moderate noise: $n = 2^{13}$ Gaussian matrix, sign vector, y = Ax + e for e drawn $\mathcal{N}\left(0, \frac{1}{10} ||Ax||_2\right)$

CGIHT variants nearly uniformly fastest especially with additive noise. Similar behaviour for DCT and sparse matrices, other vector distributions.

CGIHT recovery guarantee

Restricted Isometry Property: sparse near isometry

▶ Classical ℓ² eigen-analysis [Candes & Tao 05]

 $(1-L_k)\|x\|_2^2 \le \|Ax\|_2^2 \le (1+U_k)\|x\|_2^2$ for x k-sparse

CGIHT recovery guarantee

Restricted Isometry Property: sparse near isometry

Classical l² eigen-analysis [Candes & Tao 05]

$$(1 - L_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + U_k) \|x\|_2^2$$
 for x k-sparse

Theorem

Let A be an $m \times n$ matrix with m < n, and y = Ax + e for any x with at most k nonzeros. If the RIC constants of A satisfy

$$\frac{(L_{3k}+U_{3k})(5-2L_k+3U_k)}{(1-L_k)^2}<1,$$

then there exists a K > 0 depending only on $||x_0 - x||_2$ such that

$$\|x_l - x\| \le K \cdot \gamma' + \frac{2\kappa_{\alpha}(1 + U_{2k})^{1/2}}{1 - \gamma} \|e\|_2$$

 x_l is the l^{th} iteration of CGIHT and $\gamma < 1$ (formula available). CGIHT extends to matrix completion with roughly same theorem

CGIHT projected for matrix completion

Initialization: Set $W_{-1} = \mathcal{A}^*(y)$, $U_0 = \text{PrincipalLeftSingularVectors}_r(W_{-1})$, $X_0 = \text{Proj}_{U_0}(W_{-1})$, $R_0 = \mathcal{A}^*(y - \mathcal{A}(X_0))$, $P_0 = R_0$, Restart_flag = 1, set restart parameter θ , and l = 1. **Iteration:** During iteration l, **do**

CGIHT projected for matrix completion

1: if
$$\frac{\left\|R_{l-1} - \operatorname{Proj}_{U_{l-1}}(P_{l-1})\right\|}{\left\|\operatorname{Proj}_{U_{l-1}}(R_{l-1})\right\|} > \theta$$

Restart_flag = 1, $\alpha_{l-1} = \frac{\left\|\operatorname{Proj}_{U_{l-1}}(R_{l-1})\right\|^{2}}{\left\|\mathcal{A}\left(\operatorname{Proj}_{U_{l-1}}(R_{l-1})\right)\right\|^{2}}$
 $W_{l-1} = X_{l-1} + \alpha_{l-1}R_{l-1}$

else

$$\begin{aligned} \text{Restart_flag} &= 0, \ \alpha_{l-1} = \frac{\left\| \operatorname{Proj}_{U_{l-1}}(R_{l-1}) \right\|^2}{\left\| \mathcal{A} \left(\operatorname{Proj}_{U_{l-1}}(P_{l-1}) \right) \right\|^2} \\ W_{l-1} &= X_{l-1} + \alpha_{l-1} \operatorname{Proj}_{U_{l-1}}(P_{l-1}) \\ 2: \ U_l &= \operatorname{PrincipalLeftSingularVectors}_r(W_{l-1}), \\ X_l &= \operatorname{Proj}_{U_l}(W_{l-1}), \ R_l &= \mathcal{A}^* \left(y - \mathcal{A}(X_l) \right) \\ 3: \ \text{if Restart_flag} &= 1 \ \text{set} \ P_l &= R_l, \ \text{else} \\ \beta_l &= \frac{\left\| \operatorname{Proj}_{U_l}(R_l) \right\|^2}{\left\| \operatorname{Proj}_{U_l}(R_{l-1}) \right\|^2}, \ P_l &= R_l + \beta_l \operatorname{Proj}_{U_l}(P_{l-1}) \end{aligned}$$

NIHT, FIHT, CGIHT: entry sensing (m = n = 2000)

- Phase transition substantial above Schatten-1 norm
- CGIHT convergence rate is fastest in its class.
- ► What is happening in extreme undersampling p ≪ mn?

CGIHT: entry sensing with $\delta = p/mn = 1/20$

• CGIHT at small $\delta = p/mn = 1/20$, 100 tests per value of r

- ► Recovery in at least 95 times in each of 100 tests for ρ ≤ 0.9, whereas Schatten-1 recovery requires ρ < 0.41.</p>
- Convergence rate appears to be only limit to recovery in matrix completion, even in extreme undersampling $\delta \ll 1$

A few concluding observations

- CS and MC algorithms have two phases: subspace determination and subspace data fitting
- When confidence in the subspace estimate is low, it is best to quickly search the space without minimizing local objectives
- Higher order methods can both accelerate convergence and increase recovery region
- CGIHT balances these competing aspects
- Iterative hard thresholding algorithms have substantially better average case matrix completion recovery than do convex regularizations

References

- Normalized iterative hard thresholding for matrix completion: SIAM J. on Scientific Computing (2012), Tanner and Wei
- Conjugate Gradient iterative hard thresholding for compressed sensing and matrix completion, Blanchard, Tanner and Wei.
- GPU Accelerated Greedy Algorithms for compressed sensing; Mathematical Programming Computation (2013), Blanchard and Tanner.
- Counting faces of randomly-projected polytopes when projection lowers dimension: J. of the AMS (2009), Donoho and Tanner

Thanks for your time

Between CS and MC: Multi-measurement CS

Multi-measurement, measure r vectors, each of which are k sparse with shared suport set but different nonzero values (eg. chemical spectroscopy and video with slowly varying images)

$$\min_{Z \in \mathbb{R}^{n \times r}} \|Y - AZ\|_2 \quad \text{subject to} \quad \|Z\|_{R0} \le k.$$

