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The simplicity of large data sets
Directly approaching the non-convex problem

Compressed Sensing and Matrix Completion
Reconstruction algorithms - decoders

The simplicity of large data sets

Understanding and working with large data sets is
built on simple models:

I Time series such as audio

I Images of natural scenes

I Low rank matrix approximation

I Piecewise linear embeddings

I . . .

The SAHD community is developing methods using the underlying
simplicity to more efficiently capture the essential information.
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The simplicity of large data sets

Understanding and working with large data sets is
built on simple models:

I Time series such as audio

I Images of natural scenes

I Low rank matrix approximation

I Piecewise linear embeddings

I . . .

Examples include compressed sensing, upcoming talks by:
Hansen, Kutyniok, and Tropp
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The simplicity of large data sets

Understanding and working with large data sets is
built on simple models:

I Time series such as audio

I Images of natural scenes

I Low rank matrix approximation

I Piecewise linear embeddings

I . . .

And matrix completion where low rank assumption enforces
correlation between entries. A quick recap of CS and MC...
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Compressed Sensing [Donoho, Candes & Tao 04]

I Data is known to be simple is a known representation,
e.g. time-frequency for audio or dct/wavelets for images

I Which are the dominant coefficient in the representation
is unknown, and we would like non-adaptive sensing

I Linear Encoder (non-adaptive): Discrete signal of length n, x
• Transform matrix under which class of signals are sparse, Φ
• “Random” matrix to mix transform coefficients, A
• Measurements through AΦ, m × n with m � n, y := AΦx
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x Φx “row” of A
I Each measurement interacts equally with all elements of the

simplifying representation
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Matrix Completion [Fazel 02, Candes & Recht 07]

I Compressed sensing extends to matrices trivially if
the matrix is sparse with known linear transform.
What if the transform is unknown? Use adaptive simplicity.

I Simplicity model: X ∈ Rm×n, of rank r

I Linear Encoder (non-adaptive): A(·) linear from Rm×n to Rp

Compressed sensing analogue via “dense” matrix products

A(X )` = trace(A`X ) for ` = 1, 2, · · · , p

“Matrix completion” moniker inspired by entry sensing

A(X )` = X (i , j) for ` = 1, 2, · · · , p

I Each measurement needs to interact with all singular vectors

I CS and MC have simple non-convex recovery formulations.
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Explicit search for simple solution from (y , A), NP-hard

I Compressed sensing combinatorial search:

min
x
‖x‖0 subject to ‖y − Ax‖2 ≤ τ

where ‖ · ‖0 counts the number of non-zeros.

I Matrix completion minimum rank search:

min
X

rank(X ) subject to ‖y −A(X )‖2 ≤ τ

I There is a growing number of practical alternatives
to the above, nearly all of which are “easily” proven
to have an “optimal order.” (More details to come.)

I The most widely studied alternatives are convex relaxations.
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Convex relaxations
I Replace compressed sensing combinatorial search

min
x
‖x‖0 subject to ‖y − Ax‖2 ≤ τ with

min
x
‖x‖1 subject to ‖y − Ax‖2 ≤ τ

which can be reformulated as linear (τ = 0) or quadratic
(τ > 0) programming.

I Replace matrix completion minimum rank search

min
X

rank(X ) subject to ‖y −A(X )‖2 ≤ τ

with

min
X
‖X‖∗ :=

∑
σi (X ) subject to ‖y −A(X )‖2 ≤ τ

which can be reformulated as semi-definite programming.
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Optimal order recovery - sampling theorems

I CS characterised by three numbers: k ≤ m ≤ n
• n, Signal Length, ambient dimension
• m, number of inner product measurements
• k, signal complexity, sparsity

I MC has four defining numbers: r ≤ m ≤ n and p
• m × n, Matrix size, ambient dimension
• p, number of inner product or entry measurements
• r , matrix complexity, rank, with r(m + n − r) d.o.f.

I Mixed under/over-sampling rates compared to naive/optimal

δ :=
#measurements

ambient dimension
, ρ :=

degrees of freedom

#measurements

I For δ fixed, recovery possible using polynomial complexity
algorithms, for ρ bounded away from zero!
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CS: `1 decoder [Donoho & T 05, 07]

I With overwhelming probability on Am,n drawn Gaussian:
for any ε > 0, as (k,m, n) →∞
• All k-sparse signals if k/m ≤ ρS(m/n,C )(1− ε)
• Most k-sparse signals if k/m ≤ ρW (m/n,C )(1− ε)
• Failure typical if k/m ≥ ρW (m/n,C )(1 + ε)
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I Asymptotic behaviour δ → 0: ρ(m/n) ∼ [2(e) log(n/m)]−1
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MC: Schatten-1 decoder [Amelunxen, Lotz, McCoy, Tropp]

I With overwhelming probability on A(·) drawn Gaussian:
for any ε > 0, as (r ,m, n, p) →∞,

• Most matrices if r(m + n − r)/p ≤ ρW (p/mn,N)(1− ε)
• Failure typical if r(m + n − r)/p ≥ ρW (p/mn,N)(1 + ε)
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Recovery: all matrices

lW

δ = p/mn

r(m+n−r)
p

I Many other decoders have been proposed. In particular,
Iterative Hard Thresholding (IHT) decoders which are
observed to be efficient and simple, but limited theory...
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Three prototypical IHT algorithms for CS

Alternating projection approaches to
min

x
‖y − Ax‖2 subject to ‖x‖0 = k

I Normalized Iterated HT (NIHT) [Blumensath & Davies 09]
xl = Hk(xl−1 + κAT (y − Axl−1))

I Hard Thresholding Pursuit (HTP) [Maleki 09, Foucart 10]

Il = supp(Hk(xl−1 + κAT (y − Axl−1))) Descent supp. sets

xl = (AT
Il

AIl )
−1AT

Il
y Pseudo-inverse

I Two-Stage Thres. [Milenkovic & Dai, Needell & Tropp 08]
vl = Hαk(xl−1 + κAT (y − Axl−1))

Il = supp(vl) ∪ supp(xl−1) Join supp. sets

wl = (AT
Il

AIl )
−1AT

Il
y Least squares fit

xl = Hβk(wl) Second threshold

I All optimal order, but how effective on typical problems?
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Recovery phase transitions:
Gaussian matrix, sign vector, n = 212
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← HTP
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50% phase transition curves for (N,B), n=214

δ=m/n

ρ=
k/

m

Similar recovery regions, especially for δ � 1. Which is fastest?
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Algorithm Selection map:
Gaussian matrix, sign vector, n = 212, relative residual 10−3
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Algorithm selection map for (N,B) with n = 212

What goes into the design of a fast CS algorithm?
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Three prototypical IHT algorithms for CS

I Normalized Iterated HT (NIHT) [Blumensath & Davies 09]
xl = Hk(xl−1 + κAT (y − Axl−1))

I Hard Thresholding Pursuit (HTP) [Foucart 10]

Il = supp(Hk(xl−1 + κAT (y − Axl−1))) Descent supp. sets
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I Two-Stage Thres. [Milenkovic & Dai, Needell & Tropp 08]
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wl = (AT
Il

AIl )
−1AT

Il
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I Low per iteration complexity best at early exploration phase,
higher order better at later coefficient value recovery phase

I Can we do better, low per iteration with fast asymptotics?
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Balancing the iteration cost with fast asymptotic rate

Conjugate Gradient IHT (CGIHT) [Blanchard, T & Wei 2013]
Initialization: Set T−1 = {}, p−1 = 0, ν0 = A∗y ,
T0 = DetectSupport(ν0), x0 = PT0(ν0), and l = 1.
Iteration: During iteration l , do

1: rl−1 = A∗(y − Axl−1) (compute the residual)
2: if Tl−1 6= Tl−2

βl−1 = 0 (set orthogonalization weight)
else

βl−1 =
‖PTl−1

rl−1‖2
2

‖PTl−1
rl−2‖2

2
(compute orthogonalization weight)

3: pl−1 = rl−1 + βl−1pl−2 (define the search direction)

4: αl−1 =
‖PTl−1

(rl−1)‖2
2

‖APTl−1
(pl−1)‖2

2
(optimal step size if Tl−1 = Tl−2)

5: νl−1 = xl−1 + αl−1pl−1 (conjugate gradient step)
6: Tl = DetectSupport(νl−1) (proxy to the support set)
7: xl = PTl

((νl−1)) (restriction to proxy support set Tl)
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Similar recovery regions, especially for δ � 1. Which is fastest?
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Layering with CGIHT and FIHT (ALPS) typically fastest.
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Moderate noise: n = 213 Gaussian matrix, sign vector,
y = Ax + e for e drawn N

(
0, 1

10‖Ax‖2

)
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Algorithm selection map for (N,B
ε
) ε = 0.1, n = 213

CGIHT variants nearly uniformly fastest especially with additive noise.

Similar behaviour for DCT and sparse matrices, other vector distributions.
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CGIHT recovery guarantee

Restricted Isometry Property: sparse near isometry

I Classical `2 eigen-analysis [Candes & Tao 05]

(1− Lk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + Uk)‖x‖22 for x k-sparse

Theorem
Let A be an m × n matrix with m < n, and y = Ax + e for any x
with at most k nonzeros. If the RIC constants of A satisfy

(L3k + U3k)(5− 2Lk + 3Uk)

(1− Lk)2
< 1,

then there exists a K > 0 depending only on ‖x0 − x‖2 such that

‖xl − x‖ ≤ K · γl +
2κα(1 + U2k)1/2

1− γ
‖e‖2

xl is the l th iteration of CGIHT and γ < 1 (formula available).

CGIHT extends to matrix completion with roughly same theorem

Jared Tanner CGIHT for compressed sensing and matrix completion
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CGIHT projected for matrix completion

Initialization: Set W−1 = A∗(y),
U0 = PrincipalLeftSingularVectorsr (W−1),
X0 = ProjU0

(W−1), R0 = A∗ (y −A(X0)), P0 = R0,
Restart flag = 1,
set restart parameter θ, and l = 1.
Iteration: During iteration l , do

Jared Tanner CGIHT for compressed sensing and matrix completion
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CGIHT projected for matrix completion

1: if

‚‚‚Rl−1−ProjUl−1
(Pl−1)

‚‚‚
‖ProjUl−1

(Rl−1)‖ > θ

Restart flag = 1, αl−1 =

‚‚‚ProjUl−1
(Rl−1)

‚‚‚2‚‚‚A“
ProjUl−1

(Rl−1)
”‚‚‚2

Wl−1 = Xl−1 + αl−1Rl−1

else

Restart flag = 0, αl−1 =

‚‚‚ProjUl−1
(Rl−1)

‚‚‚2‚‚‚A“
ProjUl−1

(Pl−1)
”‚‚‚2

Wl−1 = Xl−1 + αl−1ProjUl−1
(Pl−1)

2: Ul = PrincipalLeftSingularVectorsr (Wl−1),
Xl = ProjUl

(Wl−1), Rl = A∗ (y −A(Xl))
3: if Restart flag = 1 set Pl = Rl , else

βl =

‚‚‚ProjUl
(Rl )

‚‚‚2‚‚‚ProjUl
(Rl−1)

‚‚‚2 , Pl = Rl + βlProjUl
(Pl−1)
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NIHT, FIHT, CGIHT: entry sensing (m = n = 2000)
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δ = p/mn

ρ =
 r(

m
+n

−r
)/p

Recovery phase transition for (E,N)

 

 

NIHT
CGIHT
FIHT
Schatten−1

I Phase transition substantial above Schatten-1 norm

I CGIHT convergence rate is fastest in its class.

I What is happening in extreme undersampling p � mn?
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CGIHT: entry sensing with δ = p/mn = 1/20
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r(2m−r)/p

CGIHT: Conv rate (solid), recovery probability (dashed), n=2k, δ=1/20

I CGIHT at small δ = p/mn = 1/20, 100 tests per value of r
I Recovery in at least 95 times in each of 100 tests for ρ ≤ 0.9,

whereas Schatten-1 recovery requires ρ < 0.41.
I Convergence rate appears to be only limit to recovery in

matrix completion, even in extreme undersampling δ � 1
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A few concluding observations

I CS and MC algorithms have two phases: subspace
determination and subspace data fitting

I When confidence in the subspace estimate is low, it is best to
quickly search the space without minimizing local objectives

I Higher order methods can both accelerate convergence and
increase recovery region

I CGIHT balances these competing aspects

I Iterative hard thresholding algorithms have substantially
better average case matrix completion recovery than do
convex regularizations
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Thanks for your time
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Between CS and MC: Multi-measurement CS

I Multi-measurement, measure r vectors, each of which are k
sparse with shared suport set but different nonzero values (eg.
chemical spectroscopy and video with slowly varying images)

min
Z∈Rn×r

‖Y − AZ‖2 subject to ‖Z‖R0 ≤ k.
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←  CGIHTrestarted r = 1

←  CGIHTrestarted r = 10

←  CGIHT r = 1
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←  CGIHTprojected r = 1
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FIHT r = 1 →

FIHT r = 10 →

←  NIHT r = 1

←  NIHT r = 10

CSMPSP r = 1 →

CSMPSP r = 10 →

50% phase transition curve for (N,B), n=2048 

δ=m/n

ρ=k
/m

CGIHT variants have substantially higher recovery region
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