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The Compressed Sensing Problem

§ Let x\ ∈ Rd be an unknown vector with s nonzero entries

§ Write ‖·‖1 for the `1 norm on Rd

§ Let A ∈ Rm×d be a Gaussian measurement matrix (iid N(0, 1) entries)

§ Observe m random measurements: z = Ax\

§ Produce an estimate x̂ by solving convex program

minimize ‖x‖1 subject to Ax = z

§ Hope: x̂ = x\
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A Computer Experiment
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Heatmap is probability of success (white = 100%, black = 0%)
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Convex Programs with Random Data

Examples...

§ Sensing. Collect random measurements; reconstruct via optimization

§ Stat and ML. Random data models; fit model via optimization

§ Coding. Random channel models; decode via optimization

Motivations...

§ Average-case analysis. Randomness describes “typical” behavior

§ Fundamental bounds. Opportunities and limits for convex methods
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Research Challenge...

Understand and predict
precise behavior

of random convex programs

References: Donoho–Maleki–Montanari 2009, Donoho–Johnstone–Montanari 2011, Donoho–Gavish–Montanari 2013
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A Theory Emerges...

§ Vershik & Sporyshev, “An asymptotic estimate for the average number of steps...” 1986
§ Donoho, “High-dimensional centrally symmetric polytopes...” 2/2005
§ Rudelson & Vershynin, “On sparse reconstruction...” 2/2006
§ Donoho & Tanner, “Counting faces of randomly projected polytopes...” 5/2006
§ Xu & Hassibi, “Compressed sensing over the Grassmann manifold...” 9/2008
§ Stojnic, “Various thresholds for `1 optimization...” 7/2009
§ Bayati & Montanari, “The LASSO risk for gaussian matrices” 8/2010
§ Oymak & Hassibi, “New null space results and recovery thresholds...” 11/2010
§ Chandrasekaran, Recht, et al., “The convex geometry of linear inverse problems” 12/2010
§ McCoy & Tropp, “Sharp recovery bounds for convex demixing...” 5/2012
§ Bayati, Lelarge, & Montanari, “Universality in polytope phase transitions...” 7/2012
§ Chandrasekaran & Jordan, “Computational & statistical tradeoffs...” 10/2012
§ Amelunxen, Lotz, McCoy, & Tropp, “Living on the edge...” 3/2013
§ Stojnic, various works 3/2013
§ Foygel & Mackey, “Corrupted sensing: Novel guarantees...” 5/2013
§ Oymak & Hassibi, “Asymptotically exact denoising...” 5/2013
§ McCoy & Tropp, “From Steiner formulas for cones...” 8/2013
§ McCoy & Tropp, “The achievable performance of convex demixing...” 9/2013
§ Oymak, Thrampoulidis, & Hassibi, “The squared-error of generalized LASSO...” 11/2013

Ordered by date of release, not date of publication
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Geometry of Compressed Sensing Problem

x\ + null(A)

Scaled `1 ball

x\

`1 descent cone at x\

Success!

x\ + null(A)

x\

Failure!

References: Candès–Romberg–Tao 2005, Rudelson–Vershynin 2006, Chandrasekaran et al. 2010, Amelunxen et al. 2013

Living on the Edge, UCL-Duke SAHD, London, 5 September 2014 7



The Core Question

How big is a cone?
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.

Statistical.
Dimension
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Statistical Dimension: The Motion Picture
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The Statistical Dimension of a Cone

Definition. The statistical dimension δ(K) of a closed,

convex cone K is the quantity

δ(K) := E
[
‖ΠK(g)‖22

]
.

where

§ ΠK is the Euclidean metric projector onto K

§ g ∼ normal(0, I) is a standard normal vector

References: Rudelson & Vershynin 2006, Stojnic 2009, Chandrasekaran et al. 2010, Chandrasekaran & Jordan 2012, Amelunxen

et al. 2013
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Basic Statistical Dimension Calculations

Cone Notation Statistical Dimension

j-dim subspace Lj j

Nonnegative orthant Rd
+

1
2d

Second-order cone Ld+1 1
2(d+ 1)

Real psd cone Sd+ 1
4d(d− 1)

Complex psd cone Hd
+

1
2d

2

References: Chandrasekaran et al. 2010, Amelunxen et al. 2013
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Circular Cones
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References: Amelunxen et al. 2013, Mu et al. 2013, McCoy & Tropp 2013
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Descent Cones

Definition. The descent cone of a function f at a point x is

D(f,x) := {h : f(x+ εh) ≤ f(x) for some ε > 0}

{h : f(x+ h) ≤ f(x)}

D(f,x)

0
{y : f(y) ≤ f(x)}

x+ D(f,x)

x

References: Rockafellar 1970, Hiriary-Urruty & Lemaréchal 1996
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Descent Cone of `1 Norm at Sparse Vector
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References: Stojnic 2009, Donoho & Tanner 2010, Chandrasekaran et al. 2010, Amelunxen et al. 2013, Mackey & Foygel 2013
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Descent Cone of S1 Norm at Low-Rank Matrix
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References: Oymak & Hassibi 2010, Chandrasekaran et al. 2010, Amelunxen et al. 2013, Foygel & Mackey 2013
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Statistical Dimension & Phase Transitions

§ Key Question: When do two randomly oriented cones share a ray?

§ Intuition: When do two randomly oriented subspaces share a ray?

The Approximate Kinematic Formula

Let C and K be closed convex cones in Rd

δ(C) + δ(K) . d =⇒ P {C ∩QK = {0}} ≈ 1

δ(C) + δ(K) & d =⇒ P {C ∩QK = {0}} ≈ 0

where Q is a random orthogonal matrix

References: Amelunxen et al. 2013, McCoy & Tropp 2013
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Aside: The Gaussian Width

§ The Gaussian width w(K) of a convex cone K can be defined as

w(K) := E sup
x∈K∩ S

〈g, x〉

§ The statistical dimension and the Gaussian width are related as

w(K)2 ≤ δ(K) ≤ w(K)2 + 1

§ Sometimes one parameter is more convenient than the other

§ But... statistical dimension is the canonical extension of the linear

dimension to the class of convex cones

Related: Rudelson–Vershynin 2006, Stojnic 2009, Chandrasekaran et al. 2012
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.

Regularized Linear
Inverse Problems
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Setup for Linear Inverse Problems

§ Let x\ ∈ Rd be a structured, unknown vector

§ Let f : Rd → R be a convex function that reflects structure

§ Let A ∈ Rm×d be a measurement operator

§ Observe z = Ax\

§ Find estimate x̂ by solving convex program

minimize f(x) subject to Ax = z

§ Hope: x̂ = x\
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Geometry of Linear Inverse Problems

x\ + null(A)

{x : f(x) ≤ f(x\)}
x\

x\ + D(f,x\)

Success!

x\ + null(A)

{x : f(x) ≤ f(x\)}
x\

x\ + D(f,x\)

Failure!

References: Candès–Romberg–Tao 2005, Rudelson–Vershynin 2006, Chandrasekaran et al. 2010, Amelunxen et al. 2013
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Linear Inverse Problems with Random Data

Theorem 1. [CRPW10; ALMT13] Assume

§ The vector x\ ∈ Rd is unknown

§ The observation z = Ax\ where A ∈ Rm×d is standard normal

§ The vector x̂ solves

minimize f(x) subject to Ax = z

Then (morally)

m ≥ δ
(
D(f,x\)

)
=⇒ x̂ = x\ whp [CRPW10; ALMT13]

m ≤ δ
(
D(f,x\)

)
=⇒ x̂ 6= x\ whp [ALMT13]

References: Rudelson–Vershynin 2006, Stojnic 2009, Chandrasekaran et al. 2010, Amelunxen et al. 2013
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Sparse Recovery via `1 Minimization
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Low-Rank Recovery via S1 Minimization
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More Examples

Result applies to every (nonsmooth) convex regularizer including...

§ `1 with a nonnegativity constraint

§ Simultaneous sparsity and group lasso penalties

§ Total variation for signals with sparse gradient

§ `∞ for saturated signals

§ The “max norm” for promoting low-rank matrices

§ Tensor norms for promoting low-rank tensors

§ ...

... but you still have to calculate the statistical dimension!
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But My Measurements aren’t Gaussian!

There is evidence that the phase transition for many structures is

universal (if measurements are centered, isotropic, and incoherent)!

Theory is currently in progress.

Source: Donoho & Tanner 2009
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But My Measurements aren’t Isotropic!

Change variables!

§ The vector x\ ∈ Rd is unknown

§ The observation z = AΣx\ where A ∈ Rm×d is standard normal and

Σ ∈ Rd×d is nonsingular

§ The estimate x̂ solves

minimize f(x) subject to AΣx = z

§ Then the phase transition occurs at m = δ
(
D(f ◦Σ−1,Σx\)

)
... but you still have to calculate the statistical dimension!
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PhD in Computing + Mathematical Sciences

New doctoral program, Department of Computing + Mathematical Sciences at Caltech

§ We are experiencing a convergence of disciplines

§ A new core emerges: Optimization, algorithms, statistics, signal

processing, networks and markets, mathematical foundations, and

applications in science + engineering

§ Web: http://www.cms.caltech.edu/academics/grad_cms

§ Selected faculty: Shuki Bruck, Venkat Chandrasekaran, Mani Chandy, Mathieu Desbrun, John Doyle,

Michelle Effros, Babak Hassibi, Tom Hou, Victoria Kostina, Katrina Ligett, Steven Low, Richard

Murray, Houman Owhadi, Pietro Perona, Peter Schröder, Leonard Schulman, Omer Tamuz, Joel Tropp,

Chris Umans, PP Vaidyanathan, Thomas Vidick, Adam Wierman, Yisong Yue
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