Living on the Edge

Phase Transitions in Convex Programs with Random Data

Joel A. Tropp

Computing + Mathematical Sciences California Institute of Technology

Joint with Michael McCoy (CoFacet), Dennis Amelunxen (CUHK), and Martin Lotz (Manchester)

Research supported in part by ONR, AFOSR, DARPA, and the Sloan Foundation

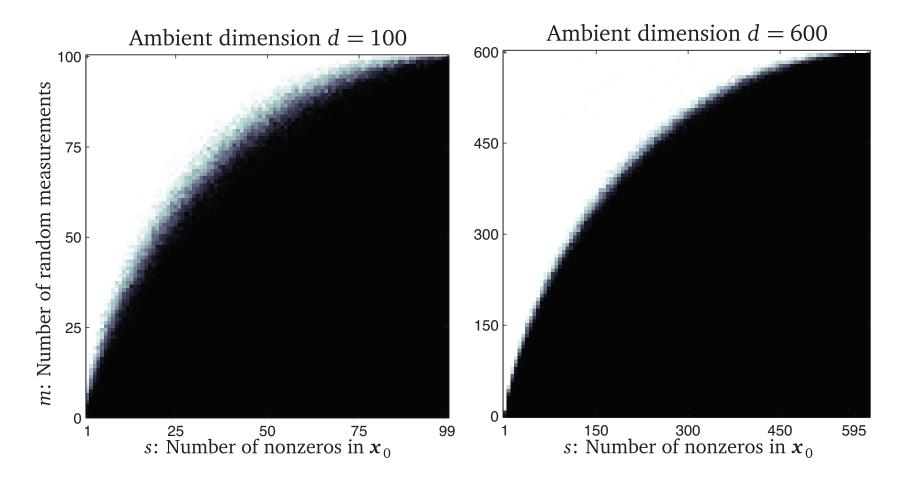
The Compressed Sensing Problem

- \blacktriangleright Let $x^{
 atural} \in \mathbb{R}^d$ be an unknown vector with s nonzero entries
- Write $\|\cdot\|_1$ for the ℓ_1 norm on \mathbb{R}^d
- ▶ Let $A \in \mathbb{R}^{m \times d}$ be a Gaussian measurement matrix (iid N(0,1) entries)
- Observe m random measurements: $\boldsymbol{z} = \boldsymbol{A} \boldsymbol{x}^{\natural}$
- \checkmark Produce an estimate \widehat{x} by solving convex program

minimize $\|x\|_1$ subject to Ax = z

 \blacktriangleright Hope: $\widehat{x} = x^{\natural}$

A Computer Experiment



Heatmap is probability of success (white = 100%, black = 0%)

Convex Programs with Random Data

Examples...

- **Sensing.** Collect random measurements; reconstruct via optimization
- **Stat and ML.** Random data models; fit model via optimization
- **Coding.** Random channel models; decode via optimization

Motivations...

- Average-case analysis. Randomness describes "typical" behavior
- **Fundamental bounds.** Opportunities and limits for convex methods

Research Challenge...

Understand and predict precise behavior of random convex programs

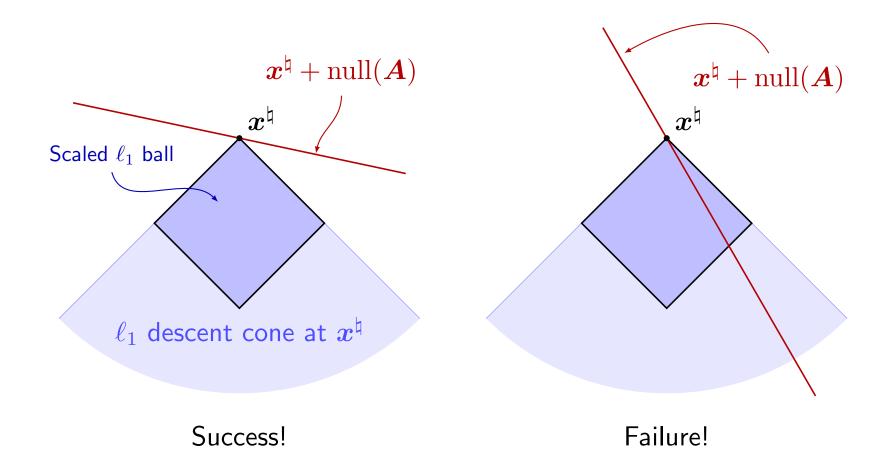
References: Donoho-Maleki-Montanari 2009, Donoho-Johnstone-Montanari 2011, Donoho-Gavish-Montanari 2013

A Theory Emerges...

2	Vershik & Sporyshev, "An asymptotic estimate for the average number of steps…"		1986
25	Donoho, "High-dimensional centrally symmetric polytopes"	2/	/2005
25	Rudelson & Vershynin, "On sparse reconstruction"	2/	/2006
25	Donoho & Tanner, "Counting faces of randomly projected polytopes"	5/	/2006
25	Xu & Hassibi, "Compressed sensing over the Grassmann manifold"	9/	/2008
2	Stojnic, "Various thresholds for ℓ_1 optimization"	7/	/2009
2	Bayati & Montanari, "The LASSO risk for gaussian matrices"	8/	/2010
è s ,	Oymak & Hassibi, "New null space results and recovery thresholds"	11/	/2010
20	Chandrasekaran, Recht, et al., "The convex geometry of linear inverse problems"	12/	/2010
20	McCoy & Tropp, "Sharp recovery bounds for convex demixing"	5/	/2012
20	Bayati, Lelarge, & Montanari, "Universality in polytope phase transitions…"	7/	/2012
20	Chandrasekaran & Jordan, "Computational & statistical tradeoffs"	10/	/2012
20	Amelunxen, Lotz, McCoy, & Tropp, "Living on the edge"	3/	/2013
25	Stojnic, various works	3/	/2013
25	Foygel & Mackey, "Corrupted sensing: Novel guarantees"	5/	/2013
25	Oymak & Hassibi, "Asymptotically exact denoising"	5/	/2013
20	McCoy & Tropp, "From Steiner formulas for cones"	8/	/2013
è s ,	McCoy & Tropp, "The achievable performance of convex demixing"	9/	/2013
25	Oymak, Thrampoulidis, & Hassibi, "The squared-error of generalized LASSO…"	11/	/2013

Ordered by date of release, not date of publication

Geometry of Compressed Sensing Problem



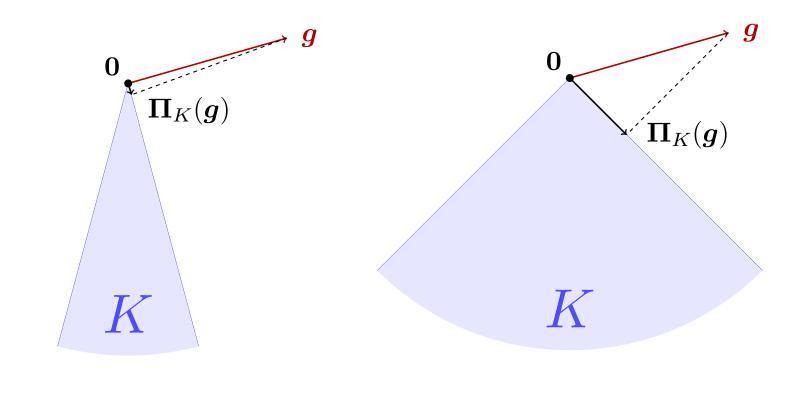
References: Candès-Romberg-Tao 2005, Rudelson-Vershynin 2006, Chandrasekaran et al. 2010, Amelunxen et al. 2013

The Core Question

How big is a cone?

Statistical Dimension

Statistical Dimension: The Motion Picture



small cone

big cone

The Statistical Dimension of a Cone

Definition. The statistical dimension $\delta(K)$ of a closed, convex cone K is the quantity

$$\delta(K) := \mathbb{E}\left[\left\|\mathbf{\Pi}_{K}(\boldsymbol{g})\right\|_{2}^{2}\right]$$

where

▶ Π_K is the Euclidean metric projector onto K▶ $g \sim \text{NORMAL}(\mathbf{0}, \mathbf{I})$ is a standard normal vector

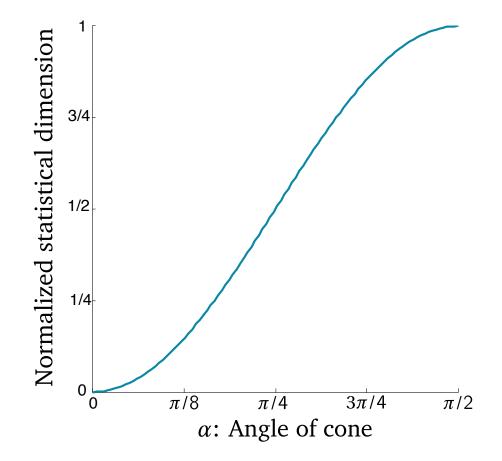
References: Rudelson & Vershynin 2006, Stojnic 2009, Chandrasekaran et al. 2010, Chandrasekaran & Jordan 2012, Amelunxen et al. 2013

Basic Statistical Dimension Calculations

Cone	Notation	Statistical Dimension	
<i>j</i> -dim subspace	L_j	j	
Nonnegative orthant	\mathbb{R}^d_+	$rac{1}{2}d$	
Second-order cone	\mathbb{L}^{d+1}	$\frac{1}{2}(d+1)$	
Real psd cone	\mathbb{S}^d_+	$\frac{1}{4}d(d-1)$	
Complex psd cone	\mathbb{H}^d_+	$\frac{1}{2}d^2$	

References: Chandrasekaran et al. 2010, Amelunxen et al. 2013

Circular Cones

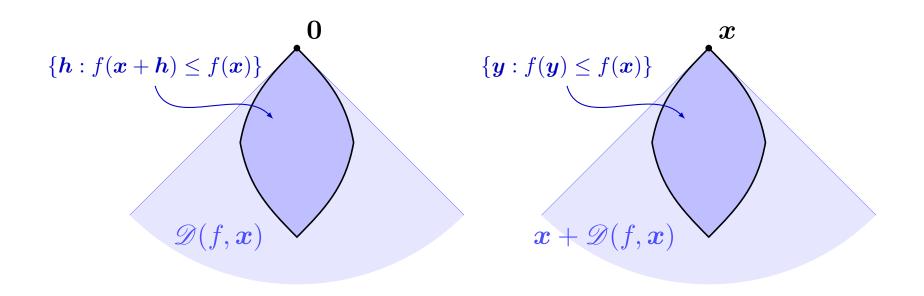


References: Amelunxen et al. 2013, Mu et al. 2013, McCoy & Tropp 2013

Descent Cones

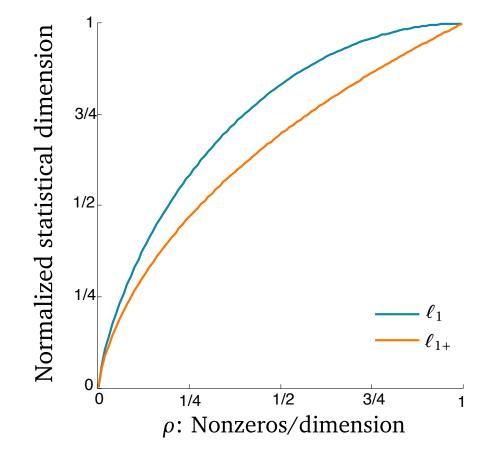
Definition. The descent cone of a function f at a point x is

$$\mathscr{D}(f, \boldsymbol{x}) := \{ \boldsymbol{h} : f(\boldsymbol{x} + \varepsilon \boldsymbol{h}) \leq f(\boldsymbol{x}) \quad \text{for some } \varepsilon > 0 \}$$



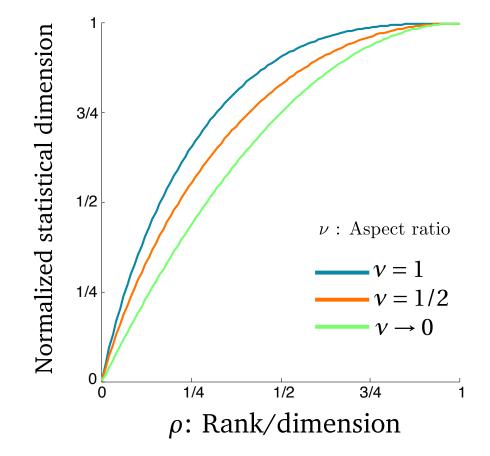
References: Rockafellar 1970, Hiriary-Urruty & Lemaréchal 1996

Descent Cone of ℓ_1 **Norm at Sparse Vector**



References: Stojnic 2009, Donoho & Tanner 2010, Chandrasekaran et al. 2010, Amelunxen et al. 2013, Mackey & Foygel 2013

Descent Cone of S_1 **Norm at Low-Rank Matrix**



References: Oymak & Hassibi 2010, Chandrasekaran et al. 2010, Amelunxen et al. 2013, Foygel & Mackey 2013

Statistical Dimension & Phase Transitions

- **Key Question:** When do two randomly oriented cones share a ray?
- Intuition: When do two randomly oriented subspaces share a ray?

The Approximate Kinematic Formula

Let C and K be closed convex cones in \mathbb{R}^d

$$\begin{split} \delta(C) + \delta(K) &\lesssim d \implies \mathbb{P}\left\{C \cap \mathbf{Q}K = \{\mathbf{0}\}\right\} \approx 1\\ \delta(C) + \delta(K) &\gtrsim d \implies \mathbb{P}\left\{C \cap \mathbf{Q}K = \{\mathbf{0}\}\right\} \approx 0 \end{split}$$

where Q is a random orthogonal matrix

References: Amelunxen et al. 2013, McCoy & Tropp 2013

Aside: The Gaussian Width

The Gaussian width w(K) of a convex cone K can be defined as

$$w(K) := \mathbb{E} \sup_{\boldsymbol{x} \in K \cap S} \langle \boldsymbol{g}, \boldsymbol{x} \rangle$$

The statistical dimension and the Gaussian width are related as

$$w(K)^2 \le \delta(K) \le w(K)^2 + 1$$

- Sometimes one parameter is more convenient than the other
- But... statistical dimension is the canonical extension of the linear dimension to the class of convex cones

Related: Rudelson-Vershynin 2006, Stojnic 2009, Chandrasekaran et al. 2012

Regularized Linear Inverse Problems

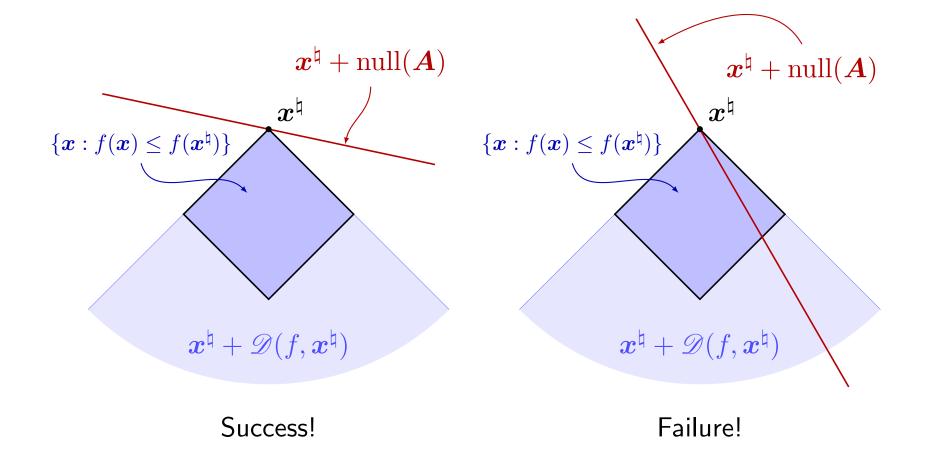
Setup for Linear Inverse Problems

- \blacktriangleright Let $x^{
 ature} \in \mathbb{R}^d$ be a structured, unknown vector
- ▶ Let $f : \mathbb{R}^d \to \mathbb{R}$ be a convex function that reflects structure
- ***** Let $\boldsymbol{A} \in \mathbb{R}^{m imes d}$ be a measurement operator
- 🍋 Observe $z = A x^{
 atural}$
- \blacktriangleright Find estimate \widehat{x} by solving convex program

minimize $f(\boldsymbol{x})$ subject to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{z}$

Hope: $\widehat{x} = x^{\natural}$

Geometry of Linear Inverse Problems



Linear Inverse Problems with Random Data

Theorem 1. [CRPW10; ALMT13] Assume

- ***** The vector $x^{\natural} \in \mathbb{R}^d$ is unknown
- \blacktriangleright The observation $m{z} = m{A} m{x}^{
 atural}$ where $m{A} \in \mathbb{R}^{m imes d}$ is standard normal
- \checkmark The vector \widehat{x} solves

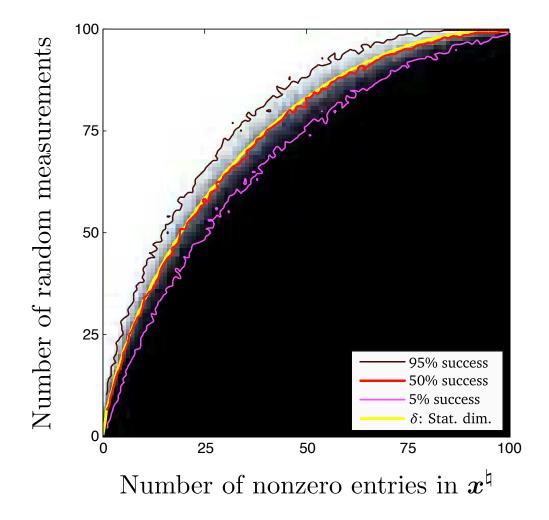
minimize f(x) subject to Ax = z

Then (morally)

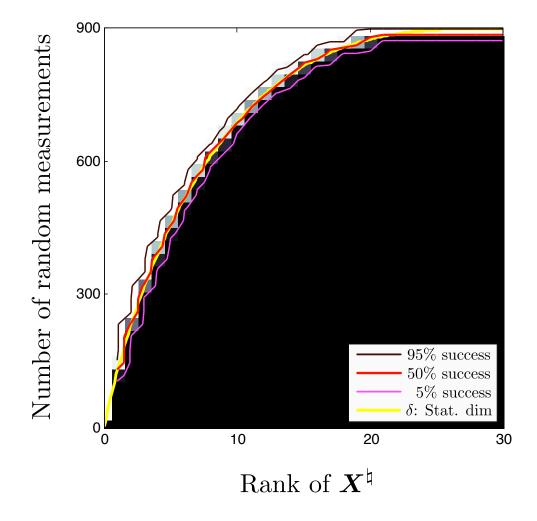
 $m \ge \delta \big(\mathscr{D}(f, \boldsymbol{x}^{\natural}) \big) \implies \widehat{\boldsymbol{x}} = \boldsymbol{x}^{\natural} \quad whp$ [CRPW10; ALMT13] $m \le \delta \big(\mathscr{D}(f, \boldsymbol{x}^{\natural}) \big) \implies \widehat{\boldsymbol{x}} \neq \boldsymbol{x}^{\natural} \quad whp$ [ALMT13]

References: Rudelson-Vershynin 2006, Stojnic 2009, Chandrasekaran et al. 2010, Amelunxen et al. 2013

Sparse Recovery via ℓ_1 **Minimization**



Low-Rank Recovery via S_1 Minimization



More Examples

Result applies to every (nonsmooth) convex regularizer including...

- $\blacktriangleright \ell_1$ with a nonnegativity constraint
- Simultaneous sparsity and group lasso penalties
- ✤ Total variation for signals with sparse gradient
- $\blacktriangleright \ \ell_\infty$ for saturated signals
- The "max norm" for promoting low-rank matrices
- Tensor norms for promoting low-rank tensors

25

... but you still have to calculate the statistical dimension!

But My Measurements aren't Gaussian!

There is evidence that the phase transition for many structures is universal (if measurements are centered, isotropic, and incoherent)!

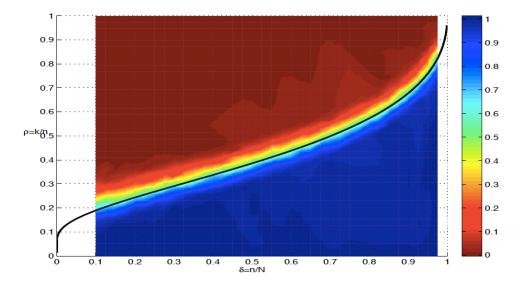


FIGURE 3. Compressed Sensing from random Fourier measurements. Shaded attribute: fraction of realizations in which

Theory is currently in progress.

Source: Donoho & Tanner 2009

But My Measurements aren't Isotropic!

Change variables!

- 🍽 The vector $oldsymbol{x}^{
 atural} \in \mathbb{R}^d$ is unknown
- The observation $z = A \Sigma x^{\natural}$ where $A \in \mathbb{R}^{m \times d}$ is standard normal and $\Sigma \in \mathbb{R}^{d \times d}$ is nonsingular
- \blacktriangleright The estimate \widehat{x} solves

minimize f(x) subject to $A\Sigma x = z$

▶ Then the phase transition occurs at $m = \delta \big(\mathscr{D}(f \circ \Sigma^{-1}, \Sigma x^{\natural}) \big)$

... but you still have to calculate the statistical dimension!

PhD in Computing + Mathematical Sciences

New doctoral program, Department of Computing + Mathematical Sciences at Caltech

- We are experiencing a convergence of disciplines
- A new core emerges: Optimization, algorithms, statistics, signal processing, networks and markets, mathematical foundations, and applications in science + engineering
- Web: http://www.cms.caltech.edu/academics/grad_cms

Selected faculty: Shuki Bruck, Venkat Chandrasekaran, Mani Chandy, Mathieu Desbrun, John Doyle, Michelle Effros, Babak Hassibi, Tom Hou, Victoria Kostina, Katrina Ligett, Steven Low, Richard Murray, Houman Owhadi, Pietro Perona, Peter Schröder, Leonard Schulman, Omer Tamuz, Joel Tropp, Chris Umans, PP Vaidyanathan, Thomas Vidick, Adam Wierman, Yisong Yue