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Cascading chains of interactions
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Internet memes
quickly propagate?
Gang violence
begets

retaliations®

Nation-state
conflicts are
accompanied by
proxy wars®

K. Zhou, H. Zha, and L. Song, 2013
bA Stomakhin, M. B. Short, and A. Bertozzi, 2011
CC. Blundell, K. A. Heller, and J. M. Beck, 2012

Can we infer the underlying network of influences from

observations of individual events?
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Epidemiology

Can we predict the spread of infectious disease?!

! http://ai.arizona.edu/research /bioportal /
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Functional neural network connectivity

We record neurons firing in response to different stimuli.
Can we track the dynamic functional network?



Seismology

M=3.3

I}
063 ¢ Maln shock H s
| | - .
| ~ { m=17 | .
" I ————— o | Foreshock | oy 9
+ Lo | b -
N F 01:15
M=2.9
- I Aftershock 2115
Il
" 3:15

Can we infer patterns of earthquake interactions?

]
L
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We record seismic events and shocks.?

2
http://earthquake.usgs.gov/monitoring/helicorders/examples/Fore_main_after.php
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Point process likelihood

» For each node k € [p], we
have a point process with
Ny - = the number of events
up to an including time 7.

» Let px(7) denote a
time-varying rate function,
so that the likelihood of
node k participating in an
event between times t; and
tp is controlled by
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Point processes likelihood

Neglecting terms independent of x, we have

P T
—log(NT i) =Y /0 log i (7)dNi» — px(7)dT
k=1

T/S
R Z Spie, 1) — (x¢, log dpue).

where x; i is the count of events for node k in the time window
(6(t —1),0t].

We now need a model for i that captures the underlying
network structure...
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Multivariate Hawkes Processes
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Multivariate Hawkes Processes

* I I
I I

!

P

/33



Multivariate Hawkes Processes

The multivariate Hawkes processes® considered here are essentially

an autoregressive point process, where each rate function (1)
depends on the history of past events, N7:

N,
p(T) = fik + > Piesen (T — 7)

n=1

The p? functions A, k,(7) = Wi, k,h(T) describe how events
associated with node k; will impact the likelihood of events
associated with node k».

3| lawkes (1971)
10/33



Network model

The functions hy, «,(7) depend on the (unknown) underlying
network connectivity. We assume

hk17k2 (7_) = Wk1,k2 h(T)>

where the matrix W represents excitatory influences between
nodes.

Our goal is to learn and track Hawkes

processes efficiently and robustly from
streaming observations.
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Online learning

Let 0 be a parameter defining our Hawkes process. For instance, 6
might be the weighted adjacency matrix W.

Sequence of events: set initial “prediction” #;. At time t:

1. Observe datum x; indicating which nodes participated in
events at time t.

2. Incur loss Et(gt) x —log p(xt\gt)

3. Make a prediction 9At+1, which determines the likelihood of
nodes participating in an event at time t + 1

How do we make these predictions? How do we evaluate the
efficacy of different prediction strategies?

12/33



Regret

Definition:The regret of OAT = (51, .. ,57) with respect to a
comparator 81 = (61,...,07) is

T T
I ED A EDIRACH)
t=1

t=1
Goal: Generate losses comparable to what a batch algorithm
might achieve; i.e., sublinear regret:

1
7RT(0T) —0as T — o0
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Mirror descent?

§t+1 = argemin i <V€t(§t), 9> + D(6, é\t)

» V/{,; is an arbitrary subgradient of ¢;
> 7 is the step size
» Special case where D(0,0') = ||6 — ¢'||2:

~ ~ 1 ~
0t+1 = 9!‘ — —Vﬁt(et)
Nt

4Nemirovsk\' & Yudin 1983; Beck & Teboulle 2003; Zinkevich 2003
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Tracking W directly

With the Hawkes process, we have a negative log likelihood

T/s
—log(NT|p) ~ > (Spe, 1) — (xe, log pue)
=1
where
Ny
pes(W) = fix + > Wik, h(5t — 7).
n=1

Thus we could define the loss function

L(W) = (6pe(W), 1) — (xt, log dpe(W))

and perform mirror descent directly on W over a convex feasible
space W (e.g., 1 or nuclear norm ball).

15/33



0.4
0.3
0.2
== SGD on W
0.1 1
= = = SGD on W, Mismatch
0 . . . .
0 0.2 0.4 0.6 0.8 1

P

Unfortunately, this only works well when the influence

functions hg ,(7) are known exactly.

16
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Just tracking W is fragile to model

mismatch. Can we instead track W and p
simultaneously for increased robustness?

We have

T/
—log(NT ) &> (Sp1e, 1) — (xt, log 6pse).

t=1

Define the loss to be

Ce(p) 2(0p, 1) — (xt, log dp)

17/33



Static regret bounds

Theorem®: Assume w7 is static, so that
pwE =g =...=pr. fn o< 1/V/T, then

T T
Rr(ur) 2> teliie) = Y telu) = 0 (VT) .
t=1 t=1

What's missing?
» Comparing against a static model is weak; how do we do
relative to a dynamic comparator?

» What about unknown underlying networks reflecting
interactions between data and the 6;s?

5Nemirovsk\' & Yudin 1983; Beck & Teboulle 2003; Zinkevich 2003
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Tracking regret against time-varying reference
models

Theorem:® If n; = 1/4/t, then

Rr(nr) =0 (ﬁ(VT(MT) + 1)),
where

T-1
Vr(pr) £ Z [pe+1 — paell
t=1

measures the temporal variation in p 7.

In other words, the algorithm can track a dynamically changing
environment, provided the changes are sufficiently infrequent
and/or smooth (restrictive!)

6Herbster & Warmuth 2001, Cesa-Bianchi & Lugosi 2006, Cesa-Bianchi et al. 2012
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A dynamical model perspective of Hawkes processes

Recall the Hawkes model

Nt
wk(T) = i + Z Wik, h(T — Tn)

n=1

and let
h(r) = e "u(r).

This suggests the dynamical models

pess ~ Gulpie W) & (1= )i &+ e W

How do we incorporate dynamics into mirror descent?

20/33



Dynamic Mirror Descent (DMD)

Our approach: Let ®; be a series of predetermined dynamical
models; set

fer1 = argminne(VL(Pe(fir)), 1) + D(pl|®e(ie))
I
fer1 = Pria(fiet1)

Theorem: Assume each ®; is contractive, so that

D(®¢(p)[Pe(1)) < D(ullp') Vo, .
Then if e \[ we have R7(p71) = O(VT[L + Vo(pe7)]) where

T

NT) Z”MtJrl ¢’t+1(ﬂt)”

t=1

measures the deviation of the comparator from the dynamic
models (®;s).

21/33



Contractivity

Contractivity condition:

D(®:(0)[[®¢(0')) — D(O[|0) <0 VO,0",¢

Q: How much does this condition restrict the class of W we
may track?

A: W must ensure ®,(1) >0 for all ;1 = 0 — e.g. W models
excitation, not inhibition.

In particular, the dynamics are contractive whenever EIVDt(,u) has the

form B
(Dt(,u’) = At/j/ =+ Wtbt + Ct

for arbitrary nonnegative W;, b; and ¢; as long as the eigenvalues
of A are bounded by one.

In our setup, A; = e "/, so we simply need r > 0.



Tracking W indirectly

In our setting the dynamical model ®; is a function of W.

» W is unknown — and it may be changing over time

» The space of possible Ws is huge

Fortunately, there is still a way to track W.

Lemma: For any W, W/ € RP*P, let ﬁgw) = /’I,SWI). Then

A =" (w - Wk,

t
where
Ke=(1—1nt-1)A—1Ke1 + Xe—1.

This lemma suggests we may compute ﬁ(tW) for any W, and
(w

from there easily calculate the ji; ) we would have
computed had we used a different W from the beginning.
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Tracking W indirectly

(

This lemma suggests we may compute ﬁtW) for any W, and from

there easily calculate the ﬁ(tW) we would have computed had we
used a different W from the beginning.

Define the loss with respect to W

g(W) 2 0,(a").

» gt(W) is convex in W
» g+(W) and its gradient are both easily computable

» We can use mirror descent on the sequence of losses g; over
any convex feasible set W

24 /33



Proposed method
Initialize Wy =0, K; =0, /i = 1

Fort=1,..., T
Ce(fie) =(6fie, 1) — (log Ofie, X¢)
incur loss
Y . A7 _KtTXt T
Wt+1 :PFOJW Wi’ — Tt /\07/\ + Kt 1
pi + KeWe

update network estimate
Ky =(1 — ne) AeKe + Xt
bookkeeping
fre+1 =(1 = ne)fe + nexe
gradient descent

Per1 =Pe(fet1, /Wt) + (/Wt+1 - Wt)Kt—i—l

update prediction using current network est.

25 /33



Proposed method

Initialize Wy =0, K1 =0, i1 = 1

Fort=1,..,T
t(,U«t 5Mt, > |0g 5Nt7Xt
KTX
Wt+1 =Projy, [Wt — Tt ( - KtT]l>
9 + Ki W,
Kt+1 1 — nt)A Kt + Xt

fev1 =(1 — ne)fie + nexe
fer1 =Pe(fies1, We) + (Wer1 — We)Kiga

26 /33



Main result

Theorem: Let )V be a convex set of feasible influence matrices
Wi this set may reflect sparsity or rank constraints.

Let ®,(-, W) be a contractive dynamical model for all W € W and
t=1,2,.... Let the sequence i1 be the output of our method,
and let p7 be an arbitrary sequence. If n; = 1/1/t, then

Rr(pr) = O(VT[L+ Vf‘yel)f}v Vo w(pT)])

where
T

Vow(ir) 2 ) [lptess — e(pie, W)|
t=1

measures variations or deviations of the comparator sequence
from the sequence of dynamical models ®1,®;,..., O 7.

This regret is low for very large sets of prs.



Detection of strong network edges
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Detection of strong network edges
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Tracking a changing network

W Matrix, Pre-change W Matrix, Post-change
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Tracking a changing network

Final W Estimate, Pre-change Final W Estimate
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Tracking changing network

T T T
0.16 Algorithm 1 H
== Equation 7, pre—change W
= Equation 7, post-change W/
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Conclusions

» Our techniques offer
principled mechanisms

for using streaming event *
observations to track

dynamic networks
» Computation scales well
with network size

.IIII IIII

s

» Theoretical performance

bounds are robust to /
model mismatch and ﬁ ‘___———*

changing networks

> Interesting open
questions remain!
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Thank you.
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