
Performance Evaluation of Distributed Object Platforms for
Telecommunications Service Engineering Activities

DIONISIS ADAMOPOULOS, GEORGE PAVLOU CONSTANTINE A. PAPANDREOU
Centre for Communication Systems Research (CCSR) Hellenic Telecom. Organisation (OTE)

University of Surrey, Guildford, GU2 7XH 17 Kalliga Street, GR-114 73, Athens, Greece
{D.Adamopoulos, G.Panlou}@eim.surrey.ac.uk kospap@org.ote.gr

Abstract: - In response to major trends in the telecommunications market today and under influence of the
emerging distributed computing technology the telecommunications industry is embracing distributed object
platforms as a means enabling the successful participation in the open global services market of the foreseen era
with new and advanced service offerings under increasing competition in a multi-vendor environment. In this
realm, this paper presents an attempt to evaluate the performance of DCOM and CORBA under conditions
which are common in telecommunications services engineered as distributed object applications. Finally, after the
examination of important issues regarding the DCOM remoting architecture, some conclusions are drawn.

Key-words: - Distributed object platforms, DCOM, CORBA, new telecommunications services

1 Introduction
The telecommunications industry is currently facing a
number of challenges imposed by changes in the
telecommunications market. Deregulation, liberalisa-
tion, and competition imply requirements for higher
utilisation of the network infrastructure, shorter time
to market for new telecommunications services, much
higher degree of customisation of these services, cost
reduction of service development, open network
provision, global connectivity, and global information
access. Furthermore, both telecommunications
networks and services are ever growing in
sophistication and complexity with a tendency to
become large-scale, highly decentralised and
heterogeneous systems involving numerous users and
resources. All these changes require more complex
software systems and thus make evident the necessity
to accelerate the integration of information technology
and telecommunications.

Under these conditions the telecommunications
industry is gradually adopting a new approach for the
development, construction, and management of soft-
ware for telecommunications services. This approach
is characterised by the increased use of object-
oriented Distributed Processing Environments (DPEs)
as the infrastructure for new telecommunications
services (telematic services) because they promise the
benefits of more flexible service design and deploy-
ment, increased software reuse, and increased inter-
connection capabilities with external resources [1].

Currently, the two most important available distri-
buted object platforms are Microsoft’s (Distributed)
Component Object Model (COM/DCOM) [2] and the
Common Object Request Broker Architecture
(CORBA), which is supported by the Object Manage-
ment Group (OMG) [6]. Both of them assist service

developers to cope efficiently with the complexity
inherent in the process of realising telecommunica-
tions services as open distributed software applica-
tions comprised by heterogeneous service components
which may be scattered across multiple organisations
and distant locations [7].

In this paper, recognising the importance of
distributed object platforms in telecommunications
service engineering, the performance of DCOM and
CORBA is examined with the intention to inform
service designers and developers about the
performance expectations that they should have when
using these platforms, and thus assist them in a
possible selection process between them.

2 Comparing DCOM and CORBA
Taking into account the basic characteristics of
DCOM and CORBA, it is evident that they have
similar architectures as both adopt a client / server
based programming style and agree on the most
fundamental aspects of their object models.

Service Engineering
Related Properties

COM / DCOM CORBA

Scalability MTS,
Active Dir. Service Interface (NT 5.0)

Naming service,
Trader service

Reliability MTS, MCS, MSMQ Transaction service
Security Built-in:

NT LAN Manager, MTS,
MS Crypto API, Authenticode SDK

Platform dependent:
3 security levels (0, 1, 2)

Manageability MMC Vendor specific tools,
Transaction service

Support for Web-based
Telematic Services

ActiveX,
MS Active Server Page Technology

JavaScript/Java

Support for
Internet/Extranets

Two-factor authentication,
Remote Data Service (RDS)

Two-factor authentication,
Secure Socket Layer (SSL)

Support for Intranets Desktop tools, ActiveX,
Active Data Objects, MSMQ

Desktop tools (via a bridge),
Event & Persistence service

Table 1: Comparing DCOM and CORBA:
Service engineering related properties.

In order to derive more general conclusions,
compare the suitability and applicability of DCOM

2

and CORBA in the telecommunications field, and
gain an insight on the capabilities of these platforms
pertaining their use in practical situations, a set of
(telecommunications) service engineering related
properties are identified, and their support by DCOM
and CORBA is summarised in Table 1.

This table reveals that DCOM and CORBA differ
in many respects and neither technology provides a
complete solution for service engineering activities.
However, both provide a solid infrastructure and
there are specific scenarios in which each excels over
the other.

3 Examination of Performance
The performance of distributed software, usually
expressed in terms of execution time for a variety of
operations / actions, is a critical factor for the
development and provision of successful (user
accepted and efficient) telematic services, especially
when real-time functionality and / or multimedia
characteristics are required. Therefore, a comparison
between DCOM and CORBA has to address
performance matters in order to be complete and offer
a full insight of the practical value of the two most
prominent distributed object platforms.

Performance comparisons between DCOM and
CORBA that are found in the literature use a simple
example of distributed code (two objects residing in
two different computers that communicate via a net-
work) and measure the time needed for the successful
completion of a single remote method invocation
(when one of the objects calls a method of the other
object and waits for the result) [5]. Although such an
approach is valid, a performance comparison based
not just on a single remote method invocation, but on
a series of logically related remote method invoca-
tions (forming a usage scenario / pattern) can lead to
more accurate, reliable and illustrative results, and
can also be the stimulus for the deduction of a
number of more general, albeit useful and of practical
value, performance related conclusions.

For this reason, in full agreement with the latter
remark, an experiment involving multiple remote
method invocations under both DCOM and CORBA
was conducted. This experiment and the results
obtained from it will be examined in the following
paragraphs in an attempt to evaluate the performance
of DCOM and CORBA under conditions which are
common in telecommunications services engineered
as distributed object applications.

Before proceeding, it has to be stressed that the
performance of object-oriented DPEs, like DCOM
and CORBA, that provide high-level network

programming interfaces is comparable (under certain
circumstances) with the performance experienced
when using low-level, procedure-oriented, non-
typesafe programming interfaces, such as BSD
sockets [3]. Furthermore, the performance of both
DCOM and CORBA keeps improving with the
application of compiler optimisation techniques and
the utilisation of light-weight communication
protocols. Nevertheless, service developers seem to be
willing to accept a certain performance penalty given
all the benefits (and especially extensibility, maintain-
ability, and reusability) they are gaining from using
distributed object platforms [7].

3.1 The Experiment
A simple distributed object application implemented
under both DCOM and CORBA constitutes the basis
of the experiment that was conducted. More specifi-
cally, a server object returns (after an appropriate
request) fixed length strings (each 80 characters long)
to a client object in two different ways: one string
after the other as a result of separate consecutive
method calls, or by gathering a number of strings and
returning them all together as a result of a single
method call. Equivalently, the client object, when
interacting with the server object, can either make
multiple method calls for small amounts of data (one
string) or a single method call for a larger amount of
data (several strings). The IDL description of the
server object interface in DCOM, which is similar to
that in CORBA, is:
interface ITestServer : IUnknown
{ HRESULT GetSingleString([in] LONG index, [out] BSTR* item);
 HRESULT GetMultipleString([in] LONG index,
 [in] LONG count, [out] LONG* got, [out] BSTR** item); };

The first method (GetSingleString()) of this
interface returns a single string, based on the ID of
that string that is included in index, as all strings are
kept in an array until the data is requested. The
second method (GetMultipleString()) returns a
number of strings (count) starting at index. It has to
be noted that in order to obtain comparable results,
care was taken to have both the DCOM and CORBA
versions of the testing code execute on the same
operating system platform (MS Windows NT 4.0)
and on exactly the same hardware and network
infrastructure. To achieve this uniformity, the
CORBA implementation of the client and server
objects used Iona’s Orbix ORB under MS Windows
NT 4.0, and all the testing activity took place using
two 350 MHz Pentium II computers with 64 MB of
memory interconnected by a 10 Mbit/s Ethernet
LAN. In the following paragraphs, important parts of
the code of the client and server objects when

3

implemented using DCOM will be presented and
discussed. The CORBA implementation of this code
retains the basic functionality and the only differences
are those imposed by the special nature and
characteristics of CORBA.

The server object has an embedded object of class
Elements. When this object is created, it loads the
strings in the specified file (elements.dat) and it
makes each string 80 characters long by adding the
appropriate number of dashes at the end of the string.
Then, it keeps these strings in an array until the data
is requested through the member function
GetItem(). This function allocates system memory
for the string at that index and returns it as a BSTR.

The Elements class is declared in Elements.h:
// Elements class
class Elements {
private:
 LPCTSTR* m_elements;
 LONG m_size;
public:
 Elements(){};
 ~Elements();
 void Initialise(LPTSTR filename);
 BSTR GetItem(LONG ID); };

It is implemented in Elements.cpp:
// Elements class
#include “stdafx.h”
#inlude <winnls.h>
#include “elements.h”
Elements::~Elements()
{ LONG index;
 for (index = 0; index < m_size; index++)
 HeapFree(GetProcessHeap(), 0, (LPVOID)m_elements[index]);
 HeapFree(GetProcessHeap(), 0, m_elements); }
void Elements::Initialise(LPTSTR filename)
{ m_elements = NULL;
 m_size = 0;
 HANDLE hfile =
 CreateFile(filename, GENERIC_READ, 0, NULL,
 OPEN_EXISTING, 0, NULL);
 if (INVALID_HANDLE_VALUE == hfile) return;
 HANDLE hmapp = CreateFileMapping(hfile, NULL,
 PAGE_READONLY, 0, 0, NULL);
 if (NULL == hmapp)
 { CloseHandle(hfile); return; }
 if (NULL == pstr)
 { CloseHandle(hmapp); CloseHandle(hfile); return; }
 m_size = 100;
 m_elements = (LPCTSTR*)HeapAlloc(GetProcessHeap(), 0,
 m_size * sizeof(LPCTSTR));
 if (NULL == m_elements)
 { UnmapViewOfFile(pstr); CloseHandle(hmapp);
 CloseHandle(hfile); return; }
 LPTSTR pos = pstr;
 LPTSTR next = pstr;
 DWORD size = GetFileSize(hfile, NULL);
 LONG count = 0;
 TCHAR padding[] =_T(“-------------------------------------
---“);
 while (next < pstr+size)
 { // Find end of string
 while (*next != _T(‘\r’) && *next != _T(‘\n’)
 && next < pstr + size) next++;
 // End of string, copy data
 LPTSTR temp = (LPTSTR)HeapAlloc(GetProcessHeap(),
 0, sizeof(TCHAR) * 160);
 lstrcpyn(temp, pos, next - pos + 1);
 lstrcat(temp, padding);
 temp[80] = _T(‘\0’);
 m_elements[count] = (LPCTSTR)temp;
 // Move to the next item
 count++; next++;
 if (_T(‘\n’) == *next) next++;

 pos = next; }
 m_size = count;
 UnmapViewOfFile(pstr);
 CloseHandle(hmapp);
 CloseHandle(hfile); }
BSTR Elements::GetItem(LONG ID)
{ if (ID >= m_size) return NULL;
 LPWSTR pstr;
#ifndef UNICODE
 pstr = (LPWSTR)HeapAlloc(GetProcessHeap(), 0,
 sizeof(WCHAR) * 160);
 MultiByteToWideChar(CP_ACP, 0, m_elements[ID],
 -1, pstr, 160);
#else
 pstr = m_elements[ID - 1];
#endif
 BSTR bstr = ::SysAllocString(pstr);
#ifndef UNICODE
 HeapFree(GetProcessHeap(), 0, pstr);
#endif
 return bstr; }

In the case of GetSingleString(), a BSTR is
generated from the string and passed back to the
client:
HRESULT STDMETHODCALLTYPE CTestServer::GetSingleString(LONG
index, BSTR *item)
{ *item = m_list.GetItem(index);
 IF (NULL == *item)
 { return S_FALSE; }
 else
 { return S_OK; } }

In the case of GetMultipleString(), an array is
created, the BSTR for each item is placed in the array,
and then the array and the number of items obtained
are returned:
HRESULT STDMETHODCALLTYPE
CTestServer::GetMultipleString(LONG index,
 LONG count, LONG* got, BSTR** item)
{ HRESULT hr = S_OK;
 // Temporary buffer
 BSTR* buf = new BSTR[count];
 *got = count;
 LONG current = index;
 while (current<(index + count))
 { buf[current - index] = m_list.GetItem(current);
 if (NULL == buf[current - index])
 { *got = current - index; hr = S_FALSE; break; }
 current++; }
 item = (BSTR)CoTaskMemAlloc(*got * sizeof(BSTR));
 for (current = 0; current < *got; current++)
 (*item)[current] = buf[current];
 delete [] buf;
 return hr; }

The client object determines whether the single or
multiple case is used, specifies the start value and the
number of items to get, and calculates the average
time required to make the call:
void CTestClientDlg::OnGet()
{ CListBox* pList = (CListBox*)GetDlgItem(IDC_RESULTS);
 Assert(pList); pList->ResetContent();
 CWnd* pWnd = GetDlgItem(IDC_ELAPSE);
 Assert(pWnd); UpdateData();
 if (NULL == m_pTestServer)
 { Message(_T(“The server interface pointer is NULL”));
 return; }
 if (m_nRadio == 0)
 { // Send multiple single requests
 BSTR* array = new BSTR[m_lCount];
 LONG count; LONG loop; LONG total = 0;
 for (loop = 0; loop < m_lRepeat; loop++)
 { DWORD starttime = GetTickCount();
 for (count = 0; count < m_lCount; count++)
 { HRESULT hr;
 hr = m_pTestServer->GetSingleString(count +
 m_lStart, &array[count]);

4

 if (FAILED(hr) || S_FALSE == hr)
 { Cstring str;
 UpdateData();
 if (S_FALSE == hr)
 str.Format(“Cannot get item %ld”,
 count + mlStart);
 else
 str.Format(“Cannot connect: 0x%08x”, hr);
 Message(str);
 break; } }
 DWORD endtime = GetTickCount();
 total += endtime - starttime;
 for (count = 0; count < m_lCount; count++)
 { if (array[count])
 { Cstring str(array[count]);
 ::SysFreeString(array[count]);
 if (loop == 0)
 pList->AddString(str); } } }
 Cstring str;
 str.Format(“Duration %.21f milliseconds”,
 total/double(m_lRepeat));
 pWnd->SetWindowText(str);
 delete [] array; }
 else
 { // Send a single multiple request
 BSTR* array; HRESULT hr;
 LONG got; DWORD total = 0; LONG loop;
 for (loop = 0; loop < m_lRepeat; lopp++)
 { DWORD starttime = GetTickCount();
 hr = m_pTestServer->GetMultipleString(m_lStart,
 m_lCount, &got, &array);
 DWORD endtime = GetTickCount();
 total += endtime-starttime;
 if (FAILED(hr))
 { UpdateData(); Cstring str;
 str.Format(“Cannot connect: 0x%08x”, hr);
 Message(str); break; }
 LONG index;
 for (index = 0; index < got; index++)
 { Cstring str(array[index]);
 ::SysFreeString(array[index]);
 if (loop == 0) pList->AddString(str); }
 CoTaskMemFree(array); }
 Cstring str;
 str.Format(“Obtained %ld items”, got);
 Message(str);
 str.Format(“Duration %.2lf milliseconds”,
 total/double(m_lRepeat));
 pWnd->SetWindowText(str); } }

This code examines whether this is a single or a
multiple test. If it is a single test, the
GetSingleString() method is called. Otherwise
the GetMultipleString() method is called.
GetSingleString() simply sends a single value
and thus it is called for each of the required values
(the number of strings and the first index are specified
by the client). In order to increase the accuracy of the
tests, the tests are repeated the number of times
specified by the client. For the multiple case, the
GetMultipleString() method is called on the
server object just once. In both cases, the calls to the
server object are timed and the average of the time to
get the requested data is calculated.

3.2 The Results
During the experiment, two types of measurements
were carried out, using both the DCOM and CORBA
versions of the testing code. Initially, the client and
the server objects were placed on the same machine,
and the time (in ms) needed to transfer a number of

strings from the server object to the client object, as a
result of calling (on the server object), either
GetSingleString() many times or GetMultiple
String() once, was calculated for several different
numbers of strings (Fig. 1). In this way, the
performance of (the usually neglected) local method
calls is examined under DCOM (in fact COM) and
CORBA, recognising the fact that local object
interactions are common even in large scale telematic
services and thus they shouldn’t be ignored or under-
estimated. As can be seen in Fig. 1, local method calls
are fast in both DCOM and CORBA, with DCOM
being slightly faster than CORBA. Additionally, for
both DCOM and CORBA, the single method call
(GetMultipleString()) is about 10 times faster
than making multiple method calls (GetSingle
String()) for a specific number of strings.

Fig. 1: Examination of local method calls in DCOM
and CORBA.

The second type of measurements focused on
remote method calls, which are the ones that affect
mostly the performance of a telematic service. In this
case, the time (in ms) needed to transfer a number of
strings from the server object to the client object was
calculated as in the first type of measurements, with
the exception that the client and server objects were
placed on two different machines connected via a
network (Fig. 2). As would be expected, remote
method calls take much longer than local method calls
in both DCOM and CORBA, although the
measurements have been taken on a very quiet
network of just two machines running only the test
software. From Fig. 2 is evident that CORBA is
slightly faster than DCOM regarding remote object

5

interactions, and that in both DCOM and CORBA,
the multiple calls of GetSingleString() take about
5 times longer than the GetMultipleString() call
for a specific number of strings.

Fig. 2: Examination of remote method calls in
DCOM and CORBA.

Taking into account all the measurements and
evaluating the whole experiment it is apparent that in
both DCOM and CORBA remote method calls are
slower than local method calls, and many single
method calls are five to ten times slower than a single
multiple method call. Thus, in both these platforms,
performance can be improved by placing objects
(whenever possible) on the same machine that they
will be used from, and by designing the interface of
remote objects so that the corresponding (remote)
method calls, which are required to perform a specific
task, are kept to a minimum. Finally, Fig. 1 and 2
clearly illustrate that DCOM and CORBA have a
comparable performance under the MS Windows
operating system platform. Therefore, for this
operating environment, a choice between DCOM and
CORBA should not be based exclusively on
performance considerations, but it should also take
into account other more general and abstract /
qualitative issues (see Section 2 and [1]).

This conclusion is reinforced even more by the fact
that CORBA performance depends significantly on
the implementation of the ORB by a specific vendor,
and thus differs between different products. A similar
situation is also true for DCOM, as DCOM’s perfor-
mance can be improved in certain circumstances by
extending its remoting architecture which has built-in
extensibility [4]. The way that this can be achieved is
examined separately in the following section, because
of the significant potential benefits it can offer to
DCOM-based telecommunications services.

4 DCOM Remoting Architecture
Distributed object systems, such as DCOM and
CORBA, provide the necessary infrastructure for
supporting remote object activation and remote
method invocation in a client-transparent way. The
term remoting architecture refers to the entire infra-
structure that connects clients to server objects [2].

A distributed object system does not necessarily
have to specify how the entire remoting architecture
should be structured. It can treat it as a black box as
far as user applications are concerned. This approach
has the advantage of allowing vendors to use their
best performance optimisation techniques. However,
a disadvantage is that such architectures are usually
difficult to extend [9].

Fig. 3: The DCOM remoting architecture and
extensibility options.

The DCOM remoting architecture can be seen in
Fig. 3. Its main constituent parts are the following
[2][4]:
• Object proxies: They act as the client-side

representatives of server objects and connect
directly to the client.

• Interface proxies: They perform client-side data
marshaling and are aggregated into object proxies.

• Client-side channel objects: They use Remote
Procedure Calls (RPCs) to forward the marshaled
calls.

• Server-side endpoints: They receive RPC requests
from clients.

• Stub managers: They are located in the server and
they dispatch calls to appropriate interface stubs.

• Interface stubs: They perform server-side data
marshaling and make actual calls on the appropriate
server objects.

• Standard marshaler: It marshals interface pointers
into object references on the server side and
unmarshals the object references on the client side.
Usually, DCOM-based telecommunications serv-

ices use standard marshaling. However, some of them
may need to customise the client-server connection in

6

order to express the correct semantics and improve
performance. In these cases, the DCOM remoting
architecture has to be extended.

The extensibility provided by DCOM can be
divided into three categories; namely, below, above,
and within [2][4][9]. The first category extends
DCOM at the RPC layer and below, as shown in Fig.
3, in a way totally transparent to the standard
remoting architecture.

To achieve the other two types of extensibility,
DCOM supports a custom marshaling mechanism
which allows a server object to bypass the standard
remoting architecture and construct a custom one,
optimised for a particular situation, without requiring
source code modifications to the former. A server
object declares that it wants to implement custom
marshaling by supporting the IMarshal interface.

According to the second type of extensibility in
DCOM, a handler layer can be insterted above the
standard remoting architecture and below the user
application (service components). This activity is
often called semi-custom marshaling (or handler
marshaling) because most of the tasks are eventually
delegated to the standard remoting architecture, as
shown in Fig. 3. As part of the marshaling /
unmarshaling process, a custom proxy and a custom
stub are inserted to allow additional processing of
each method invocation.

The third type of extensibility in DCOM is the
most general and the most promising one. According
to it, as DCOM’s remoting architecture is constructed
at run time by instantiating and connecting various
components, it should be possible for a custom
architecture to reuse some of the binary components
from the standard one and supply only the necessary
custom objects. The construction of such a custom
architecture is hard in current DCOM architecture,
but it can be facilitated significantly by specialised
architectures developed for this purpose [9].

CORBA does not specify a standard remoting
architecture. Therefore, incorporating stronger system
properties into CORBA-based telecommunications
services and improving their semantics and
performance is usually not done by exploiting the
extensibility of the remoting architecture. Further-
more, while some CORBA-based systems allow the
replacement of the marshaling code for a given
interface (sometimes called smart proxies), DCOM is
unique in that the remoting behaviour is polymorphi-
cally bound at runtime on an object-by-object basis,
as two references of identical type may be using
custom or standard marshaling independently. This
allows object implementors to safely evolve their
remoting implementation based on performance needs
without rebuilding client applications.

5 Conclusions
The liberalisation of telecommunications markets has
exposed service providers to a high level of
competition. This competition is forcing them to
reduce costs, improve customer service, and rapidly
introduce new services. One key way in which these
pressures can be addressed is through the increased
exploitation of distributed object platforms.

In this paper, the performance of DCOM and
CORBA, which currently are the two most important
object-oriented DPEs, was examined focusing on
their ability to support object interactions commonly
used in new telecommunications services. The experi-
ment that was conducted revealed that DCOM and
CORBA have a comparable performance, although
DCOM appears to be more flexible and with a
significant potential for improved performance due to
its extensible and customisable remoting architecture.
However, there is no doubt that both DCOM and
CORBA are important for the realisation of
telecommunications services in today’s heterogeneous
information networking environment. Therefore, their
efficient interoperation via a standardised single two-
way gateway specification (a bridge) between them is
expected to rapidly gain importance [8].

References
[1] Adamopoulos, D.X., Pavlou, G., Papandreou, C.A.,

“Distributed Object Platforms in Telecommunications:
A Comparison Between DCOM and CORBA”, BT
Engineering, Vol. 18, 1999, pp. 43-49.

[2] Brown, N., Kindel, C., “Distributed Component
Object Model Protocol - DCOM”, Microsoft
Corporation, January 1998.

[3] Fatoohi, R.A., “Performance Evaluation of Communi-
cation Software Systems for Distributed Computing”,
Distributed Systems Engineering, No. 4, 1997, pp.
169-175.

[4] Grimes, R., “Professional DCOM Programming”,
Wrox Press, 1997.

[5] Lewandowski, S.M., “Frameworks for Component-
Based Client/Server Computing”, ACM Computing
Surveys, Vol. 30, No. 1, 1998, pp. 1-27.

[6] Object Management Group, “The Common Object
Request Broker: Architecture and Specification”,
Revision 2.0, July 1995.

[7] Saleh, K., Probert, R., Khanafer, H., “The Distributed
Object Computing Paradigm: Concepts and
Applications”, The Journal of Systems and Software,
No. 47, 1999, pp. 125-131.

[8] Smith, G., Gough, J., Szyperski, C., “A Case for
Meta-Interworking: Projecting CORBA Meta-Data
into COM”, Proceedings of TOOLS ’98, Nov. 1998.

[9] Wang, Y.-M., Lee, W.-J., “COMERA - COM
Extensible Remoting Architecture”, Proceedings of
COOTS ’98, 1998, pp. 79-88.

