
1

Distributed Multimedia in Telecommunications Service Engineering
Using the Distributed Component Object Model

DIONISIS X. ADAMOPOULOS GEORGE PAVLOU
Centre for Communication Systems Research Centre for Communication Systems Research

School of Elec. Eng., IT and Mathematics School of Elec. Eng., IT and Mathematics
University of Surrey University of Surrey, England
Guildford GU2 5XH Guildford GU2 5XH

ENGLAND ENGLAND
D.Adamopoulos@ee.surrey.ac.uk G.Pavlou@ee.surrey.ac.uk

CONSTANTINE A. PAPANDREOU
Hellenic Telecommunications Organisation (OTE)

17 Kalliga Street, GR-114 73 Athens
GREECE

kospap@org.ote.gr

Abstract: - Nowadays, the demand for a great variety of sophisticated telecommunications services with
multimedia characteristics is on the increase. This trend highlights the need for the efficient creation of
distributed programs with multimedia data exchange running on distributed processing environments.
Therefore, it is necessary to support the object-oriented development of distributed multimedia applications in a
flexible manner. This paper recognises Microsoft’s DCOM as a key technology solution in the area of service
engineering and examines an RM-ODP compliant approach to enhance it for the handling of continuous media
flows through the design and implementation of a collection of suitable multimedia support services. These
services are validated through a number of simple scenarios, and their alignment with TINA-C, together with
the examination of QoS issues are also considered.

Key - Words: - Distributed multimedia, DCOM, new telecommunications services, distributed object
computing.

1 Introduction
Driven by technological advancements, market
growth and deregulation, the global telecommuni-
cations environment is rapidly adopting a highly
dynamic and open character, which, in combination
with the evolving synergy between information and
telecommunication technologies, provides a wide
range of opportunities for the delivery of advanced
multimedia telecommunications services (telematic
services). Due to recent developments in broadband
networks, object orientation, and distributed
computing, these telecommunications services are
designed and created as distributed multimedia
applications in distributed object platforms in a
steadily growing rate [1] [9].

Despite the fact that multimedia support has been
considered in general terms in the ISO’s / ITU-T’s
Reference Model for Open Distributed Processing
(RM-ODP) [5], it is not specified in Microsoft’s
Distributed Component Object Model (DCOM) [2],
and is not yet mature in the Object Management
Group’s Common Object Request Broker Archite-
cture (CORBA) [6] [10]. On the other hand, a wide
range of new telecommunications services are beco-

ming increasingly popular by employing audio and
video to convey information or to enhance communi-
cation among human users (e.g. videoconference,
video on-demand, etc.). Therefore, in the emerging
telecommunications environment it is necessary to
facilitate the rapid and flexible deployment of a great
diversity of multimedia, multi-party services by
providing direct support to continuous media in
Distributed Processing Environments (DPEs).

This paper considers an approach that extends
DCOM into an environment suitable for the
development of advanced multimedia telecommuni-
cations services. More specifically, it examines
central issues associated with the provision of object-
oriented support for the handling (representation,
transmission, and management) of continuous media
in DCOM.

2 Modelling Multimedia Telecommu-
nications Services
Multimedia communication involves the interaction
of devices which can deal with networked suppliers
and consumers of various types of digitally repre-

2

sented information. Broadly, the tasks involved in
this process can be divided into the proper coding
and transport of the different media, and into related
control aspects, such as how to locate services,
request transfer, establish and maintain connections,
ensure integrity and timeliness, and control presenta-
tion aspects of the delivery of multimedia informa-
tion. These control aspects, together with the stru-
cture and the functionality of the related control soft-
ware, are the concern of this paper, as they are
particularly important for the realisation of the full
potential of distributed object platforms [9].

Streams play a central role in the control software.
The model of object interaction conventionally
adopted in distributed object platforms (i.e. operation
invocation) is inappropriate for continuous or dyna-
mic media. Thus, for these media types, a streaming
mode of communication is required (continuous
interactions) rather than a request / reply-based
operation invocation model [3] [7]. This is also in
full agreement with the RM-ODP’s multimedia
computational model [5].

The control software of new telecommunications
services which exploit continuous media, has to [3]
[9] [13]:
• Model continuous media communications.
• Comply with standards.
• Allow and support a range of Qualities of Service

(QoS).
• Support synchronisation of continuous media.
• Enable communication of continuous media to

groups of users.
• Support careful management of resources.

These requirements highlight the need for a
flexible approach in the development and deploy-
ment of open standards-based media exchange tele-
communications services. Thus, the proposed
approach recognises flexibility as the key requi-
rement and concentrates on the problem of providing
a flexible way of handling continuous media in
DCOM. This problem is addressed by providing a
generic platform (multimedia support platform) of
primitive COM objects or services (multimedia
support services), which can facilitate the
construction of new telecommunications services
with multimedia characteristics, and by providing an
efficient way for managing the multimedia support
services within the multimedia support platform.

More specifically, the multimedia support
platform provides mechanisms for creating and
manipulating COM objects using a number of
support services. These services, and the related
objects, are compatible with RM-ODP, enabling thus
a wide degree of information sharing and application
interoperability. The interfaces provided by these
services have been designed to allow the underlying

technologies maximum flexibility in achieving their
implementation.

3 The Distributed Component Object
Model
DCOM is the distributed extension to COM
(Component Object Model) that builds an Object
Remote Procedure Call (ORPC) layer on top of DCE
RPC to support remote objects. Thus, DCOM
provides an efficient and effective solution for the
integration of heterogeneous components in a
distributed environment.

However, DCOM does not satisfy directly the
more complicated and stringent requirements of
multimedia telecommunications services. To enable
DCOM to be the basis for new telecommunications
services that require the handling and control of
continuous media, some extra features are necessary.
The most obvious requirement is that the concept of
streams be added to the DCOM object model. At
present only operational interfaces are defined,
which impose a Remote Procedure Call (RPC)
model of interaction.

Before focusing on DCOM, it has to noted that
COM handles multimedia information through the
Microsoft DirectShow architecture (previously
Microsoft ActiveMovie architecture), which incorpo-
rates the notion of streams. Obviously, the use of this
notion is restricted to the environment of stand-alone
multimedia capable computers with Microsoft
Windows operating systems (9x, NT 4.x, 2000), as
DirectShow is not a distributed architecture.

4 Supporting Continuous Media in
DCOM
The development of new telecommunications
services with multimedia characteristics in DCOM is
proposed to be facilitated by a generic multimedia
support platform with the introduction of a number
of new multimedia support services (DPE services)
into the DCOM architecture. These services (which
are used in conjunction with existing DCOM
services) provide new functionality without requiring
any changes to the basic architectural model of
DCOM. The new services consist principally of two
types of COM objects: devices and stream binders.
These are both seen by the higher layers as normal
services with standard abstract data type interfaces,
but they encapsulate the control and transmission of
continuous media.

Devices are an abstraction of physical devices,
stored continuous media or software processes. They
may be either sources (producers), sinks (consumers)

3

or transformers of continuous media data. Most
devices present a device dependent interface, a
generic control or chain interface (,&KDLQ), and an
endpoint interface (,(QGSRLQW). The device depen-
dent interface contains operations specific to the
device modelled (e.g., a camera might have opera-
tions such as focus, pan or tilt). Furthermore, it has
to be noted that all devices (and every COM object)
have to inherit from the ,8QNQRZQ interface, which
provides functionality required by all COM objects.

LQWHUIDFH�,&KDLQ���,8QNQRZQ
�̂W\SHGHI�HQXP�̂ LQ��RXW��LQRXẀ

����������'HYLFH7\SHV�
��+5(68/7�*HW'HYLFH7\SH�
����������>RXW@�'HYLFH7\SH�'7\SH��
��+5(68/7�6WDUW���
��+5(68/7�6WDUW([�
����������>LQ@�LQW�1XPEHU2I6HJPHQWV��
��+5(68/7�6WRS���
��+5(68/7�6XVSHQG���
��+5(68/7�6XVSHQG([�>LQ@�LQW�7LPH��
��+5(68/7�6XVSHQG([��
����������>LQ@�LQW�1XPEHU2I6HJPHQWV��
��+5(68/7�5HVXPH���
��+5(68/7�6NLS�>LQ@�LQW�1XPEHU2I6HJPHQWV��
��+5(68/7�*HW3RVLWLRQ�
����������>RXW@�LQW�6HJPHQW1XPEHU��̀ �

Fig. 1: The ,&KDLQ Interface.

A piece of continuous media can be visualised as a
chain comprising a sequence of segments or links,
each of which represents an atomic unit particular to
the media type in question (e.g. a frame of video)
[3]. Thus, a chain is an abstraction over a continuous
media source or sink that focuses on the control of
the production and consumption of continuous media
data. Based on this abstraction, the ,&KDLQ interface
provides generic operations for controlling conti-
nuous media devices and managing continuous
media transmissions. It is a device independent inter-
face which is common to all continuous media devi-
ces. The ,&KDLQ interface is summarised in Fig. 1
using (a simplified variation of) Microsoft’s
Interface Definition Language (MIDL), which is an
extension of DCE’s IDL.

LQWHUIDFH�,(QGSRLQW���,8QNQRZQ
�̂+5(68/7�*HW6HJPHQW�>RXW@�%675�6HJPHQW��

��+5(68/7�3XW6HJPHQW�>LQ@�%675�6HJPHQW��
��+5(68/7�6HW&KDUDFWHULVWLFV�
���>LQ@�ORQJ�&KU6L]H�
���>LQ��VL]HBLV�&KU6L]H�@�ORQJ�&KU$UUD\��
��+5(68/7�*HW&KDUDFWHULVWLFV�
���>LQ��RXW@�ORQJ�&KU6L]H�
���>RXW�VL]HBLV�&KU6L]H�@�ORQJ�&KU$UUD\��
�̀

Fig. 2: The ,(QGSRLQW interface.

Another interface which is common to all
continuous media devices (device independent
interface) is the ,(QGSRLQW interface. An endpoint is
a connection point for a stream, and the ,(QGSRLQW

interface is actually a stream interface. The
,(QGSRLQW interface abstracts over all aspects of a
device which are concerned with the transport of
continuous media. Essentially, as it can be seen in
Fig. 2, it presents a pair of operations, *HW6HJPHQW

and 3XW6HJPHQW through which segments can be
read or written respectively.

In order to be able to control streams the binding
process must be made explicit [3]. This is done
through the introduction of a binding COM object
(6WUHDP%LQGHU). 6WUHDP%LQGHU represents the
connection between bound objects and provides an
operational interface (,6WUHDP%LQGHU) through
which the binding between streams can be created,
monitored, and controlled.

LQWHUIDFH�,6WUHDP%LQGHU���,8QNQRZQ
�̂+5(68/7�6WDUW6RXUFH�

����������>LQ@�,8QNQRZQ�6RXUFH*URXS��
��+5(68/7�6WDUW6LQN�
����������>LQ@�,8QNQRZQ�6LQN*URXS��
��+5(68/7�&RQQHFW	7UDQVIHU�
����������>LQ@�,8QNQRZQ�6RXUFH*URXS�
����������>LQ@�,8QNQRZQ�6LQN*URXS��
��+5(68/7�6WRS6RXUFH�
����������>LQ@�,8QNQRZQ�6RXUFH*URXS��
��+5(68/7�6WRS6LQN�
����������>LQ@�,8QNQRZQ�6LQN*URXS��
��+5(68/7�6XVSHQG6RXUFH�
����������>LQ@�,8QNQRZQ�6RXUFH*URXS��
��+5(68/7�6XVSHQG6LQN�
����������>LQ@�,8QNQRZQ�6LQN*URXS��
��+5(68/7�5HVXPH6RXUFH�
����������>LQ@�,8QNQRZQ�6RXUFH*URXS��
��+5(68/7�5HVXPH6LQN�
����������>LQ@�,8QNQRZQ�6LQN*URXS��
��+5(68/7�'HVWUR\&RQQHFWLRQ�
����������>LQ@�,8QNQRZQ�6RXUFH*URXS�
����������>LQ@�,8QNQRZQ�6LQN*URXS��̀ �

Fig. 3: The ,6WUHDP%LQGHU interface.

More specifically, as can be seen in Fig. 3, the
,6WUHDP%LQGHU interface contains operations which
allow the client of a 6WUHDP%LQGHU to connect and
disconnect devices via their ,(QGSRLQW interfaces
(and thus create and destroy stream connections),
start and stop the flow of continuous media
information, and suspend / resume the activity of the
involved devices. With these operations the 6WUHDP�

%LQGHU hides continuous media transmissions, which
can be optimised by using dedicated transport
protocols entirely distinct from those used to convey
control messages. The binding action can be initiated

4

by a COM object involved in the binding or by one
separate from it.

In the case where it is desirable to start, stop,
establish, and generally perform control operations
to a number of streams simultaneously, the notion of
object groups simplifies greatly the necessary code
(calls to the 6WUHDP%LQGHU operations) and ensures
that the code reflects the correct / intended semantics
(it decreases the possibility of missing, wrong, or out
of - logical - order operations on devices).

LQWHUIDFH�,2EMHFW*URXS���,8QNQRZQ
�̂+5(68/7�-RLQ�>LQ@�,8QNQRZQ�UHILLG��

��+5(68/7�/HDYH���
��+5(68/7�8VH�>RXW@�,8QNQRZQ�UHILLG��
��+5(68/7�5HVHW���̀ �

Fig. 4: The ,2EMHFW*URXS interface.

Conceptually, object groups are modelled using
the COM class 2EMHFW*URXS, which collects in a
group a set of related COM objects. Actually, it
maintains a list of the interface references (REFIIDs)
of the COM objects that belong to a specific group.
The ,2EMHFW*URXS interface can be seen in Fig. 4.
In a typical scenario, two instances of the
2EMHFW*URXS COM class are used: a 6RXUFH*URXS

(with the REFIIDs of the sources) and a 6LQN*URXS

(with the REFIIDs of the sinks).

Fig. 5: A scenario for the multimedia support
 services.

Fig. 5 depicts the COM objects involved in the
configuration of a possible scenario for the proposed
multimedia support services. In this scenario, two
source devices (e.g. videocameras) have been
connected via a 6WUHDP%LQGHU to two sink devices
(e.g. VDUs). Two different streams have been
established between the source and sink devices.

The necessary steps that have to be followed in
order to realise the two video connections between
the sources and sinks of Fig. 5 using the proposed
multimedia support services are the following:

Step 1 (Obtain the necessary interface references):
The REFIIDs of the two sources (6RXUFH�8VHU$ and
6RXUFH�8VHU%) and the two sinks (6LQN�8VHU& and
6LQN�8VHU&) involved in stream communication are
obtained. Device dependent operations are also
performed if necessary.
Step 2 (Create new instances of required services): A
6WUHDP%LQGHU instance is created and the related
interface reference is obtained. Additionally, two
2EMHFW*URXS instances are created and the related
interface references are also obtained (6RXUFH*URXS

and 6LQN*URXS).
Step 3 (Form the appropriate object groups (if
required)): Taking into account the streams that is
desirable to be established, the REFIIDs of the
sources become members of the 6RXUFH*URXS

[-RLQ�6RXUFH�8VHU$�, -RLQ�6RXUFH�8VHU%�], and
the REFIIDs of the sinks become members of the
6LQN*URXS[-RLQ�6LQN�8VHU&�,-RLQ�6LQN�8VHU&�].
Step 4 (Start the devices): The sink and source
devices are started [6WDUW6LQN�6LQN*URXS�,
6WDUW6RXUFH�6RXUFH*URXS�].
Step 5 (Establish connections between source and
sink devices): Associate the appropriate sources and
sinks and initiate continuous media transfer between
them [&RQQHFW	7UDQVIHU�6RXUFH*URXS�6LQN*URXS�].
Steps 4 and 5 can also take place in the opposite
order.
Step 6 (Stop the devices): When the interaction is
finished the sink and source devices are stopped
[6WRS6LQN�6LQN*URXS�,6WRS6RXUFH�6RXUFH*URXS�].
Step 7 (Destroy connections and services): The
connections established between the source and sink
devices are destroyed ['HVWUR\&RQQHFWLRQ�6RXUFH

*URXS�6LQN*URXS�]. Then, the 6WUHDP%LQGHU and
the source and sink groups are also destroyed.

The above described steps constitute a kind of
algorithm for establishing stream connections
(stream communication algorithm). As it is described
in Fig. 5, the 6WUHDP0DQDJHU COM object interacts
with the 6WUHDP%LQGHU and performs all the steps of
the stream communication algorithm. The interface
and the functionality of the 6WUHDP0DQDJHU depends
on the requirements of the specific application. On
the contrary, the interfaces and the functionality of
the devices and the 6WUHDP%LQGHU are application
independent and thus reusable. Actually, these
interfaces can be considered as a high level
Application Programming Interface (API) for the
handling of continuous media in DCOM.

6 Validation and Future Extensions
The proposed multimedia support services and the
related API have been tested in several scenarios

5

involving continuous media transmission with
different configurations of COM objects. It has been
found that they constitute a viable, flexible,
consistent, coherent, and smart way of building
multimedia telecommunications services in DCOM.

Fig. 6: The computational view of the MMCS for
 education and training in TINA-C.

In order to validate this conclusion under more
realistic conditions of use, the proposed multimedia
support services are currently being applied to the
development of a MultiMedia Conferencing Service
(MMCS) for education and training [11], according
to the architectural framework proposed by the
Telecommunications Information Networking Archi-
tecture Consortium (TINA-C) [8]. The main TINA-C
computational objects involved in the MMCS can be
seen in Fig. 6. From this figure is also evident that
the Communication Session Manager (CSM) incor-
porates the functionality of both the 6WUHDP0DQDJHU

and the 6WUHDP%LQGHU. Thus, in the process of
realising this component the conformance of the
proposed approach with the TINA-C Stream
Channel Model is being examined [12].

Furthermore, the proposed multimedia support
services and the related API will be extended to
cover Quality of Service (QoS) issues, as it is
essential that the service developer is able to select
and control the QoS with which connections are
made [3]. For this reason, the 6WUHDP%LQGHU will
be enhanced with the ability to specify a number of
QoS parameters. However, although the 6WUHDP�

%LQGHU specifies these parameters, it is important to
note that whether this QoS can be obtained
ultimately depends upon whether the underlying
transport protocol and network can support the
chosen parameters [7].

7 Conclusions
There is a technology push in the area of multimedia
communications, which is acting as a catalyst for the
specification of new multimedia telecommunications
services. Due to efficiency reasons, these services
are destined to be deployed in a distributed object
environment. Thus, there is an increasingly impor-
tant need for distributed object platforms to support
continuous media interactions in a flexible manner.

In this paper, a number of RM-ODP compliant
multimedia support services together with a related
API are proposed to enhance DCOM with continu-
ous media support. The viability of this approach is
evaluated using a number of simple scenarios.
Furthermore, the development of a MMCS for edu-
cation and training according to TINA-C will ensure
that with the proposed approach distributed multime-
dia objects in DCOM can be controlled and interope-
rated over a network in a relatively simple and
straight-forward way. This alignment with TINA-C,
together with the introduction of QoS considerations
is expected to enable the proposed support services
to open the way for the emergence of broadband
multimedia telecommunications services in DCOM.

References:
[1] Adamopoulos, D.X., Papandreou, C.A.,

Distributed Processing Support for New
Telecommunications Services, Proceedings of
ICT ’98, Vol. III, June 1998, pp. 306-310.

[2] Brown, N., Kindel, C., Distributed Component
Object Model Protocol - DCOM/1.0, Microsoft
Corporation, November 1996.

[3] Coulson, G., Blair, G.S., Davies, N., Williams,
N., Extensions to ANSA for Multimedia
Computing, Computer Networks and ISDN
Systems, Vol. 25, 1992, pp. 305-323.

[4] Gay, V., Leydekkers, P., Multimedia in the
ODP-RM Standard, IEEE Multimedia, Vol. 4,
No. 1, 1997, pp. 68-73.

[5] IONA Technologies, Orbix MX: A Distributed
Object Framework for Telecommunication
Service Development & Deployment, April 1998.

[6] Kinane, B., Muldowney, D., Distributed Broad-
band Multimedia Systems Using CORBA, Com-
puter Communications, Vol.19, 1996, pp. 13-21.

[7] Magedanz, T., TINA - Architectural Basis for
Future Telecommunications Services, Computer
Communications, Vol. 20, 1997, pp. 233-245.

[8] Mühlhäuser, M., Gecsei, J., Services,
Frameworks, and Paradigms for Distributed
Multimedia Applications, IEEE Multimedia,
Fall 1996, pp. 48-61.

[9] Object Management Group, Control and
Management of Audio / Video Streams, OMG
document telecom/97-05-07, October 1997.

[10] Papandreou, C.A., Adamopoulos, D.X., Design
of an Interactive Teletraining System, British
Telecommunications Engineering, Vol. 17, Part
2, August 1998, pp. 175-181.

[11] TINA-C, TINA-C Stream Channel Model,
Document No.TR_MFJ.001_1.4_95, Feb. 1996.

[12] Waddington, D., Coulson, G., A Distributed
Multimedia Component Architecture, Proceed-
ings of EDOC ’97, 1997, pp. 17-35.

