
Software-defined network support for transport
resilience

10ao Taveira Araujo, Raul Landa, Richard G. Clegg, George Pavlou
University College London

Email: {j.araujo.r.landa.r.clegg.g.pavlou}@ucl.ac.uk

Abstract-Existing methods for traffic resilience at the net
work and transport layers typically work in isolation, often resort
ing to inference in fault detection and recovery respectively. This
both duplicates functionality across layers, eroding efficiency, and
leads to protracted recovery cycles, affecting responsiveness. Such
misalignment is particularly at odds with the unprecedented
concentration of traffic in data-centers, in which network and
hosts are managed in unison.

This paper advocates instead a cross-layer approach to traffic
resilience. The proposed architecture, INFLEX, builds on the
abstractions provided by software-defined networking (SDN) to
maintain multiple virtual forwarding planes which the network
assigns to flows. In case of path failure, transport protocols pro
actively request to switch plane in a manner which is unilaterally
deployable by an edge domain, providing scalable end-to-end
forwarding path resilience.

I. INTRODUCTION

Despite being broadly designed for robustness, the current
Internet architecture remains remarkably vulnerable to failures.
Managing faults still poses a significant operational challenge,
in part because faults can occur at every layer of the net
working stack, and can affect any element along a network
path. This inherent diversity has traditionally favoured placing
resilience mechanisms at the transport layer. Since endpoints
possess both intrinsic knowledge of application needs and
fine-grained measurements on end-to-end path characteristics,
transport protocols offer a natural fit for providing scalable
resilience. Modern transport protocols such as Stream Con
trol Transmission Protocol (SCTP) [1] and Multipath TCP
(MPTCP) [2] address resilience by providing transparent fail
over through multihoming. Unfortunately, neither is likely to
be widely deployed in the near future, with the former lack
ing critical middlebox support and the latter still undergoing
standardization. This is compounded by the fact that end-host
multihoming in itself poses a barrier to deployment. Finally,
both SCTP and MPTCP, being confined to the transport layer,
rely only on knowledge of faults within an individual flow.
Hence, each flow must detect failures independently, even
when many flows are affected by the same fault.

An alternative approach to resilience is to target the net
work layer, hence shifting the onus of resilience from the
endpoints to the network operators. Traditionally, this has
been achieved by designing improved routing algorithms. The
deployment of real time applications with harder constraints
on reliability coupled with better failure detection methods
embedded in linecards have provided both the motivation and
the means for achieving sub-second recovery within Interior

978-1-4799-0913-1114/$31.00 © 2014 IEEE

Gateway Protocol (lGP) networks [3]. Even with reduced re
covery times however, the transient effects of routing changes
can still disrupt the forwarding path. Other frameworks [4],
[5], [6] have been proposed to provide repair paths for use
between the detection of a failure and the convergence of the
routing process. Unfortunately, such methods are rarely suffi
cient. Firstly, their application is circumscribed to individual
domains, and as such cannot provide end-to-end coverage in
a federated, best-effort Internet. In order to detect failures in
remote domains, an operator may employ active monitoring
techniques [7], but such approaches can neither scale to cover
most destinations nor operate at a small enough timescale
to ensure timely recovery. Secondly, there are many faults
which do not directly pertain to routing [8], such as middlebox
misconfiguration or hardware malfunctions. For these kinds
of faults, routing-based approaches are completely ineffective.
Finally, fault reparation purely at the network layer often
disregards (and can even potentially disrupt) the transport layer
by causing out-of-order delivery of packets.

Software-Defined networking (SDN) [9] is a promising tool
for improving network resilience. By decoupling the control
and data planes, SDN provides vastly improved flexibility
for scalable, policy-based network control. However, network
resilience problems cannot be solved by this flexibility alone.
Instead, what is needed is a cross-layer approach that bridges
the gap between the transport and the network layers and
provides end-to-end insight into network routing decisions.

This paper presents INFLEX, an SDN-based architecture
for cross-layer network resilience which provides on-demand
path fail-over for IP traffic. INFLEX operates by allowing
an SDN-enabled routing layer to expose multiple routing
planes to the transport layer. Hence, traffic can be shifted
by one routing plane to another as a response to end-to-end
failure detection. INFLEX then operates as an extension to the
network abstraction provided by IP, and can be used by any
transport protocols. While this architecture requires changes
across both network and host, it is deployable because it can
be adopted unilaterally, providing benefits even when used by
individual domains, and is inherently end-to-end, potentially
covering third party failures.

At the host, the proposed architecture allows transport
protocols to switch network paths at a timescale which avoids
flow disruption and which can be transparently integrated into
existing congestion control mechanisms. Within the network,
INFLEX provides both greater insight into end-to-end path
quality, assisting fault detection, and more control over flow
path assignment, enabling more effective fault recovery. In ad
dition to describing our architecture design and justifying our

Physical hosts

VM 1 VM 2

Fig. 1: SDN architecture

DomU

DomO

design choices with extensive network measurements, we also
implement INFLEX and verify its operation experimentally.
We make our modifications to both the TCP/IP network stack
and a popular OpenFlow controller [10] publicly available.

The remainder of the paper is structured as follows. Section
II provides a brief background on software-defined networks.
Section III reviews some of the design decisions in the light
of longitudinal measurements performed on the MA WI dataset
[11]. An overview of the proposed architecture is the presented
in Section IV, followed by an evaluation of INFLEX in Section
V. Finally, conclusions are drawn in Section VII.

II. OPENFLOW BACKGROUND

Software defined networks decouple the data plane and
control plane, allowing both to evolve independently. A tradi
tional instantiation of a software defined network for datacen
ters is shown in Figure 1. Each physical host runs a number of
virtual machines, each connected locally through a software
based edge switch (such as Open vSwitch [12]) running on
the underlying physical host operating system. This switch
is in turn connected to further forwarding devices, ensuring
access to a wider network. The forwarding logic of each device
can be accessed and configured by a controller through the
establishment of a control channel through a common protocol,
of which OpenFlow is the most widely used [9]. Both software
and physical switches are indistinguishable from a controller's
perspective: how a device implements OpenFlow is immaterial,
so long as a forwarding device conforms to the given API.

An OpenFlow flow table is composed of multiple flow
entries. Each flow entry is comprised of a pattern to be
matched, and the corresponding instructions to be executed.
The match fields over which an entry can be compared span
from data link to transport layers, covering not only source
and destination addresses at each protocol header, but also
traffic classes and labels for VLAN, MPLS and IPv4 headers.
Additionally, a counter keeps track of the number of times the
entry is matched. If more than one matching entry is found,
only the entry with the highest priority is processed. Finally,
each entry has a pair of timeout values: a soft timeout, within
which an entry is expired if no matching packet arrives, and
a hard timeout, by which an entry is irrevocably expired. If
neither timeout is set, a flow entry persists indefinitely.

An Open Flow switch in turn maintains multiple flow tables.
Every packet received at an OpenFlow compliant switch is

processed along a pipeline which starts by matching the
packet against table O. From this first, default table, cor
responding instructions may redirect the packet for further
matching against another table, thereby chaining processing.
This pipeline processing ceases once a matching entry fails to
include a redirection request, with the accumulated instruction
set being executed. In addition to redirections, valid instruc
tions include modifying packet fields, pushing and popping
packet tags, and defining through which ports a packet should
be forwarded. If at any point no matching entry is found,
the packet is buffered at the switch, and the truncated packet
header is sent to the controller. Based on the header contents, a
controller may decide to install a new flow entry on the switch,
or allow the packet to be dropped altogether. Compared to
the underlying, abstracted network elements which compose
the data path, the controller is often expected to be entirely
software based, and as such is not constrained in how it
should process packets. In practice, this freedom is curbed as
increasing complexity at the controller both reduces the rate
at which packets are processed, as well as increasing latency
for packets buffered at the switch.

The overall performance of the described architecture is
subject to two further critical tradeoffs. Firstly, the granularity
at which flow entries are installed determines how often a
controller is called to intervene. While installing an entry at a
flow granularity may allow fine-grained control of resources,
it increases both the load on the controller and the latency of
the withheld packet. Conversely, as the granularity becomes
coarser, the overhead incurred by the controller is reduced at
the cost of flexibility in controlling traffic. Secondly, controller
placement is critical [13]. At one extreme, a fully centralized
controller is omniscient within a domain at the expense of
reliability and scalability. At the other, a distributed system of
controllers forsakes consistency and Iiveness in order to scale.

III. DESIGN CONSIDERATIONS

SDN provides an abstraction over which different archi
tectural paradigms can be adapted and even coexist. It does
not however prescribe or advocate a specific design - net
work practitioners must still consider system properties when
grappling with fundamental tradeoffs affecting consistency,
isolation, reliability and efficiency.

This section provides design considerations for scalable
traffic management based on observations obtained across a
longitudinal analysis of interdomain traffic. The dataset used
is a five year subset of the unanonymized MAWI traces [11],
spanning from late 2006 to early 2012. In addition to the
raw packet traces, collected for 15 minutes every day, both
source and destination IPs are mapped to the respective AS
by reconstructing archived BGP routing dumps archived at
routeviews. Both routing information and traffic traces are
collected from the same point - within the WIDE AS - which
provides transit for a Japanese research network.

Ideally resilience could be implemented at the transport
layer alone, for the same motives rate control is best left to end
hosts: ultimately, the host is best positioned to detect end-to
end path faults and can often react over shorter timescales than
the network, which must concern itself with reconvergence.
This approach for path fail-over was a significant feature in

1.00

0.75

o
".g0.50
rr:

0.25 . ,

'-.

,,"' .. ,

-

.'
,

0.00 .L.,-----.-�.___-..----_r_____, 2007 2008 2009 2010 2011 2012
Date

1.00

<U 0.75
ro Direction

Outoound u
E Q)

0.50 <f>

'0 Year

-Inbound

Type
0 2007
� 2008 -----cr: 0.25 2009 --

- - Rows
-Bytes

2010 _._.-

2011 --

Number of networks

(a) Windowscale deployment (b) CDF of outbound traffic by prefix

Fig, 2: Longitudinal traffic properties for the MAWI dataset. Fig. 3: INFLEX stack.

SCTP [1]. Unfortunately, deployment of SCTP has been neg
ligible in over a decade since standardization, in part because
the pervasiveness of middleboxes has significantly affected the
ability for new transport protocols to be deployed. More re
cently Multipath TCP [2] has been proposed addressing many
of the same concerns as SCTP whilst maintaining the same
wire format as TCP, thereby ensuring middlebox compatibility.
Despite this, widespread deployment is far from guaranteed,
and is largely tied to the rate of as adoption. As a reference
point, Figure 2a tracks the use of the TCP windowscale option
by overall volume in flows and bytes across both directions
in the MAWI dataset. Without windowscale negotiation, a
sender's congestion window cannot exceed 65KB. Despite
offering a clear benefit to both endpoints, being simple to
implement and incurring a low overhead, windowscale deploy
ment has only recently picked up momentum, two decades
since standardization. Expecting substantial deployment of a
more complex and costly extension such as MPTCP over the
near future is likely optimistic. Critically, transport extensions
require receiver adoption and are therefore subject to the
willingness and ability of users to upgrade their as.

Receiver side deployment of even modest TCP exten
sions can be protracted, even when incentives are aligned.
Rather than proposing a path for incremental deployment, this
work focuses on how to obtain similar benefits immediately
- modifying sender side hosts only. A host, however, cannot
directly affect routing without changing destination address,
which would break legacy TCP receiver side implementations.
Additional extensions are required on the sender side network
to enable multipath forwarding. Conventional wisdom suggests
that maintaining parallel routing planes requires a proportional
increase in table size [14], which itself can be subject to
exponential growth. In practice however, this state can be sig
nificantly reduced by forsaking coverage for a small proportion
of traffic. Rather than reflect the entirety of its potential path
diversity for all traffic, an edge provider can instead provide
additional routing planes for only a subset of popular prefixes.

The extent to which such a gain is possible for the MAWI
dataset is quantified in Figure 2b, which displays the cumula
tive distribution function of outbound traffic across network
prefixes announced by BGP neighbours. Over five years,
traffic to approximately 340,000 unique prefixes was observed.
Invariably however, an increasing amount is sent to a small
group of prefixes - by 2011, over 50% of traffic went to the

top 100 prefixes alone. This reflects ongoing structural changes
in the Internet architecture as content providers interconnect
directly edge, eyeball networks, and content becomes increas
ingly consolidated across a set of large content providers and
national and regional ISPs.

Multipath routing state can be significantly reduced
by covering fewer destinations while still benefiting most
traffic. Within the MAWI dataset virtually all inbound and
outbound traffic could be mapped to 10,000 unique network
prefixes. Existing SDN tools such as RouteFlow [15] are
already capable of overlaying routing on commodity switches,
but the incurred overhead can still be a concern for produc
tion networks. Rather than address the scalability challenges
inherent to multipath routing directly, these results suggest that
a tangible deployment path lies instead in reducing the scope
over which it is applied.

IV. ARCHITECTURE

This section describes INFLEX, an architecture which
provides edge domains with greater end-to-end resilience.
Rather than probing paths through active or passive means,
the network delegates the responsibility for fault detection to
end-hosts. The system relies on packet marking at the host
to select a path through the local domain. This provides far
greater scalability in terms of the proportion of traffic and
destinations which can be covered, at the cost of requiring
small changes to the end-host TCP/IP stack. INFLEX is
therefore particularly suited for managed environments, such
as datacenters or enterprise networks, which not only have
greater control over the end-host operating system, but also
generate large volumes of traffic towards destinations which
cannot be readily upgraded.

An overview of the proposed architecture as applied to a
single domain is shown in Figure 4. Hosts are connected to
the local network through an OpenFlow-enabled edge switch.
While edge switches typically reside within each physical
machine, alternative aggregation levels such as the top of
rack or end of row may also be used. Each such switch is
configured by a specialized controller which resides locally,
referred to as an inflector. The local network is configured
by a centralized routing controller to provide multiple virtual
routing planes. While these planes are necessarily intradomain
in scope, some degree of interdomain diversity can also be
achieved by changing egress node.

Forwarding planes

INFL
interior forwarding label

Fig. 4: INFLEX architecture (above) and INFLEX header
(below). The edge switch forwards traffic across virtual planes
set up by a centralized routing service.

The core of the architecture relies on repurposing the
Differentiated services (DS) field in each IP packet to provide
an in-band signalling channel between the end-host and the
inflector. The header on inbound traffic is set by the edge
switch and read by the host, and is used by the inflector to
signal which plane a flow has been assigned to. The header
on outbound traffic is set by the host and read by the edge
switch, and is used by the transport protocol to ensure that all
traffic for the flow is forwarded along the given plane. Hosts
can request a new plane to be assigned by the inflector in
case of an end-to-end path fault; this provides efficient cross
layer failure recovery. The DS standard [16] reserves a pool
of code points for local use identified by setting the right-most
bit, henceforth referred to as the INFLEX flag. When set, the
rest of the DS field should be interpreted as containing two
fields, shown in Figure 4. An Interior Forwarding label, which
determines the plane over which a packet is forwarded, and an
echo bit, which explicitly signals a request from the host or a
reply from the network. The remainder of the description of
INFLEX is split across its main components: the end-hosts,
the edge switch and the inflector.

A. INFLEX end-hosts

INFLEX hosts set the INF label of outbound packets
according to the value assigned by the inflector, in a similar
fashion to the path re-feedback mechanism introduced in [l7].
The changes required to support this at the sender side network
stack are minimal, and are illustrated in Figure 3. Every
transport connection occurs over a socket, a local structure
containing the variables associated to the ongoing flow. At
the network layer, the local socket has a DS value which is
copied to every outbound packet (point 1). Within INFLEX,
the transport protocol can trigger a request (point 2), which
leads to a network response contained in incoming packets
(point 3).

Assume a transport protocol wishes to switch the plane it
is currently assigned. With INFLEX, it can send an inflection
request by setting the echo bit of the local DS field (point 2,
Figure 3). All subsequent outbound packets will be marked
with the resulting value. The network layer then proceeds to
inspect inbound packets, waiting for a network response, as
delineated in Figure 5. After demuxing an incoming packet,

1
2 if (is_inflex(pkt))
3 if (! is_inflex (sock) I I
4 (is-pending(sock) && is_reply(pkt))) {
5 copy_label (sock, pkt);
6 clear_echo(sock);
7
8
9 else if (is_inflex(sock))

10 clear_inflex(sock)
11

Fig. 5: Pseudo-code for packet reception using INFLEX.

pkt, to the corresponding socket, sock, a receiver first verifies
whether the INFLEX flag is set on the incoming packet
(line 2), establishing whether the underlying network supports
INFLEX for the given connection. The receiver must then
decide whether it should change the virtual plane the socket is
currently assigned. This can only happen under two conditions.
Firstly, if the DS value for the current socket does not have
the INFLEX flag set (line 3). This typically occurs on flow
start, where a connection is spawned with a default DS value.
Secondly, if the local DS value has the echo bit set, there
is a pending inflection request. If the incoming packet has
the same bit set, it corresponds to the network reply (line 4).
Under both previous cases, the connection switches forwarding
plane by copy the interior forwarding label from the incoming
packet to the local socket, and setting the INFLEX flag (lines
5-6). These changes are all applied at the IP layer - transport
protocols need only to decide when to send inflection requests
- while applications can remain unchanged.

B. The edge switch

The edge switch is primarily responsible for mapping IN
FLEX marked packets to the appropriate forwarding plane. On
start up its datapath is configured by the local inflector, which
installs the appropriate flow entries on it in order to construct
the processing pipeline in Figure 6. This pipeline can be
partitioned into three distinct blocks, responsible for triaging,
policing and inflecting packets. For clarity, the processing
pipeline is conceptually described as a sequence of flow
matches across distinct tables. In practice, an implementer is
free to collapse flow tables and entries to improve performance.
An important safeguard is that a legacy pipeline must be
present, establishing a default forwarding plane expected to
be used by traffic to which INFLEX is not applicable.

The triage phase is responsible for distinguishing whether
a packet is capable of using INFLEX. Firstly, INFLEX is only
applicable to IP packets. Traffic is then differentiated according
to the port on which the packet arrived: if connected to a host,
the interface is said to be internal, otherwise it is external.
Any inbound IP traffic may potentially be INFLEX capable
and as such can proceed to the next stage. For outbound IP
traffic, only packets with the INFLEX flag set require further
processing. Packets for which this flag is not set are assumed
to be legacy traffic.

The policy phase decides whether a packet is permitted
to use INFLEX. For either direction, a packet is compared
against a policer table, which contains a set of rules describing
local policy concerning INFLEX usage. The rules applied to

Fig. 6: Pipeline installed to the edge switch datapath.

each direction however may differ, particularly since outbound
packets can be further scrutinized according to the INF label.
For example, this allows the outbound policer to enforce which
virtual planes are available to specific tenants or applications.
For this reason, the action applied if a packet is matched
within the policer table also differs according to direction.
For inbound traffic, a matching rule indicates that the packet
does not satisfy local requirements for INFLEX use, and is
consequently treated as legacy traffic. For outbound traffic,
a packet is already marked as being INFLEX capable. Any
matching entry therefore indicates that it is in violation of
local policy and should consequently be dropped.

Finally, the inflex phase processes the respective header
and forwards the packet. A packet is first matched against an
inflection table in either direction. This table is detailed in the
next section, and can be assumed to contain no matching entry
initially. For outbound traffic, the packet is typically redirected
to the plane mapped by the interior forwarding label. The one
exception are inflection requests, which are forwarded to the
local inflector for further processing. For inbound traffic, the
INFLEX flag is marked in order to notify hosts that the flow is
INFLEX capable, and the packet is then processed according
to the legacy pipeline.

C. The inflector

Each edge switch is controlled by an inflector, an SDN
controller expected to reside locally. An inflector is firstly
responsible for configuring the underlying datapath according
to the previously described pipeline. Secondly, an inflector
must process inflection requests.

Inflection requests require network intervention in assign
ing a packet to a forwarding plane. The dynamic nature of
this decision process cannot readily be instantiated as a set
of static rules at the edge switch, since a same flow must

be able to be reassigned to a different plane in case of path
faults. Therefore, inflection requests intercepted at the edge
switch must be sent to a controller for further processing.
Rather than overloading a centralized controller however, this
decision can be taken locally - since the inflector manages
the local rules associated to each virtual network, it already
has full knowledge of the routing table associated to each
plane. Upon receiving such a request, the inflector proceeds
in three steps. It first verifies which virtual networks maintain
a valid route for the given destination address. Given this list of
potential planes, it then inspects local policy to verify which
planes the packet is allowed to use. The intercepted packet
contains the plane which the flow is currently using - this
plane should be excluded from the candidate list unless there
is no other option available. Finally, a single plane, identified
by an interior forwarding label, is selected from the resulting
list of candidates. The selection algorithm is not prescribed by
the INFLEX specification, but a reasonable baseline is to select
a routing entry proportionally to the assigned route weight.

Having selected an appropriate plane, the inflector installs
forwarding rules into either inflection table. In the inbound
direction, all packets matching the reverse flow are set to be
marked with the corresponding INF label. This conveys the
selected forwarding plane back to the host. In the outbound
direction, all packets matching the flow are to be processed
according to the label. This guarantees that any packet sent
between the inflection request and its response are forwarded
in a consistent manner. Rules installed to the inflection tables
are ephemeral by nature, with a hard timeout of 1 second
(the minimum permitted in the OpenFlow standard). This
enables per-flow granularity with minimum flow state while
also rate limiting inflection requests. Furthermore, flow entries
can be configured to be sent to the controller upon expiry. This
potentially allows the inflector to collect realtime information
on the availability of each forwarding plane, allowing for
further refinement of the plane selection algorithm.

V. ANALYSIS

This section details the evaluation of INFLEX as well as
details pertaining to its implementation. A reference implemen
tation of the inflector was developed as a component of the
POX network controller [10]. Additionally, INFLEX support
for TCP was added to the Linux kernel, and is available as
a small patch for version 3.8. All source code, as well as a
virtual machine to replicate subsequent tests, is being made
publicly available. The use of POX in particular invalidates any
rigorous performance evaluation, as the implementation is not
geared towards efficiency. Instead, the contributed code acts
as a proof-of-concept for INFLEX, allowing the mechanics of
the specification to be inspected and fine-tuned.

Open vSwitch 1.9 and OpenFlow 1.1 are used, enabling
multiple table support. Unfortunately, current versions of
OpenFlow do not support bitmasking the TOS field, and as
such ECN bits are cleared when assigning INFLEX tags.
This is a current limitation of OpenFlow which will likely be
addressed in future versions in order to support manipulating
the DS field while keeping the ECN field unchanged.

A simple evaluation scenario is used, illustrated in Figure
7. On one end is an INFLEX capable domain: a set of

Fig. 7: Simulation setup.

virtual hosts acting as servers connected to an Open vSwitch
edge switch controlled by an inflector. On the other end is
a remote client. Typically this is an end-user device outside
network operator control. We assume that the client is running
a legacy network stack and connected to a switch with no SDN
functionality. A single physical connection between the client
and this switch acts as the bottleneck for all flows, with the
bandwidth set to 10Mb/so The edge switch has four potential
planes over which it can forward traffic between the servers
and the client. We simulate failures within the INFLEX domain
by artificially dropping all forwarded packets belonging to a
given plane; we denote this plane as being down. At any given
moment one of the four available planes is down; each such
simulated failure lasts for 15 seconds at a time, affecting planes
cyclically. The reverse path, connecting from client to server,
is always assumed to be functional. Propagation delay between
both switches is set to 50ms.

A. Sender-side resilience

The first case study under review is one of the most
common use cases for datacenters: a remote client download
ing data from hosted servers. Under the conditions described
previously, the forwarding path will be periodically affected
by recurring failures. Since the nature and the origin of the
fault are not always apparent to network devices, it is assumed
that network elements within the INFLEX domain have no
indication of the ongoing failure. Instead, it is up to the
servers to detect and recover from perceived problems by
issuing inflection requests. Clearly, requesting a path incurs
some cost to network and host alike. For the network, an
inflection request requires additional processing. For the host,
this processing manifests itself as increased delay. This begs
the question: when should a host request an inflection? The
obvious candidate is to piggyback inflection requests on re
transmissions spawned by retransmission timeouts (RTO). This
leverages an existing transport mechanism which is well un
derstood and only triggered under anomalous path conditions
(as opposed to congestive losses). From the perspective of the
host, any delay incurred by the inflection request is amortized
by the retransmission timeout itself, which has a minimum
value of 1 second. From the perspective of the network, such
inflection requests should be both rare, reducing the amount
of processing required, and critical to improve availability,
justifying the expense in addressing them.

Figure 8 displays the congestion window over time for two
concurrent flows towards a remote client. The first connection
traced is a download from a server without INFLEX support,
in which all packets are forwarded over the default path.
The vertical lines signal the points at which the default
forwarding path, plane 0, fails. Despite only failing for 15sec,

§' 150
c:
Q)

E g>
�100
�

I" N, �
8 o�---r--�--�--r-�--�---r--�

$150
c:

15 30 45 60 75 90 105 120
Time (seconds)

Q)

E
; ; t ; g> � .. ,.
H

i :� .. '1 �
(J) I :: : I 1"1'1 " , -100 i :: :!. i :f �i.: III i
� . f fL·' . 1 'I: fVi,1 .
� : ! '

� i ,. 'fHr
�

50
I j i : / : � � � : � : �

8 o � __ -r;i __ � __ � __ r-�:_: __ � __ r: __ �
15 30 45 60 75 90 105 120

Time (seconds)

Forwarding
plane
-0

Forwarding
plane
-0
···· 1

--· 2

Fig. 8: Congestion window for concurrent downloads towards
client from legacy (above) and INFLEX (below) servers.

the disruption to the transport flow lasts twice as long due
to the exponential nature of the retransmission timeout, which
doubles in duration at each occurrence. The second connection
traced is a download occurring in parallel from an INFLEX
capable server. In this case, each path failure is recovered by
sending an inflection request on each retransmission timeout.
The returned path is randomly assigned, as our basic proof
of-concept inflector does not currently keep track of network
conditions. The time between path failure and flow recovery
is directly tied to the RTO, in this case taking approximately
one second. This value cannot be improved upon within the
INFLEX framework, as the duration of flow entries introduced
by inflection requests has a minimum timeout of 1 second.
Conveniently however, this matches the lower bound of the
RTO as defined by TCP, and it is therefore unlikely that a
transport protocol would desire faster fail-over. In practice,
the recovery time may be extended in order to account for
spurious timeouts. For connections over wireless media in
particular, timeouts may occur due to transient effects such
as interference. While this is functionally equivalent to path
failure, the transient nature of such events does not always
require changes to the forwarding path.

An interesting implication of Figure 8 is that TCP senders
using INFLEX can accommodate path fail-over seamlessly.
Retransmissions conveniently distinguish between congestion
events, triggering fast retransmission and similar heuristics,
and pathological network conditions, which spawn repeated
retransmission timeouts. In the case of the latter, the adopted
response is to reset the congestion window and resume slow
start - effectively restarting the flow. This behaviour is ex
tremely conservative, but is a natural corollary of assuming as
little as possible about the underlying network. As a result,
no substantial change is required to the congestion control
mechanisms employed by TCP in retrofitting cross-layer path
fail-over at the sender using INFLEX.

B. Receiver-side resilience

Path failures can also affect the reverse path with equally
nefarious consequences: the sender will repeatedly timeout in

I I�-f'

15 30 45 60 75 90 105 120
Time (seconds)

Upload
destination

IN FLEX
- - Legacy

Fig. 9: Concurrent uploads from client towards servers.

30.0
10.0

'" -g 3.0
8 .e 1.0
'"
E 0.3
;::

0.1

30.0
10.0

"'
1? 3.0
0
<.> '" 1.0 �
'"
E 0.3
;::

0.1

15 30 45 60 75 90 105 120
Time (seconds)

.. +

+

+

15 30 45 60 75 90 105 120
Time (seconds)

RTT
Forwarding
plane

• 0

RTT
Forwarding
plane

· 0
· 1
• 2
+ 3

Fig. 10: Data packet inter-arrival time for legacy (above) and
INFLEX (below) receivers.

the absence of acknowledgements from the receiver. Unlike
failures affecting the forward path however, the INFLEX
host does not actively track the reliability of the ongoing
connection. TCP is sender driven, with receivers primarily
generating acknowledgements as a response to inbound data.
Hence, the reverse path lacks the reliable delivery mechanisms
available in the forward path; if the TCP Timestamp option
is not used, the receiver often lacks even an accurate RTT
estimate. Furthermore, in the absence of data packets to be
sent, there is no RTO on which to trigger inflection requests.

A receiver must instead rely on inferring path failure
from the packet inter-arrival time when generating duplicate
acknowledgements. With the exception of cases where imme
diate receiver feedback is required, such as a TCP timestamp
request, duplicate acknowledgements are typically sent on the
arrival of out-of-order data. Under path failure, the arrival time
between such out-of-order events will rise exponentially as
the sender TCP stack becomes tied to its own retransmission
timeout. This behaviour is illustrated in figures 9 and 10, which
show the result of using INFLEX with the same experimental
setup but a reversed flow of data. Figure 9 displays the
evolution of the congestion window size over time as the client
uploads data concurrently to both a legacy and an INFLEX
server. While the single forwarding path does not experience
outages, the reverse path is periodically affected by failures.
The corresponding data packet inter-arrival time is shown in
Figure 10, with each sample point also displaying the routing
plane used. For an ongoing TCP flow with sufficient data from

lO'.l.......1r--....,.---,----r---r-----,
2007 2008 2009 2010

Date
2011 2012

Entry duration
- Flow length
- - Minimal

Flow type
-All

Data

Fig. 11: Mean flow state for outbound traffic

the application layer the packet inter-arrival time at the receiver
should be consistently low. RTT level dynamics are apparent
on slow start, in which the sender is clocked by incoming
ACKs, and during congestion events, in which out-of-order
delivery temporarily affects the throughput. On path failure
however, the inter-arrival time increases exponentially, with
each inbound packet triggering a duplicate acknowledgement.
For the upload to the legacy server, successive RTOs result in
a recovery time of nearly 30sec.

An INFLEX receiver can use this information to decide
when to trigger an inflection request. It can achieve this
by setting a threshold for the time elapsed between dupli
cate acknowledgements, henceforth referred to as dupthresh.
Comparatively to the sender, the receiver should be more
conservative, as by design it has less information on which to
act upon and does not typically exert control on the congestive
feedback loop. Furthermore, neither sender nor receiver can
reliably detect whether the forward or reverse path are at
fault. By acting conservatively, a receiver allows the sender,
which may also be INFLEX capable, to initiate recovery
before trying to correct the reverse path. For the experiment
displayed in Figure 10, the dupthresh is set to twice the RTO,
resulting in an overall downtime of approximately 3 seconds.
Since each data point is generated on inbound data packets,
recovery is signalled by a packet pair. A first inbound packet
exceeding dupthresh triggers an inflection request, which
piggybacks on the acknowledgement sent out in response.
A second inbound packet returns approximately 1 RTT later
with the forwarding plane assigned by the network attached.
Clearly some failures may not be recoverable, particularly if
the remote host is not INFLEX capable and the fault lies on
the reverse path. Nonetheless, the overhead incurred at the
host is negligible, merely complementing congestion avoidance
mechanisms with additional signalling. Remarkably, INFLEX
incurs no additional memory costs at the host, operating as
an extended API over the existing ineCconnection socket,
rendering it equally applicable to all transport protocols which
use this socket structure, such as SCTP and DCCP.

C. Network overhead

The granularity at which an SDN deployment should
manage traffic is often subject to debate. On one hand, hard
ware advances such as TCAMs offer fast lookup times over
large tables, affording flow precision for many potential SDN

deployments. On the other, deployments will often include
cheaper, more flexible software switches which are less capable
of scaling performance with the number of flow entries.
Importantly, operating on a per-flow granularity is more likely
to overload the controller, which itself can be a considerable
source of latency. As a result, managing flow aggregates is
often the preferred means of reducing this overhead, at the
cost of flexibility in affecting flows individually.

INFLEX does neither strictly, exerting network control at a
sub-flow granularity while pushing flow state to the end-host.
Figure 11 investigates the relative expected overhead incurred
by the network on adopting such an architecture. The graph
tracks the mean flow state from applying different flow entry
policies for outbound traffic in the MAWI dataset. The solid
lines track the resulting flow table size if traditional per-flow
state were maintained, with every unique five tuple inserting
a table entry for the entirety of the flow's lifetime. This is
equivalent to the mean number of flows at the observed link
and is further refined according to whether data was traced for
the unique five tuple. For domains which exchange traffic with
the wider Internet, per-flow state can be particularly crippling
as malicious SYN floods and port scans regularly inflate the
required state in the network. Such attacks had visible impact
in 2011 in particular, nearly doubling the number of flows.

INFLEX however inserts ephemeral rules in response to
inflection requests. For the worst possible case, all existing
flows would trigger an inflection request simultaneously -
matching the overhead incurred by a per-flow approach. In
practice even this is overly pessimistic, as an inflector could
resort to a per-aggregate granularity in the case of widespread
outages. Actual network state would strongly depend on the
exact inflection strategy adopted by the transport protocol.
One practical reference point is to investigate the resulting
overhead if paths were requested on flow start, as this number
will exceed retransmission timeouts under normal operating
conditions. This is further illustrated in Figure 11, which
also tracks flow table size if each unique five tuple were to
only generate a flow entry for 1 second, the minimum expiry
time for OpenFlow. This is functionally equivalent to the flow
arrival rate, and determines the expected number of requests
per second sent to the controller. The resulting flow table size
is reduced dramatically in comparison to the traditional case
where state is allocated for the duration of the flow, and the
order of magnitude difference is crucial for software switches
in particular. However, under such conditions state becomes
more strained by the large fluctuations imposed by DOS
attacks, suggesting that inflection requests should only be used
after connection establishment; this corresponds to the grey
dotted line in Figure 11. Importantly, such an approach also
opens the possibility of using inflection requests for assisting
traffic management in addition to enabling improved resilience.

VI. ACKNOWLEDGEMENTS

This research has received funding from the Seventh
Framework Programme of the European Commission, through
the FLAMINGO Network of Excellence (318488) and the
ALIEN (317880) projects.

VII. CONCLUSIONS

This paper presented INFLEX, a scalable and easily de
ployable end-to-end resilience framework based on the cross
layer control of an SDN-enabled network layer. The proposed
architecture is shown to perform end-to-end path fail-over
on much shorter time scales than existing solutions and is
inherently modular, providing failure recovery through cooper
ation between end-hosts and the IP network. In comparison to
reliability mechanisms operating purely at the transport layer,
INFLEX enables resilience when communicating with legacy
endpoints and does not require host multi-homing. Conversely,
when compared to mechanisms operating purely at the net
work layer, INFLEX provides end-to-end visibility into path
failures, allowing both fast detection and fine-grained network
control over recovery. The architecture design presented is
implemented as a set of extensions to the Linux kernel and
a popular Open Flow controller and evaluated experimentally,
demonstrating that high availability over multiple routing
planes can be achieved without compromising scalability.

REFERENCES

[1] R. Stewart, "RFC4960: Stream Control Transmission Protocol," IETF,
Sep. 2007. updated by RFCs 6096. 6335.

[2] D. Wischik, M. Handley, and M. Braun, "The resource pooling princi
ple," ACM SIGCOMM CCR, vol. 38, no. 5, 2008.

[3] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, "Achieving sub
second IGP convergence in large IP networks," ACM SIGCOMM CCR,
vol. 35, no. 3, 2005.

[4] S. Bryant, C. Filsfils, S. Previdi, and M. Shand, "IP Fast Reroute using
tunnels," IETF Internet draft, 2007.

[5] R. Torvi, A. Atlas, G. Choudhury, A. Zinin, and B. Imhoff, "RFC5286:
Basic Specification for IP Fast Reroute: Loop-Free Alternates," IETF,
Jan 2008.

[6] S. S. Lor, R. Landa, and M. Rio, "Packet re-cycling: eliminating packet
losses due to network failures," in Proc. of ACM SIGCOMM HotNets,
2010.

[7] w. w. T. Fok, X. Luo, R. K. P. Mok, W. Li, Y. Liu, E. W. W. Chan,
and R. K. C. Chang, "MonoScope: Automating network faults diagnosis
based on active measurements," in Proc. of IFfP!IEEE 1M, 2013.

[8] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, "California
fault lines: understanding the causes and impact of network failures,"
ACM SIGCOMM CCR, vol. 41, no. 4, Aug. 2010.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, "OpenFlow: enabling innovation
in campus networks," ACM SIGCOMM CCR, vol. 38, no. 2, Mar. 2008.

[10] "POX OpenFiow Controller," http://www.noxrepo.org!pox.

[II] K. Cho, K. Mitsuya, and A. Kato, "Traffic data repository at the WIDE
project," in Proc. of USENIX ATC, 2000.

[12] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
"Open vSwitch: Extending networking into the virtualization layer," in
Proc. of ACM SIGCOMM HotNets, 2009.

[13] B. HeUer, R. Sherwood, and N. McKeown, "The controller placement
problem," in Proc. of ACM SIGCOMM HotSDN, 2012.

[14] N. Wang, K. Ho, G. Pavlou, and M. Howarth, "An overview of routing
optimization for internet traffic engineering," IEEE Communications
Surveys & Tutorials, vol. 10, no. 1, pp. 36-56, 2008.

[IS] c. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A.
Correa, S. Cunha de Lucena, and R. Raszuk, "Revisiting routing control
platforms with the eyes and muscles of software-defined networking,"
in Proc. of ACM SIGCOMM HotSDN, 2012.

[16] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
"An architecture for differentiated services," 1998.

[17] J. Taveira Araujo, R. Clegg, I. Grandi, M. Rio, and G. Pavlou,
"Balancing by PREFLEX: congestion aware traffic engineering," in
Proc. of IFfP NETWORKING, 2011, pp. 135-149.

