
A Scalable Real-time Monitoring System for Supporting Traffic Engineering 
 

Abstract— Quality of service based value-added services in IP 
networks necessitate the use of traffic engineering. The latter 
relies typically on monitoring data for both offline, proactive and 
dynamic, reactive solutions. A monitoring system should be 
scalable in terms of network size, speed and number of customers 
subscribed to value-added services. This article investigates the 
requirements of scalable monitoring system architectures, 
proposes principles for designing such systems and validates 
them through the design and implementation of a scalable 
monitoring system for QoS delivery in IP Differentiated Services 
networks. Experimental assessment results are also presented. 
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I. INTRODUCTION 
Monitoring systems are becoming increasingly important for 
providing quantified Quality of Service (QoS) based services 
and service assurance. Traffic Engineering (TE) can be 
defined as a set of techniques that allow service providers to 
maximize network resource utilization, while at the same time 
meet the QoS demands of services contracted to customers. 
Traffic engineering deals mainly with performance 
optimization of operational IP networks and encompasses the 
application of principles to the measurement, characterization 
and control of traffic [1]. Traffic engineering algorithms need 
typically an overview of the network status for their dynamic 
reactions. The functionality that delivers this information is 
viewed as operational measurements. 

In Differentiated Services (DiffServ) [2] networks, routers 
process aggregate traffic that belongs to several service classes 
according to predefined QoS policies. In this paper, we 
assume that the QoS requirements of a customer are described 
in a Service Level Specification (SLS) [3], which is the 
technical part of a Service Level Agreement (SLA) between 
the customer and the provider. By QoS, we refer to a service 
offering where one or more traffic and performance 
parameters (i.e., throughput, delay, loss, and/or delay 
variation) are quantified [3]. As the network attempts to offer 
several service types by employing traffic engineering 
mechanisms, e.g., hard real-time traffic, Virtual Private 
Networks (VPNs), best-effort services, etc., service 
monitoring is important for providing end-to-end QoS and 
service assurance. In this context, monitoring does not just 
have a diagnostic role but becomes an important tool for 
supporting the network operation and providing service 

auditing for both traditional and value-added services. Given 
the multitude of services with different QoS requirements, 
measurement information needs to be collected at a finer 
granularity than per ingress-egress node pairing. 

A. Related work 
A large amount of work has gone into developing 

mechanisms and protocols for performance and traffic 
measurements. This includes the work of Internet Engineering 
Task Force (IETF) groups such as IP Performance Metrics 
(IPPM). The developments on monitoring systems have 
mainly been focused on path performance analysis. Relevant 
activities include the RIPE Network Coordination Center that 
has implemented a number of the measurement protocols 
defined by IPPM; the CAIDA (Cooperative Association for 
Internet Data Analysis) measurement environment that uses 
the Skitter tool for gathering QoS related data; and the 
NLANR (National Laboratory for Applied Network Research) 
Network Analysis Infrastructure, and NIMI (National Internet 
Measurement Infrastructure) [4] that combine active and 
passive measurements for network path monitoring. 

In comparison, little work has been done to use 
measurement information for tackling network performance 
degradation and managing congestion in operational networks 
in real time. NetScope [5] provides a set of software tools for 
traffic engineering of IP backbone networks by using network 
measurements to update the network configuration set-up in 
non-real time fashion. Rondo [6] is an automated control 
system that uses a monitoring system to react to and manage 
congestion in MPLS (Multi-Protocol Label Switching) traffic-
engineered networks in near real time. An intra-domain 
monitoring system for DiffServ networks is described in [7] 
that supports resource control and end-to-end QoS evaluation 
and validation of network services based on SLAs and traffic 
classes. 

In summary, a large amount of information is needed for 
traffic engineering large operational IP networks and for 
service level monitoring for a large number of customers. 
Scalability is thus a big challenge for monitoring systems and 
necessitates suitable system architectures for achieving 
scalable monitoring in near real-time.  

This paper addresses the scalability issues of monitoring 
systems, proposes principles for designing and assessing such 
systems and describes an example system designed and 
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assessed according to those principles. The presented system 
supports both real-time service level monitoring and also 
monitoring for traffic engineering support in MPLS-based 
DiffServ-capable networks. 

II. MONITORING REQUIREMENTS 
Traffic engineering is achieved through capacity and traffic 

management. These two are realized with capacity planning, 
routing control, resource management including buffer and 
queue management and other functions that regulate and 
schedule traffic flow through the network in order to 
accommodate as many customer requests as possible, while at 
the same time satisfying their QoS requirements. The state 
dependent traffic engineering functions require the 
observation of the state of the network through a monitoring 
system and applying control actions to drive the network to a 
desired state. This can be accomplished by reacting through 
control actions in response to the current state of the network 
and/or by pro-actively using forecasting techniques to 
anticipate future traffic demand and pre-configure the network 
accordingly. 

A monitoring system should provide information for the 
following three categories of tasks:  
1. Assist traffic engineering in making provisioning 

decisions for optimizing the usage of network resources 
according to short to medium term changes. The ability to 
obtain statistics at the QoS-enabled route level is 
important and, as such, an essential requirement. This 
information can be used for taking appropriate actions on 
setting up new routes, modifying existing routes, 
performing load balancing among routes, and re-routing 
traffic.  

2. Assist traffic engineering in providing analyzed traffic 
and performance information for long-term planning in 
order to optimize network usage and avoid undesirable 
conditions. The analyzed information includes traffic 
growth patterns and congestion indications. 

3. Verify whether the QoS performance guarantees 
committed in SLSs are in fact being met. SLSs can differ 
depending on the type of services offered and different 
SLS types have different QoS requirements that need 
processing different types of information [8]. In-service 
verification of traffic and performance characteristics per 
service type is required. 

Traffic engineering must be viewed as a continual and 
iterative process of network performance improvement. The 
optimization objectives may change over time as new 
requirements and policies are imposed, so monitoring systems 
must be generic enough to cope with such changes. 

III. MEASUREMENT DATA AND METHODS  
Monitoring can occur at different levels of abstraction. 

Measurements can be used to derive packet level, application 
level, user/customer level, traffic aggregate level, node level, 
and network-wide level information. Measurements include 
one-way delay, packet delay variation, one-way packet loss, 

traffic load and throughput. There exist two types of methods 
to perform low level measurements in a monitoring system: 
active and passive measurements. 

Active measurements inject synthetic traffic into the 
network based on scheduled sampling in order to observe 
network performance. Active measurement tools require co-
operation from both measurement end-points. In the case of 
measuring one-way delay, end-point clocks need to be 
synchronized. Therefore, methods like the Network Time 
Protocol (NTP) [9], Global Positioning System (GPS) or other 
Code Division Multiple Access (CDMA) based time sources, 
can be used. 

Passive measurements are used to observe actual traffic 
without injecting extra traffic into the network. While passive 
measurements do not require co-operation of end-points, they 
require continuous collection of data and monitoring of links 
at full load; the latter can be problematic on high-speed links. 
In both cases, the quality of analyzed information depends on 
the granularity and integrity of collected data. 

IV. PRINCIPLES FOR SCALABLE MONITORING SYSTEMS 
Scalability in QoS-enabled IP networks has three aspects: 

size of network topology, number and granularity of classes of 
service supported, and number of subscribed customers.  
Network topologies are characterized by a number of 
parameters, such as number of nodes, number of links, speed 
of links, degree of physical and logical connectivity, network 
diameter, etc. In IP QoS-enabled networks, supported services 
are mapped to a number of classes according to the DiffServ 
model; the latter has an impact on the scale of the monitoring 
system. A large number of subscribed customers requires 
subsequently a large amount of information to be gathered for 
service assurance.  

The scalability of the monitoring system is the ability of 
effectively deploying a system at the scale of a large network 
offering a number of services to a large number of customers. 
The monitoring system must have a number of design features 
for a wide range of monitoring tasks that ensure a scalable 
solution for delivering the expected performance. The 
monitoring tasks include data collection, data aggregation, 
data analysis, and providing feedback. A diverse variety of 
measurement data is needed in order to perform both network 
and service performance monitoring. The amount of 
measurement data increases in QoS-enabled networks because 
there exist a number of per class states (e.g. different queues) 
per interface and a large number of routes per class that must 
be monitored. Hence, scalable monitoring architectures must 
adhere to the principles described below and are summarized 
in Table I. 

A. Defining the monitoring process granularity 
In a DiffServ environment, the measurement methodology 

must be aware of different service classes. Traffic engineering 
algorithms should not operate at the level of individual 
packets, since collecting packet-level micro-flow related 
statistics is prohibitively expensive and non-scalable. Instead, 
statistics should be gathered at the aggregate macro-flow 
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level. In DiffServ, the measurement functions should operate 
at the level of Per Hop Behaviors (PHB) and traffic-
engineered paths carrying traffic of similar service classes. 

TABLE I.PRINCIPLES FOR BUILDING SCALABLE MONITORING SYSTEMS. 

Principle Scope and Action to be taken 

Defining the monitoring process 
granularity 

At DiffServ Per Hop Behavior and path 
level 

Distributing data collection 
system 

At node level 

Minimizing the measurement 
transmission overhead 

By employing event notification and 
summarization of statistics 

Using aggregate performance 
measurements in combination 
with per-SLS traffic 
measurements 

By carrying out performance 
measurements at path level and traffic 
measurements at SLS level 

Reducing the amount of synthetic 
traffic 

By using hop-by-hop measurements 

Controlling the amount of 
synthetic traffic 

By having a trade-off between synthetic 
traffic load and sampling frequency 

B. Distributing the data collection system  
To support dynamic operation, the monitoring system must 

be able to capture the operational status of the network 
without generating a large amount of data and without 
degrading network performance. The variety of data, the 
magnitude of raw data at node level and the necessary 
processing close to the measurement source necessitate 
distributed data collection, typically comprising one 
monitoring engine per router. The distributed monitoring 
engines must have low impact on the switching performance 
of the router and must have minimal effect on network 
bandwidth, adopting a flexible event-driven reporting 
approach (see section C).  

C. Minimizing the measurement transmission overhead by 
processing the raw data close to the source 

Processing and aggregating the raw data into accurate and 
reliable statistics and reducing the amount of data near the 
source is key to scalable dynamic operation. The monitoring 
system should provide automatic threshold detection by using 
notification of events in addition to summarized measurement 
information. Therefore, two forms of measurement data must 
be considered. 

Events: Event notification can be employed to avoid 
overloading the network with unnecessary interactions 
between components requiring monitoring information and 
network nodes. The granularity of event notifications can be 
defined for PHBs and paths. Raw measurement data is 
collected in short-time scales from internal variables using 
measurement probes and processed to yield a statistically 
“smoothed” rate. The latter is compared with a previously 
configured threshold and an event notification is generated if 
the threshold is crossed. Depending on the measurement 
timescale, the triggering might be postponed on instantaneous 
threshold crossings until successive/frequent threshold 
crossings are observed, meaning that the problem persisted for 

a specified time interval. This ensures that transient spikes do 
not contribute to unnecessary events. 

Statistics: in order to improve scalability, monitoring nodes 
aggregate the measurement data into summarized statistics. 
The granularity of summarization periods must be suitably 
chosen based on the requirements of the interested 
management functional entity. The granularity of statistics 
range from PHB and route level for traffic engineering 
functions to the aggregated flow levels for customer service 
monitoring. Statistics should be provided near real-time to 
time-critical functional entities. Records of statistical 
information can be queued and multiple records can be 
exported in a single packet, reducing the number of 
information transfers when there is no need for timely 
responses. 

D. Using aggregate performance measurements in 
combination with per-SLS traffic measurements 

SLSs may not need to be monitored in the same way. 
Generally, SLSs that belong to a premium class require 
measurement results with higher frequency but monitoring 
SLSs at different levels of granularity with different sampling 
frequencies makes the monitoring system more complex. SLS 
monitoring is scalable provided that aggregate network 
performance measurements at path level (e.g., delay, loss, 
delay variation) are used in combination with per SLS 
ingress/egress traffic measurements (e.g., throughput). As 
several SLSs use a single edge-to-edge path, a single 
monitoring action is enough for all of them. As an example, 
injecting synthetic traffic from an ingress point toward an 
egress point on a specific path for measuring one-way delay 
can satisfy the requirement of multiple SLSs using that path.  

E. Reducing the amount of synthetic traffic by using hop-by-
hop instead of edge-to-edge measurements 

Two distinct methods may be used for performance 
monitoring. Monitoring between two edge nodes for edge-to-
edge measurements or between two neighboring nodes for 
hop-by-hop measurements in order to determine the status of 
the attached links, interfaces, and associated queues. 

Monitoring scalability could be a serious concern when a 
full mesh logical network is in-place, an order of ( )2O N . 
Path monitoring is scalable and feasible only if a limited 
number of LSPs are selected for edge-to edge measurements 
based on specified criteria and policy decisions. 

An active monitoring agent attached to a Node Monitor is 
used to inject synthetic traffic. The edge-to-edge method 
directly provides edge-to-edge measurement results. The hop-
by-hop method overcomes the scalability problem by using 
per hop (i.e., a PHB and its associated link) measurements to 
calculate the edge-to-edge result. There exist multiple edge-to-
edge paths, which are routed through the same PHB. When 
these paths traverse the same hop they share the resources 
associated with that PHB. Introducing synthetic traffic sent to 
quantify the behavior of that hop satisfies the performance 
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monitoring requirements of all the paths using that hop. This 
results in significant reduction of the required synthetic traffic. 
Using the hop-by-hop method, the edge-to-edge one-way 
delay is additive and the one-way packet loss ratio 
multiplicative  

F. Controlling the amount of synthetic traffic insertion 
Even when applying the “hop-by-hop” measurement 

principle described above, there is still a need to control the 
amount of synthetic traffic. The requirements for the insertion 
of synthetic traffic are listed below: 
1. The synthetic traffic load should be small compared to the 

load on the connection under test. If not, then the 
synthetic traffic will affect the performance and the 
measurement will be inaccurate.  

2. The sampling period should be small enough to study 
performance fluctuations.  

3. As the network changes over time, the amount and type of 
synthetic traffic should be configurable. 

4. The measurements should be randomly distributed to 
prevent synchronization of events as described in the 
IPPM recommendation [10] by using a Poisson sampling 
rate. 

It should be noted that the first two requirements should be 
as complementary as possible. That is, smaller time intervals 
means more synthetic traffic, but more synthetic traffic means 
a higher load on the network. A trade-off between these two 
requirements is necessary for controlling the amount of 
synthetic traffic. Practically, the rule used by some network 
operators is that synthetic traffic should not exceed 
approximately 1% of the total network capacity. 

V. AN EXAMPLE SCALABLE MONITORING SYSTEM  
Here, we describe an intra-domain QoS monitoring system 

for traffic-engineered DiffServ networks that was designed 
using the principles described in the previous section. 
Recently, there have been attempts to build network 
management and control systems that support traffic 
engineering and service differentiation e.g. [8] and [11]. Our 
monitoring system is tightly coupled with the system 
presented in [8] that includes SLS Management, Traffic 
Engineering, and Policy Management subsystems in addition 
to Monitoring. 

All these subsystems require measurement information for 
their functionality. Monitoring large-scale traffic engineered 
networks requires mechanisms for data collection from a 
variety of network nodes, aggregation of these heterogeneous 
data sets, data mining of large data sets and analyzing this data 
to generate results for providing feedback to other functional 
subsystems requiring monitoring information. Our monitoring 
system architecture, its components, and the interactions with 
the rest of the management system are depicted in Figure 1. 

A. Monitoring system components 
The monitoring system has the following components: 

Node Monitor (NodeMon) is responsible for node related 

measurements and there exists one NodeMon per router. 
NodeMon is hosted outside of the router on a dedicated 
machine, as the availability of required measurements is 
limited in currently available commercial routers. NodeMon is 
able to perform active measurements between itself and any 
other NodeMons, at path or hop level, as well as passive 
monitoring of the router it is attached to. A NodeMon collects 
measurement results from either meters or probes located at 
routers through passive or active monitoring agents. Another 
task of NodeMon is also to regulate and abstract various types 
of measured data. A NodeMon performs some short-term 
evaluation of results in addition to threshold crossing detection 
and notification.  
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Figure 1. Monitoring system architecture and the interactions with 

other sub-systems. 
Network Monitor (NetMon) is responsible for network-wide 
post-processing of measurement data using a library of 
statistical functions. It is centralized and utilizes network-wide 
performance and traffic measurements collected by all the 
NodeMon entities in order to build a physical and logical 
network view (i.e., the view of the routes that have been 
established over the network). There is no major scalability 
concern with NetMon, since the analyzed data are mainly used 
for non real-time, pro-active control of the network.  
SLS Monitor (SLSMon) is responsible for customer related 
service monitoring, auditing and reporting. SLSMon is 
centralized, since it must keep track of the compliance of the 
level of service provided to the customer SLSs of a domain. It 
utilizes information provided by NetMon and/or various 
NodeMons. SLS Management requests the creation of the 
necessary monitors whenever a SLS is invoked. SLSMon 
handles the requests for activation or deactivation of 
monitoring a particular set of SLSs. During its operation, 
SLSMon accesses a repository for measurement data collected 
by NodeMons and NetMon and combines the data for each 
individual SLS, i.e. path level performance related statistics 
and SLS specific traffic related statistics. For each SLS, the 
performance parameters and the traffic-related values are 
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checked against measurement data to determine whether any 
violations occurred. 
Monitoring Repository (MonRep) consists of two major 
parts for data cataloguing, a "data store" with database 
functionality for storing large amounts of data from 
monitoring components and an "information store" for storing 
smaller amounts of configuration type information and 
information about active monitoring processes. Measurement 
data stored in the data store are used for subsequent analysis 
via the Graphical User Interface (GUI), NetMon, or SLSMon.  
Monitoring GUI (MonGUI) is used for displaying the 
measurement results and can be used in a Network Operations 
Center. It presents a user interface allowing human operators 
to request graphical views of monitoring statistics extracted 
from the monitoring data store. It also exposes an interface to 
allow other components to request the display of statistics. 

B. Monitoring system implementation  
The system has been implemented in a modular fashion 

using an object-oriented approach. The system is managed 
through policy-based high level configuration at node level, 
network level, and monitoring parameter level (such as 
specifying synthetic traffic injection rate, packets sizes, etc.). 
The monitoring system defines a set of CORBA (Common 
Object Request Broker Architecture) interfaces to internal 
monitoring components for communicating with one another 
and to external components. All the CORBA interfaces have 
been implemented using the Java language on a Java2 
CORBA platform. Most components have been implemented 
in Java, apart from the NodeMon's active/passive monitoring 
agents that interact directly with the router. These agents set-
up/retrieve monitoring data directly on the routers, were 
implemented in C++. The CORBA Notification service is 
used for delivering monitoring events to clients. 

Various parts of the SLS Management, Traffic Engineering 
and Policy Management subsystems that require monitoring 
information must request information from one of the 
monitoring system components. In addition, parts of the 
monitoring system itself require some sort of monitoring 
information, for example SLSMon uses information from 
NodeMon or NetMon, and NetMon uses information from 
NodeMon. We collectively refer to all the components and 
subsystems requiring monitoring information from parts of the 
monitoring system, as monitoring clients (or clients for short).  

The monitoring operation is split into four phases:  
Configuration: every client that requires monitoring 

information must register to one/more of the monitoring 
components (Node, Network, or SLS). The client must request 
monitoring actions by providing the necessary information 
(metric to be monitored, sampling and summarization periods, 
thresholds, etc). Clients have the option of requesting 
one/more aggregation functions to be applied to the data 
chosen from a set of available statistical functions. An XML 
schema has been defined that allows clients to specify their 
monitoring requirements. 

Execution: NodeMons perform the measurements based on 
the received configuration. Passive measurements may be 
performed using SNMP; by feedback reports of the emerging 
Common Object Policy Service (COPS); or by proprietary 
polling mechanisms e.g. Command Line Interface. Active 
measurements (delay and loss) can be measured using the One 
Way Delay Active Protocol [12] defined by the IETF IPPM. 

Reporting and exception: NodeMons send back the 
analyzed data and/or push the threshold crossing events to the 
interested monitoring clients. Network and SLS monitoring 
can provide both current and historical longer-term in-depth 
statistical analysis of monitoring data as requested by clients. 
System administrator may request the graphical display of any 
measurement data at node, network, and SLS levels. 

VI. ASSESSMENT OF THE PROPOSED MONITORING SYSTEM 
Here, we present the assessment of the monitoring system 

described in the previous section. We assess it in terms of 
accuracy and scalability. Accuracy is very important since the 
network operation relies on monitoring information, which has 
to be accurate and reliable. In addition, the monitoring system 
should scale with extending the network topological scope, 
increasing load, etc. 

Assessment was based on experimental results obtained 
through a testbed shown in Figure 2, consisting of four routers 
connected through three 2Mbps serial links in a linear fashion.  

A Pentium 1.5 MHz PC is attached to each router and hosts 
the node monitor with the PC attached to edge router PE1 also 
hosting the network monitor. Two Data Channel Simulators 
(DCS) are used to introduce delay and loss into links 1 and 3. 
A commercial traffic generator is connected to both edge 
routers PE1 and PE2 and is used to generate synthetic traffic 
in a loopback form. The delay results measured by the traffic 
generator and the packet losses programmed in DCSs are used 
to verify the results measured by the monitoring system. 
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Figure 2. Experimental testbed. 

The first test addressed one-way delay and packet loss from 
PE1 to PE2. The delay values measured by the monitoring 
system were in most of cases overlapped with the ones 
measured by the traffic generator. The one-way delays were 
measured in 0.5 second intervals and the delay values were 
about 12.6 msec in both cases over relatively long period. This 
verifies very good accuracy of monitoring results even in 
configurations like the one used here in which the monitoring 
agents are located outside the routers. We observed similar 
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behavior with respect to packet loss. Programming 3.1% 
packet loss in DCS-2 results in 3.28% packet loss measured 
by monitoring system. 

Subsequent tests combined accuracy with scalability by 
comparing edge-to-edge vs. hop-by-hop one-way delay and 
packet loss. In this case, measured edge-to-edge (PE1 to PE2) 
delays and packet losses were compared to aggregated values 
produced by the network monitor based on per hop 
measurements (Hop1: PE1-P1, Hop2: P1-P2 Hop3: P2-PE2). 

Figure 3 shows the delay results. The mean difference 
between edge-to-edge and aggregated hop-by-hop result is 1.1 
msec which is mainly due to the fact that more measurements 
processing are required in the hop-by-hop method. If the 
active monitoring agents were embedded in the routers, the 
delay difference would have been considerably reduced.  
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Figure 3. Edge-to-edge and hop-by-hop one way delay results. 

 
Figure 4 shows the packet losses experienced over each hop 

and edge-to-edge and the aggregated per hop results. The 
mean packet losses programmed in DCS1 and DCS2 were 
2.0% and 3.1% respectively. 
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Figure 4. Edge-to-edge and hop-by-hop one-way packet loss. 
 
The average measured results were 5.26% for edge-to-

edge, 2.04% for hop 1, 0.0% for hop 2 (no DCS on link 2), 
3.19% for hop 3, and 5.16% for aggregated hop-by-hop. The 
difference of 0.1% is negligible and can be attributed to 
rounding errors. Overall, we can state that comparable results 
are obtained by both methods, making hop-by-hop method 
more attractive because enhanced monitoring scalability. 

VII. CONCLUSIONS 
When delivering QoS-based value-added IP services, 

careful engineering of the network and its traffic are essential 
for efficiency of resource usage while meeting the required 
performance targets. Traffic engineering relies on measured 
data for off-line proactive and dynamic reactive measures. In 
this paper, we identified first the measurement requirements 
for traffic-engineered networks. We subsequently presented 
requirements for a scalable monitoring system that gathers 
real-time data to reflect the current state of the network. We 
then presented principles for designing scalable monitoring 
systems and methodologies for scalable event monitoring used 
for network operation and in-service performance verification. 
We finally presented a scalable monitoring system designed 
and built based on those principles and its assessment. 

The presented system is distributed in order to guarantee 
quick response times and minimize necessary management 
traffic. Based on assessment results, we showed that the 
proposed monitoring system provides good accuracy for one-
way delay and packet loss while it also provides highly 
comparable edge-to-edge and hop-by-hop results. In summary, 
we believe that the presented principles result in scalable 
monitoring systems that can contribute towards operationally 
optimized traffic-engineered networks. 
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