
A Scalable Real-time Monitoring System for Supporting Traffic Engineering

Abstract— Quality of service based value-added services in IP
networks necessitate the use of traffic engineering. The latter
relies typically on monitoring data for both offline, proactive and
dynamic, reactive solutions. A monitoring system should be
scalable in terms of network size, speed and number of customers
subscribed to value-added services. This article investigates the
requirements of scalable monitoring system architectures,
proposes principles for designing such systems and validates
them through the design and implementation of a scalable
monitoring system for QoS delivery in IP Differentiated Services
networks. Experimental assessment results are also presented.

Keywords— IP, Monitoring, Traffic Engineering, Differentiated
Services, Active/Passive Measurements, Scalability

I. INTRODUCTION
Monitoring systems are becoming increasingly important for
providing quantified Quality of Service (QoS) based services
and service assurance. Traffic Engineering (TE) can be
defined as a set of techniques that allow service providers to
maximize network resource utilization, while at the same time
meet the QoS demands of services contracted to customers.
Traffic engineering deals mainly with performance
optimization of operational IP networks and encompasses the
application of principles to the measurement, characterization
and control of traffic [1]. Traffic engineering algorithms need
typically an overview of the network status for their dynamic
reactions. The functionality that delivers this information is
viewed as operational measurements.

In Differentiated Services (DiffServ) [2] networks, routers
process aggregate traffic that belongs to several service classes
according to predefined QoS policies. In this paper, we
assume that the QoS requirements of a customer are described
in a Service Level Specification (SLS) [3], which is the
technical part of a Service Level Agreement (SLA) between
the customer and the provider. By QoS, we refer to a service
offering where one or more traffic and performance
parameters (i.e., throughput, delay, loss, and/or delay
variation) are quantified [3]. As the network attempts to offer
several service types by employing traffic engineering
mechanisms, e.g., hard real-time traffic, Virtual Private
Networks (VPNs), best-effort services, etc., service
monitoring is important for providing end-to-end QoS and
service assurance. In this context, monitoring does not just
have a diagnostic role but becomes an important tool for
supporting the network operation and providing service

auditing for both traditional and value-added services. Given
the multitude of services with different QoS requirements,
measurement information needs to be collected at a finer
granularity than per ingress-egress node pairing.

A. Related work
A large amount of work has gone into developing

mechanisms and protocols for performance and traffic
measurements. This includes the work of Internet Engineering
Task Force (IETF) groups such as IP Performance Metrics
(IPPM). The developments on monitoring systems have
mainly been focused on path performance analysis. Relevant
activities include the RIPE Network Coordination Center that
has implemented a number of the measurement protocols
defined by IPPM; the CAIDA (Cooperative Association for
Internet Data Analysis) measurement environment that uses
the Skitter tool for gathering QoS related data; and the
NLANR (National Laboratory for Applied Network Research)
Network Analysis Infrastructure, and NIMI (National Internet
Measurement Infrastructure) [4] that combine active and
passive measurements for network path monitoring.

In comparison, little work has been done to use
measurement information for tackling network performance
degradation and managing congestion in operational networks
in real time. NetScope [5] provides a set of software tools for
traffic engineering of IP backbone networks by using network
measurements to update the network configuration set-up in
non-real time fashion. Rondo [6] is an automated control
system that uses a monitoring system to react to and manage
congestion in MPLS (Multi-Protocol Label Switching) traffic-
engineered networks in near real time. An intra-domain
monitoring system for DiffServ networks is described in [7]
that supports resource control and end-to-end QoS evaluation
and validation of network services based on SLAs and traffic
classes.

In summary, a large amount of information is needed for
traffic engineering large operational IP networks and for
service level monitoring for a large number of customers.
Scalability is thus a big challenge for monitoring systems and
necessitates suitable system architectures for achieving
scalable monitoring in near real-time.

This paper addresses the scalability issues of monitoring
systems, proposes principles for designing and assessing such
systems and describes an example system designed and

This work was supported by the Commission of the European Union
under the Information Society Technologies (IST) TEQUILA (Traffic
Engineering for QUality of service in the Internet at LArge scale) project
(IST-1999-11253-TEQUILA).

Abolghasem Asgari†, Panos Trimintzios‡, Mark Irons†, George Pavlou‡, Richard Egan†, Steven V. den Berghe§

†Thales Research & Technology (UK) Ltd
Worton Drive, Reading, RG2 0SB,

United Kingdom
email: Hamid.Asgari@uk.thalesgroup.com

§Inter-university Microelectronics
Centre (IMEC), Sint-

Pietersnieuwstraat 41, 9000 Gent
Belgium

‡Centre for Communication Systems
Research, University of Surrey
Guildford, Surrey, GU2 7XH

United Kingdom

0-7803-7658-7/02/$17.00 (C) 2002 IEEE 202

assessed according to those principles. The presented system
supports both real-time service level monitoring and also
monitoring for traffic engineering support in MPLS-based
DiffServ-capable networks.

II. MONITORING REQUIREMENTS
Traffic engineering is achieved through capacity and traffic

management. These two are realized with capacity planning,
routing control, resource management including buffer and
queue management and other functions that regulate and
schedule traffic flow through the network in order to
accommodate as many customer requests as possible, while at
the same time satisfying their QoS requirements. The state
dependent traffic engineering functions require the
observation of the state of the network through a monitoring
system and applying control actions to drive the network to a
desired state. This can be accomplished by reacting through
control actions in response to the current state of the network
and/or by pro-actively using forecasting techniques to
anticipate future traffic demand and pre-configure the network
accordingly.

A monitoring system should provide information for the
following three categories of tasks:
1. Assist traffic engineering in making provisioning

decisions for optimizing the usage of network resources
according to short to medium term changes. The ability to
obtain statistics at the QoS-enabled route level is
important and, as such, an essential requirement. This
information can be used for taking appropriate actions on
setting up new routes, modifying existing routes,
performing load balancing among routes, and re-routing
traffic.

2. Assist traffic engineering in providing analyzed traffic
and performance information for long-term planning in
order to optimize network usage and avoid undesirable
conditions. The analyzed information includes traffic
growth patterns and congestion indications.

3. Verify whether the QoS performance guarantees
committed in SLSs are in fact being met. SLSs can differ
depending on the type of services offered and different
SLS types have different QoS requirements that need
processing different types of information [8]. In-service
verification of traffic and performance characteristics per
service type is required.

Traffic engineering must be viewed as a continual and
iterative process of network performance improvement. The
optimization objectives may change over time as new
requirements and policies are imposed, so monitoring systems
must be generic enough to cope with such changes.

III. MEASUREMENT DATA AND METHODS
Monitoring can occur at different levels of abstraction.

Measurements can be used to derive packet level, application
level, user/customer level, traffic aggregate level, node level,
and network-wide level information. Measurements include
one-way delay, packet delay variation, one-way packet loss,

traffic load and throughput. There exist two types of methods
to perform low level measurements in a monitoring system:
active and passive measurements.

Active measurements inject synthetic traffic into the
network based on scheduled sampling in order to observe
network performance. Active measurement tools require co-
operation from both measurement end-points. In the case of
measuring one-way delay, end-point clocks need to be
synchronized. Therefore, methods like the Network Time
Protocol (NTP) [9], Global Positioning System (GPS) or other
Code Division Multiple Access (CDMA) based time sources,
can be used.

Passive measurements are used to observe actual traffic
without injecting extra traffic into the network. While passive
measurements do not require co-operation of end-points, they
require continuous collection of data and monitoring of links
at full load; the latter can be problematic on high-speed links.
In both cases, the quality of analyzed information depends on
the granularity and integrity of collected data.

IV. PRINCIPLES FOR SCALABLE MONITORING SYSTEMS
Scalability in QoS-enabled IP networks has three aspects:

size of network topology, number and granularity of classes of
service supported, and number of subscribed customers.
Network topologies are characterized by a number of
parameters, such as number of nodes, number of links, speed
of links, degree of physical and logical connectivity, network
diameter, etc. In IP QoS-enabled networks, supported services
are mapped to a number of classes according to the DiffServ
model; the latter has an impact on the scale of the monitoring
system. A large number of subscribed customers requires
subsequently a large amount of information to be gathered for
service assurance.

The scalability of the monitoring system is the ability of
effectively deploying a system at the scale of a large network
offering a number of services to a large number of customers.
The monitoring system must have a number of design features
for a wide range of monitoring tasks that ensure a scalable
solution for delivering the expected performance. The
monitoring tasks include data collection, data aggregation,
data analysis, and providing feedback. A diverse variety of
measurement data is needed in order to perform both network
and service performance monitoring. The amount of
measurement data increases in QoS-enabled networks because
there exist a number of per class states (e.g. different queues)
per interface and a large number of routes per class that must
be monitored. Hence, scalable monitoring architectures must
adhere to the principles described below and are summarized
in Table I.

A. Defining the monitoring process granularity
In a DiffServ environment, the measurement methodology

must be aware of different service classes. Traffic engineering
algorithms should not operate at the level of individual
packets, since collecting packet-level micro-flow related
statistics is prohibitively expensive and non-scalable. Instead,
statistics should be gathered at the aggregate macro-flow

203

level. In DiffServ, the measurement functions should operate
at the level of Per Hop Behaviors (PHB) and traffic-
engineered paths carrying traffic of similar service classes.

TABLE I.PRINCIPLES FOR BUILDING SCALABLE MONITORING SYSTEMS.

Principle Scope and Action to be taken

Defining the monitoring process
granularity

At DiffServ Per Hop Behavior and path
level

Distributing data collection
system

At node level

Minimizing the measurement
transmission overhead

By employing event notification and
summarization of statistics

Using aggregate performance
measurements in combination
with per-SLS traffic
measurements

By carrying out performance
measurements at path level and traffic
measurements at SLS level

Reducing the amount of synthetic
traffic

By using hop-by-hop measurements

Controlling the amount of
synthetic traffic

By having a trade-off between synthetic
traffic load and sampling frequency

B. Distributing the data collection system
To support dynamic operation, the monitoring system must

be able to capture the operational status of the network
without generating a large amount of data and without
degrading network performance. The variety of data, the
magnitude of raw data at node level and the necessary
processing close to the measurement source necessitate
distributed data collection, typically comprising one
monitoring engine per router. The distributed monitoring
engines must have low impact on the switching performance
of the router and must have minimal effect on network
bandwidth, adopting a flexible event-driven reporting
approach (see section C).

C. Minimizing the measurement transmission overhead by
processing the raw data close to the source

Processing and aggregating the raw data into accurate and
reliable statistics and reducing the amount of data near the
source is key to scalable dynamic operation. The monitoring
system should provide automatic threshold detection by using
notification of events in addition to summarized measurement
information. Therefore, two forms of measurement data must
be considered.

Events: Event notification can be employed to avoid
overloading the network with unnecessary interactions
between components requiring monitoring information and
network nodes. The granularity of event notifications can be
defined for PHBs and paths. Raw measurement data is
collected in short-time scales from internal variables using
measurement probes and processed to yield a statistically
“smoothed” rate. The latter is compared with a previously
configured threshold and an event notification is generated if
the threshold is crossed. Depending on the measurement
timescale, the triggering might be postponed on instantaneous
threshold crossings until successive/frequent threshold
crossings are observed, meaning that the problem persisted for

a specified time interval. This ensures that transient spikes do
not contribute to unnecessary events.

Statistics: in order to improve scalability, monitoring nodes
aggregate the measurement data into summarized statistics.
The granularity of summarization periods must be suitably
chosen based on the requirements of the interested
management functional entity. The granularity of statistics
range from PHB and route level for traffic engineering
functions to the aggregated flow levels for customer service
monitoring. Statistics should be provided near real-time to
time-critical functional entities. Records of statistical
information can be queued and multiple records can be
exported in a single packet, reducing the number of
information transfers when there is no need for timely
responses.

D. Using aggregate performance measurements in
combination with per-SLS traffic measurements

SLSs may not need to be monitored in the same way.
Generally, SLSs that belong to a premium class require
measurement results with higher frequency but monitoring
SLSs at different levels of granularity with different sampling
frequencies makes the monitoring system more complex. SLS
monitoring is scalable provided that aggregate network
performance measurements at path level (e.g., delay, loss,
delay variation) are used in combination with per SLS
ingress/egress traffic measurements (e.g., throughput). As
several SLSs use a single edge-to-edge path, a single
monitoring action is enough for all of them. As an example,
injecting synthetic traffic from an ingress point toward an
egress point on a specific path for measuring one-way delay
can satisfy the requirement of multiple SLSs using that path.

E. Reducing the amount of synthetic traffic by using hop-by-
hop instead of edge-to-edge measurements

Two distinct methods may be used for performance
monitoring. Monitoring between two edge nodes for edge-to-
edge measurements or between two neighboring nodes for
hop-by-hop measurements in order to determine the status of
the attached links, interfaces, and associated queues.

Monitoring scalability could be a serious concern when a
full mesh logical network is in-place, an order of ()2O N .
Path monitoring is scalable and feasible only if a limited
number of LSPs are selected for edge-to edge measurements
based on specified criteria and policy decisions.

An active monitoring agent attached to a Node Monitor is
used to inject synthetic traffic. The edge-to-edge method
directly provides edge-to-edge measurement results. The hop-
by-hop method overcomes the scalability problem by using
per hop (i.e., a PHB and its associated link) measurements to
calculate the edge-to-edge result. There exist multiple edge-to-
edge paths, which are routed through the same PHB. When
these paths traverse the same hop they share the resources
associated with that PHB. Introducing synthetic traffic sent to
quantify the behavior of that hop satisfies the performance

204

monitoring requirements of all the paths using that hop. This
results in significant reduction of the required synthetic traffic.
Using the hop-by-hop method, the edge-to-edge one-way
delay is additive and the one-way packet loss ratio
multiplicative

F. Controlling the amount of synthetic traffic insertion
Even when applying the “hop-by-hop” measurement

principle described above, there is still a need to control the
amount of synthetic traffic. The requirements for the insertion
of synthetic traffic are listed below:
1. The synthetic traffic load should be small compared to the

load on the connection under test. If not, then the
synthetic traffic will affect the performance and the
measurement will be inaccurate.

2. The sampling period should be small enough to study
performance fluctuations.

3. As the network changes over time, the amount and type of
synthetic traffic should be configurable.

4. The measurements should be randomly distributed to
prevent synchronization of events as described in the
IPPM recommendation [10] by using a Poisson sampling
rate.

It should be noted that the first two requirements should be
as complementary as possible. That is, smaller time intervals
means more synthetic traffic, but more synthetic traffic means
a higher load on the network. A trade-off between these two
requirements is necessary for controlling the amount of
synthetic traffic. Practically, the rule used by some network
operators is that synthetic traffic should not exceed
approximately 1% of the total network capacity.

V. AN EXAMPLE SCALABLE MONITORING SYSTEM
Here, we describe an intra-domain QoS monitoring system

for traffic-engineered DiffServ networks that was designed
using the principles described in the previous section.
Recently, there have been attempts to build network
management and control systems that support traffic
engineering and service differentiation e.g. [8] and [11]. Our
monitoring system is tightly coupled with the system
presented in [8] that includes SLS Management, Traffic
Engineering, and Policy Management subsystems in addition
to Monitoring.

All these subsystems require measurement information for
their functionality. Monitoring large-scale traffic engineered
networks requires mechanisms for data collection from a
variety of network nodes, aggregation of these heterogeneous
data sets, data mining of large data sets and analyzing this data
to generate results for providing feedback to other functional
subsystems requiring monitoring information. Our monitoring
system architecture, its components, and the interactions with
the rest of the management system are depicted in Figure 1.

A. Monitoring system components
The monitoring system has the following components:

Node Monitor (NodeMon) is responsible for node related

measurements and there exists one NodeMon per router.
NodeMon is hosted outside of the router on a dedicated
machine, as the availability of required measurements is
limited in currently available commercial routers. NodeMon is
able to perform active measurements between itself and any
other NodeMons, at path or hop level, as well as passive
monitoring of the router it is attached to. A NodeMon collects
measurement results from either meters or probes located at
routers through passive or active monitoring agents. Another
task of NodeMon is also to regulate and abstract various types
of measured data. A NodeMon performs some short-term
evaluation of results in addition to threshold crossing detection
and notification.

Node
Monitor
N ode Node

M onitorM onitor

N etwork
M onitor

Network Network
MonitorMonitor

SLS
M onitor

SLS SLS
MonitorMonitor

 Monitoring Monitoring
R epositoryRepository

Data PlaneData Plane Ingress/
Egress
Router

C ore
Router

Ingress/
Egress
Router

 GUIGUI

Traffic EngineeringTraffic EngineeringSLS M anagementSLS Management

Policy ManagementPolicy Management

Monitoring System ArchitectureM onitoring System Architecture Configuration/
M easurem ent Data

Measurem ent
Data

Packets

Node
Monitor
Node N ode

M onitorM onitor
Node

M onitor
Node Node

MonitorMonitor

Figure 1. Monitoring system architecture and the interactions with

other sub-systems.
Network Monitor (NetMon) is responsible for network-wide
post-processing of measurement data using a library of
statistical functions. It is centralized and utilizes network-wide
performance and traffic measurements collected by all the
NodeMon entities in order to build a physical and logical
network view (i.e., the view of the routes that have been
established over the network). There is no major scalability
concern with NetMon, since the analyzed data are mainly used
for non real-time, pro-active control of the network.
SLS Monitor (SLSMon) is responsible for customer related
service monitoring, auditing and reporting. SLSMon is
centralized, since it must keep track of the compliance of the
level of service provided to the customer SLSs of a domain. It
utilizes information provided by NetMon and/or various
NodeMons. SLS Management requests the creation of the
necessary monitors whenever a SLS is invoked. SLSMon
handles the requests for activation or deactivation of
monitoring a particular set of SLSs. During its operation,
SLSMon accesses a repository for measurement data collected
by NodeMons and NetMon and combines the data for each
individual SLS, i.e. path level performance related statistics
and SLS specific traffic related statistics. For each SLS, the
performance parameters and the traffic-related values are

205

checked against measurement data to determine whether any
violations occurred.
Monitoring Repository (MonRep) consists of two major
parts for data cataloguing, a "data store" with database
functionality for storing large amounts of data from
monitoring components and an "information store" for storing
smaller amounts of configuration type information and
information about active monitoring processes. Measurement
data stored in the data store are used for subsequent analysis
via the Graphical User Interface (GUI), NetMon, or SLSMon.
Monitoring GUI (MonGUI) is used for displaying the
measurement results and can be used in a Network Operations
Center. It presents a user interface allowing human operators
to request graphical views of monitoring statistics extracted
from the monitoring data store. It also exposes an interface to
allow other components to request the display of statistics.

B. Monitoring system implementation
The system has been implemented in a modular fashion

using an object-oriented approach. The system is managed
through policy-based high level configuration at node level,
network level, and monitoring parameter level (such as
specifying synthetic traffic injection rate, packets sizes, etc.).
The monitoring system defines a set of CORBA (Common
Object Request Broker Architecture) interfaces to internal
monitoring components for communicating with one another
and to external components. All the CORBA interfaces have
been implemented using the Java language on a Java2
CORBA platform. Most components have been implemented
in Java, apart from the NodeMon's active/passive monitoring
agents that interact directly with the router. These agents set-
up/retrieve monitoring data directly on the routers, were
implemented in C++. The CORBA Notification service is
used for delivering monitoring events to clients.

Various parts of the SLS Management, Traffic Engineering
and Policy Management subsystems that require monitoring
information must request information from one of the
monitoring system components. In addition, parts of the
monitoring system itself require some sort of monitoring
information, for example SLSMon uses information from
NodeMon or NetMon, and NetMon uses information from
NodeMon. We collectively refer to all the components and
subsystems requiring monitoring information from parts of the
monitoring system, as monitoring clients (or clients for short).

The monitoring operation is split into four phases:
Configuration: every client that requires monitoring

information must register to one/more of the monitoring
components (Node, Network, or SLS). The client must request
monitoring actions by providing the necessary information
(metric to be monitored, sampling and summarization periods,
thresholds, etc). Clients have the option of requesting
one/more aggregation functions to be applied to the data
chosen from a set of available statistical functions. An XML
schema has been defined that allows clients to specify their
monitoring requirements.

Execution: NodeMons perform the measurements based on
the received configuration. Passive measurements may be
performed using SNMP; by feedback reports of the emerging
Common Object Policy Service (COPS); or by proprietary
polling mechanisms e.g. Command Line Interface. Active
measurements (delay and loss) can be measured using the One
Way Delay Active Protocol [12] defined by the IETF IPPM.

Reporting and exception: NodeMons send back the
analyzed data and/or push the threshold crossing events to the
interested monitoring clients. Network and SLS monitoring
can provide both current and historical longer-term in-depth
statistical analysis of monitoring data as requested by clients.
System administrator may request the graphical display of any
measurement data at node, network, and SLS levels.

VI. ASSESSMENT OF THE PROPOSED MONITORING SYSTEM
Here, we present the assessment of the monitoring system

described in the previous section. We assess it in terms of
accuracy and scalability. Accuracy is very important since the
network operation relies on monitoring information, which has
to be accurate and reliable. In addition, the monitoring system
should scale with extending the network topological scope,
increasing load, etc.

Assessment was based on experimental results obtained
through a testbed shown in Figure 2, consisting of four routers
connected through three 2Mbps serial links in a linear fashion.

A Pentium 1.5 MHz PC is attached to each router and hosts
the node monitor with the PC attached to edge router PE1 also
hosting the network monitor. Two Data Channel Simulators
(DCS) are used to introduce delay and loss into links 1 and 3.
A commercial traffic generator is connected to both edge
routers PE1 and PE2 and is used to generate synthetic traffic
in a loopback form. The delay results measured by the traffic
generator and the packet losses programmed in DCSs are used
to verify the results measured by the monitoring system.

Node
Monitor 1

PE2PE1 P2P1Edge
Router

Core Router

Traffic Generator

10Mbps Ethernet 10Mbps Ethernet

2Mbps serial link
2Mbps 2Mbps

Network
Monitor

Node
Monitor 3

GPS Time
ReceiverRS232NTP Server

Pentium-4
1.5MHz PCs

Antenna

10Mbps
10Mbps 10Mbps

10Mbps

Edge-to-Edge

LSP, IP Route, and SLS Scope

Hop-by-Hop
Hop 2Hop 1 Hop 3

Core Router

Link/PHB Scope
Edge-to-Edge loopback

DCS-2DCS-1

Node
Monitor 4

Node
Monitor 2

Edge
Router

Figure 2. Experimental testbed.

The first test addressed one-way delay and packet loss from
PE1 to PE2. The delay values measured by the monitoring
system were in most of cases overlapped with the ones
measured by the traffic generator. The one-way delays were
measured in 0.5 second intervals and the delay values were
about 12.6 msec in both cases over relatively long period. This
verifies very good accuracy of monitoring results even in
configurations like the one used here in which the monitoring
agents are located outside the routers. We observed similar

206

behavior with respect to packet loss. Programming 3.1%
packet loss in DCS-2 results in 3.28% packet loss measured
by monitoring system.

Subsequent tests combined accuracy with scalability by
comparing edge-to-edge vs. hop-by-hop one-way delay and
packet loss. In this case, measured edge-to-edge (PE1 to PE2)
delays and packet losses were compared to aggregated values
produced by the network monitor based on per hop
measurements (Hop1: PE1-P1, Hop2: P1-P2 Hop3: P2-PE2).

Figure 3 shows the delay results. The mean difference
between edge-to-edge and aggregated hop-by-hop result is 1.1
msec which is mainly due to the fact that more measurements
processing are required in the hop-by-hop method. If the
active monitoring agents were embedded in the routers, the
delay difference would have been considerably reduced.

Acuracy Test: One Way Delay Hop-by-Hop & Edge-to-Edge

0
2
4
6
8

10
12
14
16
18
20

16:48:00 19:12:00 21:36:00 00:00:00 02:24:00 04:48:00 07:12:00 09:36:00

Time of day

O
ne

 W
ay

 D
el

ay
 in

 m
s

Hop 1 Hop 2 Hop 3 Edge-to-Edge Aggregated Hop-by-Hop
Figure 3. Edge-to-edge and hop-by-hop one way delay results.

Figure 4 shows the packet losses experienced over each hop

and edge-to-edge and the aggregated per hop results. The
mean packet losses programmed in DCS1 and DCS2 were
2.0% and 3.1% respectively.

One-way Packet Loss (Edge-to-Edge and Hop-by-Hop)

0

2

4

6

8

10

16:48:00 19:12:00 21:36:00 0:00:00 2:24:00 4:48:00 7:12:00 9:36:00

Time of day

%
 P

ac
ke

t l
os

s

Edge-to-edge Hop1 Hop 2 Hop 3 Aggregate Hop-by-hop

Figure 4. Edge-to-edge and hop-by-hop one-way packet loss.

The average measured results were 5.26% for edge-to-

edge, 2.04% for hop 1, 0.0% for hop 2 (no DCS on link 2),
3.19% for hop 3, and 5.16% for aggregated hop-by-hop. The
difference of 0.1% is negligible and can be attributed to
rounding errors. Overall, we can state that comparable results
are obtained by both methods, making hop-by-hop method
more attractive because enhanced monitoring scalability.

VII. CONCLUSIONS
When delivering QoS-based value-added IP services,

careful engineering of the network and its traffic are essential
for efficiency of resource usage while meeting the required
performance targets. Traffic engineering relies on measured
data for off-line proactive and dynamic reactive measures. In
this paper, we identified first the measurement requirements
for traffic-engineered networks. We subsequently presented
requirements for a scalable monitoring system that gathers
real-time data to reflect the current state of the network. We
then presented principles for designing scalable monitoring
systems and methodologies for scalable event monitoring used
for network operation and in-service performance verification.
We finally presented a scalable monitoring system designed
and built based on those principles and its assessment.

The presented system is distributed in order to guarantee
quick response times and minimize necessary management
traffic. Based on assessment results, we showed that the
proposed monitoring system provides good accuracy for one-
way delay and packet loss while it also provides highly
comparable edge-to-edge and hop-by-hop results. In summary,
we believe that the presented principles result in scalable
monitoring systems that can contribute towards operationally
optimized traffic-engineered networks.

REFERENCES
[1] D. Awduche, J. Malcolm, J. Agogbua, M. O'Dell, J. McManus,

“Requirements for Traffic Engineering Over MPLS”, IETF
Informational RFC-2702, September 1999.

[2] S. Blake, D. Black, et al., “An Architecture for Differentiated Services”,
Informational RFC-2475, Dec. 1998.

[3] D. Goderis et al, “Service Level Specification Semantics, Parameters,
and Negotiation Requirements”, IETF Internet Draft: draft-tequila-sls-
01.txt, work in progress, Dec. 2001, see: http://www.ist-tequila.org.

[4] V. Paxson, J. Mahdavi, A. Adams,, and M. Mathis “An Architecture for
Large-Scale Internet Measurement” IEEE Communications Magazine,
vol. 36 no. 8, pp. 48-54, August 1998.

[5] A. Feldman et al., “NetScope: Traffic Engineering for IP Networks”,
IEEE Network Magazine, Vol. 14, No. 2, pp. 11-19, March/April 2000.

[6] J. L. Alberi, Ta Chen, et al., “Using Real-Time Measurements in
Support of Real-Time Network Management”, RIPE-NCC 2nd
Workshop on Active and Passive Measurements (PAM2001),
Amsterdam April 2001.

[7] U. Hofmann, I. Milouchewa, “Distributed Measurement and Monitoring
in IP Networks”, In Proc. 5th World Multi -Conference on Systemics,
Cybernetics and Informatics (SCI2001), Orlando, USA, July 2001.

[8] P. Trimintzios et al., “A Management and Control Architecture for
Providing IP Differentiated Services in MPLS-based Networks”, IEEE
Communications Magazine, Vol. 39, No. 5, May 2001.

[9] D. L. Mills, "Network Time Protocol (Version 3) Specification,
Implementation", IETF Draft Standard RFC-1305, March 1992.

[10] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis, "Framework for IP
Performance Metrics", IETF Informational RFC-2330, May 1998.

[11] P. Aukia, et al., “RATES: A Server for MPLS Traffic Engineering”,
IEEE Network Magazine, Vol. 14, No 2, pp. 34-41, March/April 2000.

[12] S. Shalunov, B. Teitelbaum, M. Zekauskas, " A One-way Active
Measurement Protocol ", Internet Draft, draft-ietf-ippm-owdp-04.txt,
work in progress, July 2002.

207

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

