
Software Agent Constrained Mobility for Network
Performance Monitoring

C. Bohoris, A. Liotta, G. Pavlou
Center for Communication Systems Research
School of Electronic Engineering and Information Technology
University of Surrey, Guildford, Surrey GU2 5XH, UK
{C.Bohoris, A.Liotta, G.Pavlou}@eim.surrey.ac.uk

ABSTRACT

During the recent years of research on mobile agents, significant effort has been directed
towards the identification of models of agent mobility suitable for network management
applications. Also, a lot of research work is currently being carried out trying to provide an
assessment of mobile agent frameworks used to build agent-based network management
systems. In this paper we clarify three different models of agent mobility, present a mobile
agent-based performance monitoring system that exhibits the “constrained mobility” model,
and discuss its practical use for dynamically programming network elements. The
implementation of this system is presented and compared with static object approaches.
Furthermore we provide a performance evaluation of the mobile agent based system as it
compares with Java-RMI and CORBA distributed frameworks, in order to assess the
advantages, along with the overheads, of agent solutions.

KEYWORDS

Mobile Agents, Constrained Mobility, Performance Monitoring.

1. INTRODUCTION AND BACKGROUND

Network management has been the subject of intense research over the
last decade, with the relevant progress being twofold: on the one hand,
architectures and algorithms for solving management problems have been
devised; and on the other hand, different management technologies have
been proposed and standardized. From the protocol-based approaches of the
early 90’s, exemplified by the Simple Network Management Protocol
(SNMP) [1] and OSI Systems Management (OSI-SM) [2], the focus moved
to distributed object-based approaches in the mid to late 90’s, exemplified
first by the Common Object Request Broker Architecture (CORBA) [3] and
later by Java’s Remote Method Invocation (Java-RMI). More recently, the

focus seems to be shifting back to protocol-based approaches the emerging
Directory Enabled Networks (DEN) framework.

The paradigm of moving management logic close to the data it requires is
a technique that has been conceived early in the evolution of management
architectures, the relevant framework known as “management by delegation”
[4]. Subsequent research showed the applicability of this concept in the
context of OSI-SM [5] while a similar approach was subsequently
standardized, the Command Sequencer Systems Management Function
(SMF). More recently, the same concept has been proposed in the context of
SNMP through the Scripting MIB. While such approaches are specific to the
respective management frameworks, delegation in the context of general
distributed object frameworks is achieved through object mobility. Mobile
objects are usually termed mobile agents and when they act through
emerging behavior in the Artificial Intelligence (AI) sense, they become
intelligent agents. Mobility and intelligence are though orthogonal
properties.

The emergence of mobile agent frameworks has led many researchers to
examine their applicability to network management and control
environments. [6] considered first code mobility and presented a taxonomy
of the relevant aspects. [7] considered mobile agents in the context of the
Intelligent Network (IN) and proposed an agent-based architecture for
“active” IN service control. [8] discussed the general issues of using mobile
agents for network management while a number of other researchers have
attempted to use mobile agents in specific network management case studies.
It is believed that mobile agents can provide better solutions at least to
performance and fault management problems, given the large amount of data
that needs to be moved around in respective solutions based on traditional
approaches.

Mobile agents may move around the network from node to node and
clone / destroy themselves according to their intelligence. We term this
situation “strong mobility” and it is this property that has not yet been
exploited to good effect in network management. An alternative possibility
for mobile agents is to move from node A to B, typically guided by a
“parent” stationary agent, and stay there until their task is accomplished. We
term this situation “constrained mobility” and we believe it is this approach
that can be readily exploited in management environments. In this case,
instead of predicting the required functionality, standardizing and providing
it through static objects in network elements, mobile agents could support it
in a dynamic, customizable fashion. The key advantage in this case is that the
target node needs only to provide the required “bare-bones” capability which
could be dynamically augmented through mobile agents, with the mobile
agent logic able to change to reflect evolving requirements over time. Such a
possibility would obviate the use of functionality such as the OSI-SM

Systems Management Functions (SMFs) and similar capabilities provided in
SNMP.

In the work described in this paper we are trying to evaluate the use of
mobile agents for network performance monitoring, assuming a constrained
mobility paradigm in which a mobile agent is sent to execute and monitor
information within a network element. The latter can be managed through a
collection of static agents that offer similar capabilities to a OSI-SM or
SNMP Management Information Base (MIB). The evaluation is twofold:
first, we are interested in assessing the usability of a mobile agent platform
as opposed to a static object platform such as CORBA or Java-RMI, and in
particular the agent customization aspects; and second, we would like to
examine the performance implications of using mobile agents in order to
assess if the provided flexibility is potentially outweighed by the additional
performance overhead. This work has been partly carried out in the context
of the MIAMI ACTS project (Mobile Intelligent Agents in the Management
of the Information infrastructure) [9], which examines the impact and
possibilities of using mobile agent technology for network and service
management.

The rest of this paper has the following structure. In Section 2 we
summarize briefly the way in which performance monitoring is supported
through generic but predefined functionality in the context of OSI-SM,
SNMP and CORBA-based management systems. In Section 3 we examine
three models of agent mobility that can be applied in network management
applications. In Section 4 we concentrate on the performance monitoring
system and present our agent implementation based on constrained mobility.
In Section 5 we present an evaluation and assessment of the performance
monitoring system and in Section 6 we present a summary and conclusions.

2. STATIC PERFORMANCE MONITORING

Performance management is one of the management functional areas
identified initially in OSI Systems Management (OSI-SM) [2]. It addresses
the availability of management information in order to be able to determine
network load under both natural and artificial conditions. It supports the
collection of performance information periodically in order to provide
statistics and allow for capacity planning activities. Performance
management needs access to a large quantity of dynamic network
information. An important issue is to provide this information to
management applications with a small impact on the managed network. A
key requirement is the ability to convert raw traffic information to traffic
rates with thresholds applied to them so that Quality of Service (QoS) alarms
can be generated. An additional requirement is the periodic summarization of

a variety of performance information for trend identification and capacity
planning purposes.

QoS management applications monitor performance aspects both
“within” the network and at “edge” nodes where customer services are
offered, trying to identify potential performance degradations. They may
subsequently trigger the reconfiguration of parts of the network in order to
alleviate congestion e.g. by changing the routing strategy, re-allocating
resources such as bandwidth to trails, etc. Monitored aspects of services may
include the service availability, the supported capacity in terms of available
bandwidth and the end-to-end delay. In the case of a “leased line” service
with guaranteed QoS, e.g. as part of a Virtual Private Network (VPN)
service, its availability may be affected by faults while the available capacity
and delay may be affected by network congestion when the provided
bandwidth is multiplexed. In general, performance management is coupled
with both fault and configuration management.

A simplistic approach for collecting the required performance
information is through periodic polling. In this case, the collected raw data is
processed either at a centralized Network Management Station (NMS) or at
Element Managers (EMs) which may form part of a hierarchical
management system e.g. following Telecommunications Management
Network (TMN) [10] principles. The problem with this approach is that it
generates substantial management traffic and, subsequently, does not scale
(it should be mentioned though that the generated traffic is smaller in the
hierarchical compared to the centralized case). An alternative approach is to
delegate monitoring activities to the network elements, reporting only QoS
alarms or summarized reports to higher-level managers. The OSI-SM Metric
Monitoring [11] and Summarization [12] systems management functions
have addressed this requirement through generic Support Managed Objects
(SMOs), which need to be provided in managed network elements. Facilities
similar to metric monitoring have been subsequently provided in SNMP
environments, initially in the Remote Network Monitoring (RMON) [13]
specification. In addition, similar facilities could be provided in CORBA-
based network elements.

The problem with such generic functionality is that it needs to be first
researched, standardized, implemented and eventually deployed in network
elements; this process typically takes a long time. In addition, any
modification, e.g. for providing more sophisticated features that were not
thought out in advance, needs to go through the full research, standardization
and deployment cycle. For example, [14] identified additional functionality
that combines the capabilities of metric monitoring and summarization
objects in a powerful fashion but such additions need to go through a new
standardization cycle. The specification of the OSI-SM systems management
functions took a long time and is partly responsible for the perceived

complexity and lateness in the deployment of OSI-SM-based network
elements.

Mobile agents could provide similar facilities in a dynamic fashion,
allowing for network elements with bare-bones real resource only and no
support management information. Additional generic capabilities could be
provided through mobile agents which would be sent to execute within a
network element. The behavior of those agents could be altered dynamically
at any time. The flexibility provided to management applications would be
enormous, since they could now “customize” network elements for
performance and other management activities according to their
requirements and would not be restricted by the available standardized
facilities. On the other hand, network elements should be able to host mobile
agents through suitable platform infrastructure and real resource managed
objects should be realized as static agents. The performance implications of
using mobile agents universally are addressed later in this paper.

3. AGENT MOBILITY IN MANAGEMENT

The problem of identifying the features that distinguish an agent from a
common computational entity has raised controversial arguments for nearly a
decade and only recently those features have been identified. Theoretical
studies on agents and artificial intelligence have come to the conclusion that
a computational entity can be regarded as an agent if it exhibits some of the
following properties: social ability, autonomy, reactivity, proactivity,
adaptability, persistency, and ability to learn, communicate, co-operate, and
move [19].

Other research work focusing on the practical application of agent
theories tends to characterize agents with a subset of the above properties.
For instance, Mobile Agents are commonly defined as computational entities
that act on behalf of some other software entity, exhibit some degree of
autonomy, and are particularly featured with migration capability.

The chief benefits that agent mobility can bring into the network
management arena, for each of the five management functional areas, are
highlighted in [8]. Some of those benefits include reduction in network
traffic, efficient utilization of computational resources, support for
heterogeneous environments, and increased flexibility. Nevertheless, the use
of mobile agents does not come without costs. In particular, code migration
incurs additional traffic into the network, absorbs considerable resources
from the agent hosts, and is associated with migration delays of the order of
seconds or even tens of seconds, depending on the agent configuration and
functionality [20] (see also Sec.5.2 below). In some cases the agent
migration overheads outweight their benefits and make this approach
inconvenient. It is therefore important to grasp the various aspects of agent

mobility and to relate them to network management in order to identify those
aspects that are particularly beneficial.

In the following subsections we define three different types of agent
mobility, ranging from the simplest, light-weight form of mobility to the
most heavy-weight one. For each case we elaborate on its benefits and
limitations in relation to network management, identifying advantageous
scenarios.

3.1 Constrained Mobility

One of the most elementary forms of code mobility is defined in [6] as
Remote Evaluation (REV), after the pioneering work described in [21]. In
REV, an application in the client role can dynamically enhance the server
capability by sending code to the server. Subsequently, clients can remotely
initiate the execution of this code that is allowed to access the resources
collocated within the server. Therefore, this approach can be seen as an
extension of the client-server paradigm whereby a client in addition to the
name of the service requested and the input parameters can also send code
implementing new services. Hence the client owns the code needed to
perform a service, while the server offers both the computational resources
required to execute the service and the access to its local resources.

Figure 1 – Constrained mobility. The agent is created and initialised by a

client application and is then shipped to an agent host. The agent execution is
then confined to this host.

A natural evolution of the REV model involves sending code possessing

one or more of the above mentioned agent features – e.g. mobility and
autonomy. This type of agent mobility can be defined as constrained

mobility since the agent, upon its creation in a client site, is only allowed to
migrate to a remote server where its execution will be confined.

When constrained mobility is adopted in management the agent is created
by a client acting in the manager role and is, then, dispatched to a target
network element acting in the server role (Figure 1).

This approach is particularly suited to dynamically programming or
upgrading network devices. In this case, agents do not need to be particularly
sophisticated. In a simple scenario these agents do not even need to have any
sort of autonomy – e.g. they do not need to have the ability to select their
target network element, since the manager can provide this information – and
could be as simple as collections of objects that can be executed in a remote
virtual machine. Therefore, mobility degenerates into a simple dynamic
mechanism to efficiently deploy or upgrade network protocols or services.

Agent deployment overheads, namely deployment traffic and delay,
represent the drawbacks of general MA approaches. In constrained mobility
the agent does not need to incorporate complex migration features and, as a
result, its size and the incurred network traffic are minimal if compared to
the other forms of agent mobility (see sections below). Similarly, it will not
be necessary to use general purpose MA platforms – usually associated with
heavy-weight migration mechanisms [20] – and, thus, the agent migration
time can be considerably reduced.

In conclusion, constrained mobility is a particularly well-suited
mechanism to dynamically program network elements. It can outperform
traditional centralised management for data-intensive tasks and when high
degrees of semantic data compression need to be achieved – e.g., through
data aggregation or analysis. Constrained mobility is typically advantageous
to perform off-line analysis of bulk data and, more generally, to implement
tasks whose duration is at least comparable with the overall agent
deployment time.

3.2 Weak Mobility

Similarly to constrained mobility, in weak mobility the agent is created
and initialised by a client application and is, then, shipped to an agent host.
However, ‘weak’ MAs are not confined to this host since they are meant to
perform the same task in more than one location (Figure 2). Weak MAs do
not retain any knowledge of the data processed or of the actions performed in
previously visited hosts and, consequently, they can only implement tasks in
which this information is not required.

Figure 2 – Weak mobility. The agent task involves the visitation of many

hosts, but no information gathered in previous visits is preserved.

A convenient use of weak mobility is for dynamic decentralisation of
management tasks that are otherwise performed in a centralised fashion. The
agent is delegated part of the management responsibility and will incorporate
functionality such as procedures aimed at data semantic compression or
aggregation.

A trivial example showing the main advantages of weak mobility is the
case in which the management station has to search for a single value in a
table, a data structure typically used to store information inside devices. In
SNMP management the whole table has to be transferred from the remote
element to the management station, where the table rows are searched for the
value. Hence, large tables will incur heavy unnecessary traffic into the
network and will result in computational overload on the management
station.

A more efficient approach is adopted by OSI management which supports
remote scope and filtering operations. Thus, the searching routine is
executed in the device and, consequently, only the retrieved value is
transmitted to the manager. The drawback of this approach is that routines
such as the one implementing scope and filtering have to be hard coded into
the network elements which tend do become complex since a large number
of routines need to be implemented. Even worse the introduction of new
routines requires a cumbersome standardisation process and their
deployment needs complex software upgrade.

If constrained mobility was to be used the agent incorporating the search
routine would be shipped to the network device, where it would retrieve the
requested value from the local table and issues this value to the manager.

This solution addresses the shortcomings of the OSI approach, retaining its
performance benefits. However, constrained mobility is not suitable in the
more general case in which tasks analogous to the searching routine are to be
run on multiple network elements. In fact, as the number of network
elements to be searched grows, the management station will be overloaded
and the network capacity around it will be saturated by the simultaneous
generation and transmission of the agents.

Tasks characterised by a relatively short duration and involving multiple
network elements are more efficiently implemented according to the weak
mobility model. Since only a single MA is issued by the manager, both
network and computing resources around the manager station are preserved.
Weak mobility is, thus, suitable to collect on-line data and to perform simple
control and configuration tasks from several network elements.

Therefore, weak mobility can lead not only to a reduction in network load
but also to a more even utilisation of processing resources through a dynamic
serialised distribution of simple management tasks.

3.3 Strong Mobility

With strong mobility agents in addition to being able to access and
process data from network elements can also accumulate information and
preserve it upon migration (Figure 3). This feature allows for the
implementation of more elaborate tasks in which the agent operations depend
on data gathered in previously visited hosts. In other words, the agent
operation can be altered by the data.

Figure 3 – Strong mobility. The agent task involves the visitation of many
hosts and the preservation of information gathered in previous visits.

In management, strong mobility is particularly well suited to

configuration tasks and to data-intensive tasks involving data aggregation
from highly distributed network elements and on-line data analysis. A simple
example is a task involving the collection of utilisation information from a
relatively large number of network elements. In a traditional SNMP-based
system the management station has to poll every single element in order to
collect the required raw performance information before it can produce a
useful utilisation rate. This may incur heavy traffic and may even not be
acceptable if the number of the elements is too large. OSI management offers
a more efficient mechanism for obtaining the utilisation rates, as this is done
locally at the network element, but still requires further aggregation of this
information at the management station.

Constrained mobility does not suit this task since it would require the
deployment of a number of MAs equal to the number of network elements.
Each MA would typically be executing for a time negligible with respect to
its deployment time and, then, the agent deployment overheads would be
unacceptable.

On the other hand, weak mobility would represent an inefficient imitation
of the OSI approach. In fact, the agent would have to visit sequentially all the
elements and report the local utilisation rates back to the manager before
migrating to the next element. Then, we still would not achieve a total
decoupling between network element logic and network management logic,
since the manager would be still concerned with the collection of data from
each element and with its aggregation.

Such decoupling can be achieved through strong mobility, in which case
the agent will preserve the utilisation rates of all previously visited elements
and will then be able to perform a further level of data aggregation
independently from the manager.

The main drawback associated with strong mobility is the agents’ size.
‘Strong’ agents need to incorporate more intelligence that others and tend to
be larger in size. More critically, the agents’ size can vary significantly
depending on the amount of information that has to be preserved during
migration. It is, therefore, important to design the agents in such a way to
limit their size variations – e.g., by allowing only semantically compressed
information to be stored.

In conclusion, strong mobility can be employed to implement data-
intensive tasks requiring aggregation of information from different network
elements.

4. CONSTRAINED MOBILITY IN A PERFORMANCE
MONITORING SYSTEM

In this section we elaborate on the model of constrained mobility by
describing its application in a mobile agent based performance monitoring
system. As mentioned earlier the constrained mobility model is particularly
suited to network management tasks that require a relatively long period of
time to execute, when dynamic programming of network devices is required,
or when a large number of data collected is intended for off-line analysis. An
effective performance monitoring system typically possesses all of the above
characteristics making the constrained mobility agent-based approach
particularly suitable to it. A user of such a system typically wishes to gather
performance information from a number of different machines in the
network, receive performance reports on a scheduled basis and on-the-fly
notifications when a performance threshold is triggered. The user can
analyse the performance reports and notifications obtained to determine
utilization trends, isolate performance problems, and possibly solve them
before they adversely impact network performance. In this way performance
monitoring can also aid in capacity planning and in the provisioning of a
consistent level of service to all users of a network.

4.1 System Realisation Based on Constrained Mobility

A typical scenario of operation for an agent-based system is actually very
similar to a scenario followed by a system based on static distributed objects.
Initially, in the client side of both systems, a static “master” entity is
responsible for accepting a user request and initiating the management
service. This entity corresponds to the Network and Element Management
Layer (NML and EML) functionality in terms of the TMN model.

In the distributed objects system an object with that role would send a
remote request for the initiation of a management service to an object located
in a remote server machine. These objects located in the server side of the
system are responsible for fulfilling the service request using the required
management logic, which pre-exists there in a fixed manner. The server
objects can also remotely communicate with the “master” object in the client
side in order to report important information.

In the case of the agent-based system (Figure 4) using the model of
constrained mobility, a “master” agent in the client side will initially create a
mobile agent that owns the required management logic to fulfil the service
request. This mobile agent will then migrate to the remote server machine
where it can have local access to the resources required to perform its task. A
static “target” agent that pre-exists in the server side is responsible for
providing access to those resources to such a mobile agent on request. The
functionality provided by this “target” agent at this level corresponds to the
TMN Network Element (NE) level.

Figure 4 – A mobile agent based network management system using the

model of constraint mobility.

The performance monitoring system we developed is based exactly on the

above design scenario of an agent based network management system using
constrained mobility. A user request for performance monitoring of a remote
machine will initially be passed to the “master” agent, which will create a
mobile performance monitor agent. This mobile agent will be provided with
the specific monitoring parameters as set by the user and will then migrate to
the remote machine. Upon reaching its destination the MA will contact a
“target” static agent that pre-exists there and is responsible for providing
“raw” performance information on request. The performance monitor agent
will process this information to obtain rates of utilisation and loss. The
performance monitor agent will remotely send reports of the results gathered

back to the “master” agent in the client side, on a scheduled basis. It can also
send notifications in real time when an applied performance threshold is
triggered. The performance monitor agent provides the functionality of a
metric monitor and a summarisation object as specified in the X.739/X.738
standards.

4.2 System Implementation

For the development of our mobile agent-based performance monitoring
system we used purely the Java programming language, with all system
classes built using Sun’s JDK version 1.1.7b. The Grasshopper agent
platform version 1.2 was also used, providing a simple execution
environment for agents, and an API covering all the required basic agent
functionality.

Figure 5 – The performance monitoring system graphical user interface. The
graph of utilisation rates gathered goes over the threshold line for a while,
indicating that this threshold was exceeded as it can also be seen from the

notifications displayed in the status window, located in the lower part of the
picture.

The whole development work was done under Sun’s Solaris version 7 of the
UNIX operating system. For the development of the “target” agent, the
AdventNet SNMP version 2.0 libraries were used in order to obtain raw
performance information by querying an SNMP agent. The system was built
to operate in two different modes for the monitoring of IP and ATM traffic,
respectively. All information gathered during the performance monitoring
process appears on a graphical user interface in the client’s machine, as
shown in figure 5.

5. EVALUATION AND ASSESSMENT

While in the previous section we showed how mobile agent technology
can be used instead of a static distributed object technology for building
hierarchical management systems with the additional advantage of dynamic
customisation and object migration, in this section we look at the
performance implications of using mobile agent technology. As such, we
decided to design and build two additional versions of the system, using
Java-RMI and CORBA respectively as static distributed object platforms.
The reason we chose Java-RMI is that the Grasshopper platform also uses
Java-RMI’s JRMP protocol (as well as a proprietary protocol), so we are
able to see the precise overheads incurred by the mobile agent support
infrastructure. In addition, the comparison with CORBA allows us to draw
conclusions on the overheads of mobile agents platforms compared to an
emerging distributed object technology for network/service management.

In the case of the Java-RMI/CORBA based performance monitoring
system, a “master” object located in one machine sends a request for
performance monitoring to a “factory” object located at a network element.
When a request arrives to the “factory” object it is responsible to locally
create a new instance of a performance monitor object that will perform
performance monitoring and summarization functions. A “target” object is
also located at the network element and provides raw performance
information. The functionality and algorithms in all systems were identical
so that we could directly compare the different approaches. It should be
noted though that in the case of a static distributed object approach the
functionality of the performance monitor object is static and cannot be
altered, in a similar way to OSI-SM and SNMP support object facilities.
Finally, we chose to use CORBA with the Java mapping for reasons of
uniformity and we used the Sun Microsystems openly available version of
CORBA with the Java mapping.

5.1 Environment and Methodology

Three performance monitoring systems were used, all containing the
same functionality, written using Grasshopper mobile agents, Java-RMI and
CORBA. For the evaluation we considered four different cases, one for every
system running over its standard communication protocol, and an additional
case for the mobile agent Grasshopper system running over the JRMP
protocol. We were interested in measuring the following aspects for each
case. First, we measured remote invocation response times. Timestamps were
taken using the currentTimeMillis method of the java.lang.System class. A
list of 25 elements was remotely transferred 100 times between two objects
located in different machines, each time measuring the total time and finally
calculating the average and standard deviation of these measurements. The
same procedure was repeated while increasing the number of elements in the
list to 50, 75, and 100. This operation in fact models the periodic
summarization reports generated and remotely sent by the performance
monitor mobile agent.

For the same experimental cases, we measured the TCP packet sizes
using the tcpdump program that originated at the Lawrence Berkeley
laboratory, reporting the total payloads at the TCP level. All these
measurements where taken using two different machines over a lightly
loaded 100 Mbit/sec Ethernet in the role of the management network with
the following specification: Sun Microsystems Ultra-10, 256MB of memory,
Sun’s Solaris 2.5.1 version of UNIX. Finally, we measured the additional
overheads incurred during MA deployment, namely the agent deployment
time and the total amount of bytes incurred during the agent transmission
from the manager to the network element.

5.2 Response Times

The response times of management operations for each of the three
performance monitoring systems have been considered. We examined the
performance aspects of remotely invoking operations between two objects
located in different machines. An array of objects (class “java.util.Vector”)
containing 25, 50, 75 and 100 “Double” numbers respectively was passed as
a parameter in the Mobile Agent, RMI and CORBA systems.

The total time required to complete the objects transfer, for each of the
four different solutions described above, is reported in Figure 6, which
depicts the resulting measurements in the form of statistical boxes.

Figure 6 – Statistical Box Charts showing response times for each of the four
experimented cases. The boxes include the 25-75% boundaries, the mean
values (a black square) and the median values (a line). The 5-95% range

boundaries are delimited by whiskers. The outliers are depicted with black
circles and stars.

A
25

B
50

C
75

D
100

2

4

6

8

10

12

14

16

List Size [Number of Elements]
A) Corba

R
es

po
ns

e
T

im
e

[m
se

c]

A
25

B
50

C
75

D
100

5

10

15

20

25

List Size [Number of Elements]
B) RMI

A
25

B
50

C
75

D
100

15

20

25

30

35

40

45

50

55

 R
es

po
ns

e
T

im
e

[m
se

c]

List Size [Number of Elements]
C) MAs (Grasshopper) over RMI

A
25

B
50

C
75

D
100

30

40

50

60

70

80

90

100

110

120

130

List Size [Number of Elements]
D) MA (Grasshopper)

Figure 7 combines the same results in a single graph depicting only mean
values and best linear fit, for an easier comparison.

Some important results can be drawn from Figure 6 and Figure 7. First,
there is a significant performance penalty to pay for remote method
invocations in the context of a mobile agent platform compared to Java-RMI
and CORBA. Second, Grasshopper performs much better over RMI in
comparison to the default proprietary protocol. The Grasshopper approach is
at least three times slower than the Java-RMI and CORBA ones. Finally, by
observing the difference in slopes from Figure 7, we can conclude that these
two former approaches, along with the MA over RMI implementation, tend
to scale much better than the plain MA approach.

Figure 7 – Mean values and best linear fit of response times.

An additional performance overhead in Grasshopper is the initial time for
the performance monitor mobile agent to migrate to the network element.
The mobile agent needed an average of 1505 milliseconds to migrate, a
performance overhead much larger than the time required to create a
performance monitor object through its factory in the static RMI/CORBA
approaches, which is less than 15 msec. In other words there is additional
overhead of two orders of magnitude. In cases of constrained mobility, which
is the approach used in this paper, this is a one-off overhead and can be
tolerated. On the other hand, this measurement shows that agent mobility has
relatively high performance overheads and this should be born in mind when
designing systems exhibiting full mobility.

25 50 75 100
0

10

20

30

40

50

60

70

80

90

100

110

120

130

 R
es

po
ns

e
T

im
e

[m
se

c]

List Size [number of elements]

 Mean Values
 MA (Grasshopper)
 MAs (Grasshopper) over RMI
 RMI
 Corba

5.3 Total Packet Sizes

We also measured the packet sizes in all four cases. An array of objects
(class java.util.Vector) containing 25, 50, 75 and 100 double numbers
respectively was remotely sent using remote invocations in the Mobile
Agent, RMI and CORBA systems. Each time, the payload of the TCP
packets was measured. A graph of the results gathered can be seen in Figure
8. It is interesting to observe that Grasshopper configured with its proprietary
protocol incurs levels of traffic comparable to those incurred by the two
distributed objects systems. When Grasshopper was configured to operate
over Java-RMI’s JRMP it clearly incurred the biggest amount of traffic.

We also measured the packet overhead of migrating the performance
monitor mobile agent to the network element. The required data was 2854
bytes, which again is much higher than the amount of data required to create
a performance monitor object through its factory in the static approaches,
which is around 500 bytes. This again will incur a substantial traffic
overhead in full mobility environments, but can be tolerated in the case of
constrained mobility.

Figure 8 – Mean and best linear fit of total incurred TCP payloads,
measured as the sum of all the bytes incurred in the network to complete the

given task.

0 25 50 75 100 125
400

600

800

1000

1200

1400

1600

1800

2000

2200

0 25 50 75 100 125

0 25 50 75 100 125

0 25 50 75 100 125

 List Size [Number of Elements]

 T
ot

al
 P

ay
lo

ad
 [b

yt
es

]

 Mean Values
 MA (Grasshopper) over RMI
 RMI
 MA (Grasshopper)
 CORBA

6. SUMMARY AND CONCLUSIONS

In this paper we present three different models of mobility that can be
used in management applications. We also describe a performance
monitoring system that uses the model of constrained mobility, and use it to
evaluate the performance overheads of an agent based system compared with
distributed ones based on Java-RMI and CORBA.

Constrained mobility involves the migration of an agent to a remote
machine, where it executes a task and terminates upon completion. This is a
particularly suitable model for tasks requiring a long period of time to
complete. Also in scenarios where information intended for off-line analysis
is collected by the agent in the remote machine. Finally programmability of
network elements can be achieved in a way that the functionality at the
network element level can be extended or customised, as we also
demonstrated through the description of our agent-based performance
monitoring system.

Weak mobility involves the migration of a mobile agent to a number of
machines without preserving information gathered from previous visits. This
is a suitable model for performing a short-term task repetitively in a number
of machines. Also in scenarios where information intended for on-line
analysis is collected by the agent in the remote machine.

Strong mobility involves the migration of a mobile agent to a number of
machines while it preserves its state formed during previous visits. It is best
suited for scenarios where the information collected from previous visits can
affect the current or future behaviour of the agent. The task the agent has to
complete in every machine should be a short term one, and therefore this
model can be applied when information is collected for on-line analysis.

The nature of mobile agents does not allow a general mobility model of
deployment in management applications. A suitable model can be selected
by examining the requirements of a specific application.

In our performance monitoring system, mobile agents are created at the
network management level according to user requests and then migrate to
network elements to perform monitoring functions in a local manner. The
behaviour of the monitoring algorithms can be customized, enabling dynamic
programmable functionality to be provided directly in the managed network
elements.

One of the key targets in embarking in this exercise was to evaluate the
use of mobile agent technology in comparison to static object approaches in
network management environments. The design and implementation
presented in section 4 show that mobile agent platforms exhibit the same
programmability characteristics to static object platforms. In addition, both
remote method invocations and local invocations are possible. The same
object-oriented principles and similar Application Programming Interfaces
(APIs) can be used in mobile agent environments. A key advantage of mobile

agents is the provision of dynamic services in network elements that have not
been pre-programmed with such facilities. The customisation of mobile agent
behaviour can provide a powerful mechanism for “intelligence on demand”.

On the other hand, while design and programmability aspects are similar
to static object approaches, there is a performance overhead to pay when
using mobile agents. Remote method invocations are at least three times
slower than those in Java-RMI / CORBA and this difference could be more
pronounced when comparing performance to the protocol-based OSI-SM and
SNMP approaches. In addition, agent migration incurs a substantial overhead
in terms of both latency and required data to be transported across the
network. This is less of an issue in constrained mobility environments but
could lead to performance and scalability problems in environments where a
large number of mobile agents migrate relatively often – i.e., in weak and
strong mobility systems.

While initially mobile agent frameworks were thought as rivals to static
distributed object frameworks, a view also stated in [7], the two approaches
need to coexist. Static object approaches can provide superior performance
characteristics. Real synergy could thus be achieved if stationary agents
could be provided using static objects, with method invocations being
possible between mobile agents and static objects in both directions. Such an
environment would combine the best of both worlds. We are currently
working on enhancing Java-RMI with an environment supporting
constrained mobility.

ACKNOWLEDGMENTS

This work was partly undertaken in the context of the ACTS MIAMI project,
which is funded by the Commission of the European Union.

REFERENCES

[1] J.Case, M.Fedor, M.Schoffstall, J.Davin, A Simple Network Management Protocol
(SNMP), IETF RFC 1157, 1990.

[2] ITU-T Rec. X.701, Information Technology - Open Systems Interconnection, Systems
Management Overview, 1992.

[3] Object Management Group, The Common Object Request Broker: Architecture and
Specification (CORBA), Version 2.0, 1995.

[4] Y. Yemini, G. Goldszmidt, S. Yemini, Network Management by Delegation, in Integrated
Network Management II, Krishnan, Zimmer, eds., pp. 95-107, Elsevier, 1991.

[5] N. Vassila, G. Pavlou, G. Knight, Active Objects in TMN, in Integrated Network
Management V, Lazar, Saracco, Stadler, eds., pp. 139-150, Chapman & Hall, 1997.

[6] M. Baldi, S. Gai, G.P. Picco, Exploiting Code Mobility in Decentralised and Flexible
Network Management, Proc. of the 1st International Workshop on Mobile Agents, Berlin,
Germany, April 1997.

[7] Breugst, M., Magedanz, T., Mobile Agents - Enabling Technology for Active Intelligent
Network Implementation, IEEE Network, Vol. 12, No. 3, May/June 1998.

[8] A. Bieszczad, B. Pagurek, T. White, Mobile Agents for Network Management, IEEE
Communications Surveys, Vol. 1, No. 1, http://www.comsoc.org/pubs/ surveys, 4Q1998.

[9] Mobile Intelligent Agents for the Management of the Information Infrastructure (MIAMI)
ACTS project, project page: http://www.fokus.gmd.de/research/cc/ima/ miami/, page at
Univ. of Surrey: http://www.ee.surrey.ac.uk/CCSR/ACTS/Miami/

[10] ITU-T Rec. M.3010, Principles for a Telecommunications Management Network (TMN),
Study Group
 IV,1996.

[11] ITU-T Rec. X.739, Information Technology - Open Systems Interconnection, Systems
Management Functions - Metric Objects and Attributes, 1992.

[12] ITU-T Rec. X.738, Information Technology - Open Systems Interconnection, Systems
Management Functions - Summarization Function, 1993.

[13] S. Walbusser, Remote Network Monitoring (RMON) Management Information Base,
IETF RFC 1271, 1991.

[14] G. Pavlou, G. Mykoniatis, J. Sanchez, Distributed Intelligent Monitoring and Reporting
Facilities, IEE
 Distributed Systems Engineering Journal (DSEJ), Special Issue on Management, Vol. 3,
No. 2, pp. 124-135, IOP Publishing, 1996.

[15] Foundation for Intelligent Physical Agents, web page: http://www.fipa.org/.
[16] Object Management Group, Mobile Agent System Interoperability Facilities

Specification, orbos/97-10-05,
 1997, ftp://ftp.omg.org/pub/docs/orbos/97-10-05.pdf

[17] The Grasshopper Agent Platform http://www.ikv.de/products/grasshopper/index.html.
[18] D. Griffin, G. Pavlou, P. Georgatsos, Providing Customisable Network Management

Services Through Mobile Agents, Proc. of the 7th International Conference on Intelligence
in Services and Networks (IS&N’00), Athens, Greece, February 2000.

[19] M. Wooldridge, N.R. Jennings, Intelligent Agents: Theory and Practice, The Knowledge
Engineering Review, Vol.10, N.2, pp.115-152, 1995.

[20] G. Knight, R. Hazemi, Mobile Agents based Management in the INSERT Project, Journal
of Network and Systems Management, Vol.7, N.3, September 1999.

[21] J.W. Stamos, D.K. Gifford, Remote Evaluation, ACM Transactions on Programming
Languages and Systems. 12(4), pp.537-565, October 1990.

