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Abstract 
In recent years, a significant amount of research work has addressed the use of code mobility in 
network management. In this paper, we introduce first three aspects of code mobility and argue 
that constrained mobility offers a natural and easy approach to network management 
programmability. While mobile agent platforms can support constrained mobility in a rather 
heavyweight fashion, optimized approaches such as our CodeShell platform presented here can 
provide performance and scalability comparable to those of static distributed object platforms 
such as Java-RMI and CORBA. Properly implemented constrained mobility is thus of great 
importance in network management, resulting in flexible, extensible, programmable systems 
without prohibitive performance overheads. 
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1. Introduction and Background 
Network management has been the subject of intense research over the last decade, with the 
relevant progress being twofold: on the one hand, approaches and algorithms for solving 
management problems have been devised; and on the other hand, different management 
technologies have been proposed and standardized. From the protocol-based approaches of the 
early 90’s, exemplified by the Simple Network Management Protocol (SNMP) [1] and OSI 
Systems Management (OSI-SM) [2], the focus moved to distributed object-based approaches in 
the mid to late 90’s, exemplified by the Common Object Request Broker Architecture (CORBA) 
[3] and more recently by Java’s Remote Method Invocation (Java-RMI). 
The paradigm of moving management logic close to the data it requires is a technique that has 
been conceived early in the evolution of management architectures, the relevant framework 
known as “management by delegation” [4]. Subsequent research showed the applicability of this 
concept in the context of OSI-SM [5] with a similar approach subsequently standardized, the 
Command Sequencer Systems Management Function (SMF). More recently, the same concept 
has been proposed in the context of SNMP through the IETF Script MIB [8]. While such 
approaches are specific to the respective management frameworks, the most general approach to 
delegation in the context of distributed object frameworks is through object mobility. Mobile 
objects are usually termed Mobile Agents (MAs) when they act on behalf of other entities and 
exhibit properties such as autonomy, reactivity, and proactivity. 
The emergence of mobile agent frameworks has led many researchers to examine their 
applicability to network management and control environments. [6] considered code mobility in 
management and presented a taxonomy of the relevant aspects while [7] discussed the general 
issues of using mobile agents for network management. Since then a number of other researchers 
have attempted to use mobile agents in order to solve better specific network management 
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problems. Despite the research efforts until now, there have been little encouraging results 
regarding the exploitation of “strong” mobility in network management, as defined below. 
Mobile agents may move around the network in a reactive or proactive adaptive manner and 
clone / destroy themselves according to their intelligence. We term this situation “strong 
mobility” and it is this property that has not yet been shown to achieve better results that static 
approaches in network management. An alternative possibility for mobile agents is to move from 
node A to B, typically guided by a “parent” stationary agent, and stay there until their task is 
accomplished. We term this situation “constrained code mobility” and we believe it is this 
simpler approach that can be readily exploited in management environments. In this case, instead 
of predicting the required functionality, standardizing and providing it through static objects in 
network elements or management systems, mobile code can support it in a dynamic, 
customizable fashion. The key advantage in this case is that the target node needs only to provide 
the required “bare-bones” capability which could be dynamically augmented through mobile 
code, with the additional logic able to change to reflect evolving requirements over time. Such a 
capability would obviate the use of functionality such as the OSI-SM Systems Management 
Functions (SMFs) and similar functionality provided in SNMP agents. 
The key advantage of constrained code mobility is that it provides the vehicle for 
programmability through the enhancement of pre-existing functionality in the target node. In [15] 
we showed how constrained mobility can be used for programmable management systems which 
can be customized by clients for dynamic connectivity management services. In [9] we showed 
how the same principle can be used to enhance network elements with add-on functionality for 
performance monitoring. In both cases we used a general purpose mobile agent platform in order 
to support constrained mobility. A brief performance comparison with static object platforms in 
[15] showed that mobile agent solutions are rather heavyweight for constrained code mobility 
and this led us to the design and implementation of the CodeShell platform (section 3). 
In this paper we layout the concepts of constrained, weak and strong code mobility in the context 
of network management and provide a detailed experimental evaluation of three different 
approaches to distributed management: 1) static distributed management based on Java-RMI and 
CORBA respectively as distributed object platforms; 2) dynamic distributed management based 
on CodeShell, an optimized mobile code platform supporting the constrained mobility paradigm; 
and 3) dynamic distributed management based on Grasshopper, a general-purpose mobile agent 
platform.  
In section 2 we provide an overview of the general application of code mobility to network 
management and layout the concepts of constrained, weak and strong mobility. In section 3 we 
describe the CodeShell platform; this section also serves to identify the architectural aspects and 
necessary support for constrained code mobility. In section 4 we report on our performance 
experiments among static distributed object platforms, the CodeShell platform for constrained 
mobility and the Grasshopper mobile agent platform [14]. We close with our summary and 
conclusions which show that constrained mobility, if implemented efficiently, leads to 
performance comparable to the one obtainable with static distributed object solutions, achieving 
the same level of scalability while providing at the same time an easy and natural approach to 
programmability with all its associated advantages. 

2. Code Mobility in Management 
The key benefits code mobility may bring into the network management arena, for each of the 
five management functional areas, are identified in [7]. These benefits include reduction in 
network traffic, efficient utilization of computational resources, support for heterogeneous 
environments, and increased flexibility. Nevertheless, the use of mobile code does not come 
without costs. In particular, code migration incurs additional traffic into the network, absorbs 
considerable resources from the agent hosts, and is associated with migration delays of the order 
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of seconds or even tens of seconds, depending on the agent configuration and functionality [16] 
(see also Section 4.3). Code migration overheads often outweigh its benefits and make this 
approach inconvenient. It is therefore important to identify the various aspects of code mobility 
and relate them to network management in order to identify aspects that are particularly 
beneficial. 
In the following subsections we define three different types of code mobility, ranging from the 
simplest, lightweight form of mobility to the most heavyweight one. For each case we elaborate 
on its benefits and limitations, identifying advantageous scenarios.  

2.1 Constrained Mobility 
One of the most elementary forms of code mobility is defined in [6] as Remote Evaluation 
(REV), after the pioneering work described in [17]. In REV, an application in the client role can 
dynamically enhance the server capability by sending code to the server. Subsequently, clients 
can remotely initiate the execution of this code that is allowed to access the resources collocated 
within the server. Therefore, this approach can be seen as an extension of the client-server 
paradigm whereby a client in addition to the name of the service requested and the input 
parameters can also send code implementing new services. Hence the client owns the code 
needed to perform a service, while the server offers both the computational resources required to 
execute the service and access to its local resources. 
 

 

Figure 1: Constrained mobility. The agent is created and initialized by a client application and is 
then shipped to an agent host. The agent execution is then confined to this host. 

A natural evolution of the REV model involves sending code not restrained to be a remote 
service but which can also act as a fully autonomous software entity. This type of code mobility 
we term constrained mobility since the code, upon its creation at a client site, is only allowed to 
migrate to a remote server where its execution will be confined. 
When constrained mobility is adopted in management the code is created by a client acting in the 
manager role and is, then, dispatched to a target network element acting in an agent/server role 
(Figure 1) – in this case the term agent is used according to the manager-agent model rather than 
denoting a mobile agent. 
This approach is particularly suited to dynamically programming or upgrading network devices. 
In this case, the code does not need to be particularly sophisticated. In a simple scenario it could 
be as simple as collections of objects that can be executed in a remote virtual machine. 
Therefore, mobility degenerates into a simple dynamic mechanism to efficiently deploy or 
upgrade network protocols or services. 
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Code deployment overheads, namely deployment traffic and delay, represent the drawbacks of 
general MA approaches. In constrained mobility the code does not need to incorporate complex 
migration features since its destination is predefined at creation time and is not changed 
afterwards. As a result, its size and the incurred network traffic are minimal compared to the 
other forms of mobility (see sections below). Similarly, it will not be necessary to use general 
purpose MA platforms – usually associated with heavyweight migration mechanisms [16] – and, 
thus, the code migration time can be considerably reduced (see Section 4.5). 
In conclusion, constrained mobility is a particularly well-suited mechanism to dynamically 
program network elements. It can outperform traditional centralized management for data-
intensive tasks and when high degrees of semantic data compression need to be achieved – e.g., 
through data aggregation or analysis. Constrained mobility is typically advantageous to perform 
off-line analysis of bulk data and, more generally, to implement tasks whose duration is at least 
comparable with the overall agent deployment time.  

2.2 The Weak and Strong Mobility Models 

Weak Mobility 
Similarly to constrained mobility, in weak mobility the code is created and initialized by a client 
application and is, then, shipped to its host. However in the latter, code is not confined to that 
host since it its meant to perform the same task in more than one location. Mobile agents that 
follow the weak mobility model do not retain any knowledge of the data processed or of the 
actions performed in previously visited hosts and, consequently, they can only implement tasks in 
which this information is not required.  
A convenient use of weak mobility is for dynamic decentralization of management tasks that are 
otherwise performed in a centralized fashion. The agent is delegated part of the management 
responsibility and will incorporate functionality such as procedures aimed at data semantic 
compression or aggregation. 
A trivial example showing the main advantages of weak mobility is the case in which the 
management station has to search for a single value in a table, a data structure typically used to 
store information inside devices. In SNMP management the whole table has to be transferred 
from the remote element to the management station, where the table rows are searched for the 
value. Hence, large tables will incur heavy unnecessary traffic into the network and will result in 
computational overload on the management station. 
A more efficient approach is adopted by OSI Systems Management [2], which supports remote 
scoping and filtering operations. Thus, the searching logic is executed in the device and, 
consequently, only the retrieved value is transmitted to the manager. The drawback of this 
approach is that the logic implementing scope and filtering has to be “hard-wired” in the network 
elements, which tend to become more complex. In addition, such functionality needs to be agreed 
upon and standardized beforehand. 
If constrained mobility were to be used, the agent incorporating the search routine would be 
shipped to the network device, where it would retrieve the requested values from the local table 
and return them to the manager. This solution addresses the shortcomings of the OSI approach, 
retaining its scalability and performance benefits. However, constrained mobility is not suitable 
in the more general case in which similar tasks are to be run on multiple network elements. In 
fact, as the number of network elements grows, the management station will be overloaded and 
the network capacity around it will be saturated by the simultaneous generation and transmission 
of the agents.  
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Strong Mobility 
With strong mobility, agents are able to access and process data from network elements but can 
also accumulate information and preserve it upon migration. This feature allows for the 
implementation of more elaborate tasks in which the agent operations depend on data gathered in 
previously visited hosts. 
In network management, strong mobility is more suited to configuration tasks and to data-
intensive tasks involving data aggregation from highly distributed network elements and on-line 
data analysis. A simple example is a task involving the collection of utilization information from 
a relatively large number of network elements. In a traditional SNMP-based system, the 
management station has to poll every single element in order to collect the required raw 
performance information before it can produce a useful utilization rate. OSI management offers a 
more efficient mechanism for obtaining the utilization rates, as this is done locally at the network 
element, but still requires further aggregation of this information at the management station.  
Constrained mobility does not suit this task since it would require the deployment of a number of 
MAs equal to the number of network elements. Each MA would typically be executing for a time 
negligible with respect to its deployment time and, then, the agent deployment overheads would 
be unacceptable.  
With strong mobility, the agent will be able to preserve the utilization rates of previously visited 
elements and will then be able to perform a further level of data aggregation independently from 
the manager. The main drawback associated with strong mobility is the agent size. ‘Strong’ 
agents tend to incorporate more intelligence, being larger in size. More critically, the agent size 
can vary significantly depending on the amount of information that has to be preserved during 
migration. It is, therefore, important to design the agents in such a way to limit their size 
variations – e.g., by allowing only semantically compressed information to be carried. 
 
Though in principle there should be uses for weak and strong mobility in network management, 
research work until now has not resulted in identifying compelling use cases. On the other hand, 
constrained mobility can be used for network management programmability and we believe that 
this should be done through optimized platforms such as our CodeShell one presented in the next 
section. 

3. The CodeShell Prototype Platform for Constrained 
Mobility 

3.1 Introduction 
Constrained mobility requires at least the following two important facilities: 

• A mechanism for migrating management logic along with initial parameters to a 
destination machine hosting the necessary resources. 

• A naming service in order to distinguish between objects and also bind one object to 
another. 

Mobile agent platforms include both these features but also many other features that allow them 
to be used as general purpose solutions for weak and strong mobility. As such, they are rather 
heavyweight and have scalability problems. On the other hand, the performance of distributed 
object frameworks such as Java-RMI and CORBA is more acceptable but these support only 
static objects that can communicate remotely with other objects in different network nodes. In 
order to build constrained mobility applications, a distributed object framework’s communication 
and naming service facilities could be re-used. In addition, a thin layer of functionality is needed, 
allowing the migration of management logic and supporting naming and binding of objects. As a 
means of validating this approach, the CodeShell prototype platform was designed and 
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implemented providing such facilities over Java-RMI. The CodeShell platform supports 
constrained mobility and it is specifically tailored to network management. 
Constrained mobility is particularly efficient for providing a number of programmable, 
customizable network management services. In the case of performance management for 
example, in order to collect performance data intended for off-line analysis, a performance 
monitor can be conveniently transferred near the resources of the node that needs to be 
monitored. The transfer of logic in this case allows the easy customization of the monitoring 
activities and the modification of monitoring characteristics in a dynamic way. In fault 
management, constrained mobility can be used to send event filtering and correlation logic to the 
node that is monitored for faults. Performance and fault management services along with a 
configuration management system, can be integrated and provided to customers in a dynamic, 
customizable fashion using the constrained mobility model as described in [15]. 

3.2 Design and Implementation 
The CodeShell platform consists of the following components: 

• CodeShell Communication Service (CCS): Allows the communication between 
remote objects. It is also responsible for the transfer of byte-code between two 
remote machines. 

• CodeShell Naming Service (CNS): Provides functionality related to the names 
assigned to objects. All names and important object information are stored in a local 
database. This allows the lookup of objects and the binding between them for local 
communication. 

• CodeShell Core System: Coordinates the operation of an individual CodeShell. Also 
provides a single interface allowing CodeShell objects to perform CCS and CNS 
related operations. 

• Base CodeShell Object: Provides basic functionality that should be inherited by any 
object intended for use inside a CodeShell. Most functionality relates to basic CCS 
and CNS related operations. 

• CodeShell Textual User Interface: A user interface that allows the user to manage 
(create, delete, list, etc.) objects within a CodeShell. This component is completely 
pluggable and can be easily detached from the main CodeShell system and replaced 
with an alternative environment. 

A minimum typical scenario of operation involves two remote machines. One Java-RMI registry 
and one CodeShell are initialized on each machine (see Figure 2). In the CodeShell of the 
machine in the client role, a “master” CodeShell object is created. This object will then contact 
the CodeShell’s CCS in order to send byte-code containing management logic to the remote 
machine {Step 1}. The CCS will then locate the CCS component of the remote CodeShell and 
transfer the byte-code and a list of initial parameters {Step 2}. When the byte-code arrives at the 
machine in the server role, a “logic” object is created from it and it is initialized with the 
provided parameters. In this CodeShell a “target” object is already created by the user waiting to 
provide the necessary raw resources. The “logic” object contacts the local CNS and performs a 
lookup for the “target” object {Step 3}. When this is located, the two objects are bound so that 
they can communicate locally with each other {Step 4}. The logic object is now ready to perform 
its task using the target object to obtain the necessary raw information {Step 5}. When it is time 
for a report to be sent back to its “master” object it will contact the CCS {Step 6} which will 
transfer it to the remote CodeShell {Step 7}. From there the local CCS is responsible for the 
report to be passed to the “master” object {Step 8}. The CodeShell platform was developed in 
Java using Sun’s JDK and uses the runtime environment version 1.2.1. 
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Figure 2: A typical constrained mobility application scenario running inside two remote CodeShells. 

4. Experimental Evaluation 

4.1 Case Study 
In order to evaluate the performance overheads of Java-RMI, CORBA, CodeShell and 
Grasshopper respectively, we used the performance monitoring case study described in detail in 
[9]. The aim here is to provide traffic rates with thresholds, quality of service alarms and periodic 
summarization reports by simply observing raw information such as traffic counters in network 
elements. This is functionality similar to the OSI-SM metric monitoring and summarization 
facilities (X.739/X.738) [10][11] but when it is provided through code mobility, users of the 
service are also able to customize it according to the semantics of a particular application as 
explained in [9]. 
When constrained code mobility is deployed using either CodeShell or Grasshopper, a 
performance monitor object is created by a “master” object somewhere and is sent to execute 
within a target node. When Java-RMI and CORBA are used, the performance monitor object is 
created at the target node through an object factory and the relevant intelligence needs to pre-
exist at that node. The performance monitor gathers information locally, applies thresholds and 
sends QoS alarms or periodic summarization reports to the master object. 
The “target” object is actually an adapter for the underlying SNMP. For its implementation and 
operation the AdventNet SNMP version 2.0 libraries were used in order to query an SNMP agent 
for raw performance information. Given this functionality, we are interested to measure the 
creation/migration overheads, the cost of remote invocation that models the reporting of results, 
both in terms of response time and packet sizes, and the computing requirements at a the target 
node. Though our case study is specific to a particular problem domain i.e. performance 
management, the described measurements are general enough to give us insight on the overheads 
of the constrained mobility approach in network management in general. 

4.2 Method 
The performance monitoring system has been implemented over four different infrastructures, 
the Grasshopper mobile agent platform, Java-RMI, CORBA, and Code-Shell. The aim was to 
assess the impact that these underlying technologies may have on the monitoring system. 
Grasshopper is not one of the most efficient MA platforms. It has been chosen because, due to its 
functionality, it can be considered a general-purpose MA platform. Moreover, Grasshopper 
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follows the current standardization directions, since it is compliant with both MASIF [13] and 
FIPA [12]. 
Java-RMI and CORBA have been chosen as representative of the most popular ‘static’ 
distributed object technologies. In addition, CORBA is emerging as a significant technology for 
network and service management. 
Finally, Code-Shell is our implementation of a platform supporting constrained code mobility. It 
is an approach that lays in between two extreme solutions. In the first case the monitoring system 
is enabled with strong code mobility, which is supported by a general purpose MA platform. In 
the second case, the systems cannot rely on any form of code mobility since it is entirely based 
upon static distributed object technologies. For this reason, Code-Shell can be regarded as an 
optimized version of a general-purpose MA platform, which aims at achieving performance 
comparable to the one obtained with static distributed object technologies. 
During our experiments we have run the same performance monitoring tasks over the four 
different platforms, measuring in each case the total response time, the traffic incurred in the 
network and the total memory requirements. In the cases of Grasshopper and Code-Shell the 
measurements have been taken at steady state, that is after the code had been shipped to the 
remote elements. In this way we could perform a direct comparison with the implementations 
based on Java-RMI and CORBA, respectively. The additional overheads incurred by code 
mobility – namely code deployment time and network traffic incurred during the transmission of 
the code from manager to network elements – were measured separately. 
In order to measure the total remote invocation response times, timestamps were taken using the 
currentTimeMillis method of the java.lang.System class. An array of objects (class 
java.util.Vector) containing 25 numbers of type java.lang.Double was remotely transferred 100 
times between two objects located in different machines, measuring the total transmission time. 
The same procedure was repeated while increasing the number of elements in the list to 50, 75, 
and 100. This operation in fact models the periodic summarization reports generated and 
remotely sent by the entity equipped with the performance monitoring logic. 
For the same experimental cases and in order to calculate the total incurred traffic, we measured 
the TCP packet sizes using the tcpdump program originated at the Lawrence Berkeley laboratory, 
reporting the total payloads at the TCP level.  
To measure the memory requirements, program sizes were measured for the server side of the 
Grasshopper, Code-Shell and Java-RMI systems. The measurements were taken using the 
totalMemory, and freeMemory methods of the java.lang.Runtime class. The first method provides 
the total amount of memory allocated by the Java Virtual Machine (JVM). The second one 
returns an approximate value of the amount of memory left free inside the JVM – i.e., memory 
available for future object allocation. The difference of these two values provides the amount of 
memory required by the performance monitoring system under evaluation which includes the 
required platform related classes in addition to the "target" and to the "logic" objects. 
The experiments have been repeated 100 times for each of the above cases in order to perform a 
statistical analysis and study the significance of the measurements. The experiments where 
carried out using two different machines over a lightly loaded 100 Mbit/sec Ethernet in the role 
of the management network with the following specification: Sun Microsystems Ultra-10, 
256MB of memory, Sun’s Solaris 2.5.1 version of UNIX.  

4.2 Response Times Measurements 
The response time of management operations for each of the four cases of performance 
monitoring systems are reported in Figure 3 which, for an easier comparison, combines in a 
single chart the mean values and best liner fit of the results. 

 



 9

Figure 3: Mean values and best linear fit of response times. 

The first conclusion that can be drawn by observing the plots is that the system based on Code-
Shell exhibits the same degree of scalability as the one of the systems based on Java-RMI and 
CORBA. In fact, the slopes of the curves of those three cases have a comparable value. On the 
contrary, the Grasshopper system exhibited a much bigger slope showing its intrinsic inability to 
perform well under more demanding conditions. 
From the performance point of view the Code-Shell system gave a response time in the order of 
2-3 times larger than the one of the Java-RMI system and in the order of 4 times larger than the 
one of the CORBA system.  

The conclusions based on Figure 3 have been validated by statistical analysis. Figure 4 depicts 
the results of this analysis in the form of statistical box charts. It should be noted that these boxes 
do not have overlapping values and this fact leads us to the conclusion that the response times of 
the four different solutions are indeed statistically different. Therefore, the mean values and the 
line slopes of Figure 3 are statistically representative and can be employed to carry out the above 
comparative analysis. 
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Figure 4: Statistical Box Charts showing response times for each of the four experimented cases. The 
boxes include the 25-75% boundaries, the mean values (a black square) and the median values (a 
line). The 5-95% range boundaries are delimited by whiskers. The outliers are depicted with circles 
and stars. 

4.3 Traffic Measurements 
We also measured the packet sizes in all four cases. An array of objects (class java.util.Vector) 
containing 25, 50, 75 and 100 “Double”  numbers respectively was remotely sent using remote 
invocations in the Mobile Agent, CodeShell, RMI and CORBA systems. Each time, the payload 
of the TCP packets was measured. A chart of the results gathered can be seen in Figure 5.  
It is interesting to observe that, within the measured range of values, the four solutions incurred a 
comparable level of traffic. The Grasshopper and RMI systems performed better for small scales 
whilst the CodeShell and CORBA systems exhibited better performance for larger scales. The 
CodeShell platform transparently optimizes the transfer procedure and this is the reason why, for 
a large number of elements, it incurred less traffic in the network compared with the standard 
RMI system. 
 
 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

A
25

B
50

C
75

D
100

2

4

6

8

10

12

14

16

List Size [Number of Elements] 
I) Corba

R
es

po
ns

e 
T

im
e 

[m
se

c]

A
25

B
50

C
75

D
100

5

10

15

20

25

List Size [Number of Elements] 
II) RMI

A
25

B
50

C
75

D
100

30
40
50
60
70
80
90

100
110
120
130

 R
es

po
ns

e 
T

im
e 

[m
se

c]

List Size [Number of Elements]
III) MA (Grasshopper)

A
25

B
50

C
75

D
100

15

20

25

30

35

40

45

50

List Size [Number of elements]
IV) Code-Shell



 11

 

Figure 5: Mean and best linear fit of total incurred TCP payloads, measured as the sum of all the 
bytes incurred in the network to complete the given network performance monitoring task. 

4.4 Memory Measurements 
The memory requirements for the monitoring systems based on Grasshopper, Java-RMI, and 
CodeShell, are compared in Figure 6.  
 

Figure 6: Memory requirements for the Java-based network performance monitoring systems.  

It can be observed that CodeShell performs as well as Java-RMI and significantly better than 
Grasshopper. The latter, resulted in a fivefold occupation of memory which is yet another 
dramatic drawback of relying on a general-purpose MA platform. 

4.5 Code Migration Overheads 
The delay and traffic involved during code migration have been measured for the two 
programmable network performance monitoring systems based on Grasshopper and Code-Shell, 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

25 50 75 100 125
400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

 List Size [Number of Elements]

 T
ot

al
 P

ay
lo

ad
 [b

yt
es

]
 Mean Values
 RMI
 MAs (Grasshopper)
 Code-Shell
 CORBA

 

                                        

                                        

                                        

                                        

                                        

                                        

Grasshopper RMI CodeShell
0.0

2.0x106

4.0x106

6.0x106

8.0x106

1.0x107

1.2x107

1.4x107

1.6x107

1.8x107

T
ot

al
 J

V
M

 M
em

or
y 

A
llo

ca
tio

n 
[b

yt
es

]

 Free memory inside the JVM
 Memory held by objects inside the JVM



 12

respectively. The times involved in the migration of performance monitoring logic from the 
manger to the network elements are reported in Figure 7 in the form of statistical box charts. 
By substituting the generic code migration mechanism of Grasshopper with a simpler code 
deployment protocol we have been able to reduce by four times the time required to program a 
network element. The fact the statistical boxes do not overlap proves that the difference in code 
migration time between the two approaches is statistically significant. 

Figure 7: Statistical Box Charts showing code migration times involved in the programmable 
network performance monitoring systems. The boxes include the 25-75% boundaries, the mean 
values (a black square) and the median values (a line). The 5-95% range boundaries are delimited by 
whiskers. The outliers are depicted with circles and stars. 

We also measured the additional traffic incurred by code migration. The transmitted data for the 
CodeShell system was 2,236 bytes; for the Grasshopper system it was 2,854 bytes. There was no 
need to repeat the measurements since we were able to measure the exact payload by 
discriminating it from the background traffic. 

5. Discussion and Conclusions 
Over the last three years we have been engaged in the task of designing and implementing an 
integrated Network Management system based on the use of Mobile Agent technologies. Our 
investigation led us to conclude that general-purpose MA platforms are not a viable infrastructure 
over which dynamic, programmable management systems can be realized. This is due to the fact 
that MA platforms tend to be rather heavyweight and do not scale well. In particular, code 
migration involves delays which in several cases are orders of magnitude larger than the 
timescales typical of network management systems. Moreover, following the MbD idea 
originated in 1991, nearly ten years of discussions in the management community have failed to 
identify a single case in which the use of strong mobility can have a significant impact on NM 
applications. 
On the contrary, we believe that constrained mobility can be the vehicle to realize network 
programmability and MbD functionality with current technologies. 
These observations have induced us to shift our investigation towards the constrained mobility 
concept in order to assess more precisely its effectiveness in the specific context of network 
management. We have implemented CodeShell in order to establish whether it was possible to 
realize management systems based on constrained mobility, achieving at the same time 
performance levels comparable to the ones of systems based on the most popular static 
distributed object technologies. We also aimed at quantifying the performance gain achievable by 
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giving up on general-purpose MA technologies, retaining only the most basic form of code 
mobility exemplified by constrained mobility.  
The results presented herein suggest that constrained mobility is easily integrated in network 
management systems. Moreover, using constrained mobility it is still possible to achieve 
performance and scalability typical of static distributed object technologies.  
To draw these conclusions we have realized a performance monitoring systems over CodeShell, a 
constrained mobility platform based on Java-RMI. We believe that other management functions 
such as configuration and fault management can similarly benefit from constrained mobility. 
While mobile agent frameworks were initially thought as rivals to static distributed object 
frameworks, the two approaches need to coexist. We believe that constrained mobility is the 
required level of code mobility that can find concrete application in network management. Real 
synergy could be achieved if stationary agents could be provided using static objects, with 
method invocations being possible between mobile and static objects in both directions. Such an 
environment would combine the best of both worlds but it is not clear at present whether this 
type of seamless integration is achievable. 
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