
A Hybrid approach to Network Performance
Monitoring based on Mobile Agents and CORBA

Christos Bohoris, George Pavlou, Antonio Liotta

Centre for Communication Systems Research, School of Electronics, Computing and
Mathematics, University of Surrey, Guildford, Surrey, GU2 7XH, UK
{C.Bohoris, G.Pavlou, A.Liotta}@eim.surrey.ac.uk

Abstract. While mobile agent frameworks were initially thought as rivals to
static distributed objects the two approaches should ideally coexist. Mobile
agents can allow the easy programmability of managed nodes, while static
distributed objects typically offer better performance. Real synergy could be
achieved in a network management system if entities with a stationary role
could be provided using static objects that collaborate with mobile agents in a
system that combines the best of both frameworks. In this paper we present
such a hybrid approach, illustrated through a prototype network performance
monitoring system based on an integration of Mobile Agents and CORBA. Our
assessment of this system based on our practical experiences and experimental
evaluation shows that such a hybrid approach can provide an easy and favorable
solution for enhancing existing CORBA-based network management systems.
Keywords. Mobile Agents, CORBA, Performance Monitoring, Distributed
Objects.

1 Introduction and Background

In recent years we have witnessed an evolution in network management approaches
driven by the need of addressing the requirements of modern networks becoming
increasingly large, sophisticated and complex. The initial protocol-based network
management solutions, proposed in the early 90’s as exemplified by the widely used
Simple Network Management Protocol (SNMP) [1], are today particularly limiting
due to their centralized and static nature. The approach is centralized as it relies on a
limited set of capabilities at network nodes while management processing has to be
performed at the network management station. Any capabilities at network nodes are
fixed, embedded by the manufacturer at the network element construction time.

While a protocol-based approach is specific to a management framework, a
generic approach based on the client/server model can be achieved through the use of
distributed object frameworks as proposed by researchers in the mid-90s. A
distributed object framework, with particular influence on the network management
area, is the Common Object Request Broker Architecture (CORBA) [2] proposed by
the Object Management Group (OMG). Distributed object frameworks, allow the
creation of decentralized, static systems. Decentralization is achieved by placing
required management logic in network nodes and by creating instances of

management objects specific to interested clients. Although distributed object
frameworks such as CORBA have succeeded in allowing the development of
decentralized systems, they still suffer from a lack of support for programmability, as
the management logic located in network nodes is static and cannot be easily altered.
The issue of programmability of managed nodes is particularly important for network
management systems. The lesson learnt from the deployment of Telecommunications
Management Network (TMN) systems was that they were highly complex and
suffered from long standardization cycles [3]. The latter means that network managers
had to wait several years before a standardization cycle was completed and the
required management functionality was embedded in network nodes.

In order to address this problem, recent research has turned into a mobile agents
approach, representing an attractive solution for dynamic and programmable network
management. Agent mobility can allow the easy programmability of network nodes.
This can be achieved by a mobile agent equipped with updated management logic that
migrates to the required managed node for execution. Decentralization of a network
management task can also be easily achieved through migrating agents that execute
near the resources required for their task. In addition to exploiting the mobility of
agents, agent autonomy can be used to fine-tune the operation of a network
management system as well as for execution of routine tasks on behalf of the user. As
an example, a system of mobile agents responsible for a network management task
could make autonomous decisions for the initial positioning of mobile agents as well
as their possible re-location while executing, allowing their more efficient execution
or the balancing of network resources required for the whole task.

A fundamental principle of network management is that any network management
task should have a minimum impact on the managed network. Naturally the more
advanced capabilities of mobile agent-based systems are also linked with an increase
in performance overheads compared to systems based on distributed object
frameworks (see [4]). Such performance overheads affecting the managed network
are typically associated with mobile agent migration. In an effort to keep these
overheads to a minimum many mobile agent-based systems today exhibit single-hop
agent migration only or multi-hop migration of small agents only. Another area of
increased performance overheads of mobile agents in comparison to static distributed
objects is typically associated with their remote communication. This is commonly
attributed to the much more dynamic communication mechanisms required to
accommodate the remote communication of migrating agents.

This mixed situation of complementing advantages and disadvantages between
mobile agent and distributed objects frameworks leads to the direction that the two
approaches should ideally coexist. Most important, mobile agents offer easy
programmability of managed nodes, while static distributed objects typically offer
better performance. A typical network management system involves the collaboration
of static software entities with others that would preferably be mobile. As such, real
synergy could be achieved in a network management system if stationary entities are
provided using static objects that collaborate with mobile agents in a system that
combines the best of both. Such a ‘hybrid’ approach to network management based
on a combination of Mobile Agents and CORBA entities is presented and assessed
herein. While some previous work on the integration of mobile agents and CORBA

considered mostly architectural issues [5] [6], in this paper we concentrate on issues
of system design and a performance evaluation of the hybrid approach.

In the rest of this paper we begin by presenting (in Section 2) the approaches to
agent mobility that influence our hybrid systems’ design and capabilities. In section 3
we propose a generic approach to an autonomous and programmable network
management system based on a hybrid combination of static CORBA objects and
mobile agents. Subsequently, section 4 demonstrates the usage of the hybrid approach
through a system for network performance monitoring. Section 5 presents a set of
experimental results that show the relative performance levels and confirm the areas
of reduced performance overheads of a hybrid approach compared to a mobile agents
only system. Finally in section 6 we discuss the lessons learnt and we give pointers to
our future research directions.

2 Software Mobility in Network Management

A first clear effort of exploiting software mobility in order to decentralize network
management operations was made in 1991 with the work on Management by
Delegation (MbD) [7]. The approach is based on mobile code that is sent to a remote
node to execute under local or remote control. This was recently revived by IETF as
the basis of the Script-MIB proposal [8]. Script-MIB uses the MbD paradigm to
define an SNMP-compliant Management Information Base for the delegation of
management functions in the SNMP framework. The ITU-T has also standardized a
proposal for MbD, called the CMIP Command Sequencer [9]. MbD can be considered
a precursor of the Remote Evaluation (REV) paradigm for code mobility described in
[10]. In this paradigm, code containing the required logic is pushed along with initial
parameters to a remote node, where we have object creation and its execution. This
paradigm evolved further into the ‘Constrained’ mobility model involving software
mobile agents [4]. The model was termed ‘Constrained’ mobility since the agent,
upon its creation at a client site, is only allowed to migrate to a single remote server
where its execution will be confined. An important aspect of constrained mobility is
that a mobile entity is not restrained to be a remote service, as in the case of REV, but
instead acts as an autonomous software agent (e.g. choosing its migration node,
intelligently collaborating with other agents to achieve its task, etc.). Earlier studies
on constrained mobility of agents (e.g. assessments by Bohoris, et al in [4], Simões, et
al in [11]) have shown that the model fits well with typical network management
requirements in systems that involve long-term management tasks for which
programmability of the distributed management logic is required. In addition, since
mobile agent migration takes place only once, the performance overheads associated
with the model are typically acceptable. Another interesting model of agent mobility
is often termed ‘Weak’ mobility [4]. This involves a mobile agent migrating from the
network management station to a number of managed nodes, executing its task in
every hop. In weak mobility the migrating agent carries no state information and thus
its behavior is not influenced by knowledge acquired in previous hops. The model is
particularly suited for management tasks requiring a relatively short period in time.
We should also note here that in order to exploit weak mobility in an efficient manner

and due to the multiple agent migrations involved, it is important for the size of the
migrating agent to be small. The appropriate exploitation of both constrained and
weak mobility by suitable mobile agents is illustrated in the approach described in the
following section.

3 Proposed Approach

Let’ s now consider a network of managed nodes, each hosting a number of CORBA
servers containing an executing piece of management logic (Fig. 1). While CORBA
servers written in compiled languages are tied to a specific hardware architecture and
operating system, a number of CORBA servers are written in an interpreted language
such as Java, allowing them to execute in any managed node running a suitable
Virtual Machine (VM) and the relevant ORB.

1.

2.

3.

4.
5.

6.

7.

8.

Network node

Java CORBA server

Other CORBA serverRemote communication

Weak agent migration

Relocation of server

1.

2.

3.

4.
5.

6.

7.

8.

Network node

Java CORBA server

Other CORBA serverRemote communication

Weak agent migration

Relocation of server

Fig. 1. A system of dynamically positioned Java-based CORBA servers

For the efficient operation of the system, we would like to have these Java-based
CORBA servers placed dynamically in managed nodes. This can be achieved with a
mobile agent carrying a CORBA server to the appropriate managed node for
execution (Fig. 2, step 1). In [12], Liotta et al, presented an algorithm that allows an
agent to decide based on an analysis of routing tables on the most efficient node for
its migration and execution. The decision mechanisms used in [12] are a result of a
theoretical study, assessed through a set of simulation results confirming the
usefulness of the process. In the work presented here we enhance those mechanisms
by considering a combination of efficiency parameters and present their realization in
a system based on current Mobile Agent and CORBA technologies. Since the state of
network nodes can change with time, we would like to be informed if there is a more
efficient node for execution. For this reason, our mobile agent along with the CORBA

server can carry the code of a second smaller mobile agent (Fig. 2, step 1). This small
agent can periodically visit (in a weak mobility manner - Fig. 2, step A) a number of
alternative nodes and collect local performance information that will allow it to
possibly instruct (Fig. 2, step B) a relocation of the CORBA server in a more efficient
node of execution (Fig. 2, step 3).

Network

Management
Server

Node A

Node B

Node C

Node D

Node E

Node F
1. Initial migration of logic

A. Visit alternative nodes

B.Send decision on the most
suitable node for execution

3. Relocation of logic

2. Execution

Network
Management

Server

Node A

Node B

Node C

Node D

Node E

Node F
1. Initial migration of logic

A. Visit alternative nodes

B.Send decision on the most
suitable node for execution

3. Relocation of logic

2. Execution

Fig. 2. A typical scenario of operation and re-location of a single Java-based CORBA server

The above discussion allows us to identify that two mobile software entities are
required by our approach as well a static object containing the required management
logic. In addition, other collaborating static entities can be available in order to
formulate a complete management system. In the following section we will
demonstrate how the proposed approach can be realized in the context of a system for
network performance monitoring.

4 A Prototype Hybrid System for Performance Monitoring

Performance monitoring involves the systematic monitoring of network conditions of
a number of crucial nodes in a network. This can be very important for the efficient
configuration of network resources and the quick response to critical performance
conditions. Our performance monitoring system was specifically developed to support
the monitoring of various performance parameters important in an Intranet
environment. Based on the approach presented in the previous section we have
developed a prototype system for network performance monitoring using a combined
CORBA and mobile agents environment. CORBA distributed objects support was
provided by Sun’ s Java mapping of CORBA included in JDK 1.3.1 [13]. Mobile

agents support was provided by IKV’ s Grasshopper agent platform [14] version 2.2.1.
Our performance monitoring system consists of two mobile agents and three CORBA
objects as described below (see Fig. 3):

• CORBA Monitor: A CORBA object responsible for performing performance
monitoring. It contains all the required management logic for this task
involving a combination of metric monitoring and summarization
functionality [15].

• CORBA Master: A CORBA object responsible for initiating and controlling
the performance-monitoring task. The Master directly sends to the Monitor
any requests for reconfiguration of the performance monitoring process. In
addition it receives from the Monitor any performance reports or
notifications generated.

• Position Agent: A mobile agent responsible for visiting a number of
alternative nodes in the network collecting information on their conditions.
Based on this, it can make a decision and instruct for the relocation of the
performance monitoring task on a more efficient node of execution.

• Worker Agent: A mobile agent migrating along with the code of the Position
Agent and the Monitor into a targeted node. Upon arrival it initiates the
Monitor object and passes a reference of it to the Master. It is also
responsible for periodically creating a Position agent as well as relocating the
monitoring task to alternative nodes of execution.

• CORBA Target: A CORBA object available at each network node allowing
the Monitor to access raw performance information. The Target allows the
Monitor to take passive performance measurements (e.g. Used bandwidth,
loss, etc) by wrapping the underlying SNMP support as well as active
measurements by providing an ‘echo’ facility (e.g. for delay, jitter, etc).

Fig. 3. Initiation of the performance monitoring task

A typical scenario of system operation commences with a request for performance
monitoring from a user of the system creating a CORBA Master. The Master is

responsible to create a new Worker agent and pass to it any parameters required for
the performance monitoring task (Fig. 3, step 1). The Worker, containing the code of
a CORBA Monitor and a Position agent, subsequently migrates to the chosen network
node. Upon arrival it initiates a CORBA Monitor and passes its reference to the
Master so that the two CORBA objects can collaborate directly. The Monitor initiates
its task with periodic requests for ‘raw’ performance information (counter type
values) provided by the CORBA Target. Based on this information the Monitor
performs metric monitoring for a number of performance parameters (e.g. Used
Bandwidth, Loss, etc), checks the thresholds set and gathers the information produced
in order to generate reports. During this task, the Monitor remotely sends to the
Master such reports on performance conditions in a scheduled manner (e.g. every 1
hour) as well as notifications in real time when a performance threshold is triggered.

Worker Agent Position Agent CORBA M onitor CORBA M aste r

1.create

2. migrate to alte rnative nodes and collect information

3. process information and make a decision

4. remotely send re location instruction

5. te rminate

6. suspend

7. re location

8. pass new CORBA M onitor reference

7. resume

Fig. 4. A typical relocation scenario

Further to this initial scenario, the Worker agent periodically creates a Position
agent to examine the possibility of relocating in a more efficient node (see Fig. 4).
The created Position agent visits in a weak mobility manner a number of alternative
nodes and collects information on their conditions (e.g. CPU load, memory usage,
delay, number of executing threads, etc) at each hop. When the Position agent finishes
its task at the last visited node it analyses the collected information and makes a
decision on whether relocation is beneficial. If so, it remotely instructs the Worker on

the suitable relocation node to migrate and finally terminates. The Worker
subsequently suspends the currently running monitor and migrates to the designated
node. Upon arrival it initiates the CORBA monitor that can resume its operation from
the previously suspended session information. The Worker finally needs to notify the
Master of the new Monitor reference in order to allow again the direct communication
between the two CORBA objects.

The system’ s approach has allowed us to exploit a number of mobile agent
capabilities allowing for dynamic and programmable performance monitoring. In the
section that follows we will present experimental results showing the improvements
in performance introduced by the collaboration of agents with static distributed
objects.

5 Evaluation and Assessment

5.1 Environment and Method

In our evaluation we are interested to highlight the performance improvements in the
managed network associated with a hybrid system as compared to a Mobile Agents
only system. Additionally contrasting the hybrid system with a CORBA only system
will reveal the levels of any additional overheads of our approach. Within this scope
we have developed two comparison systems based on Grasshopper Mobile Agents
only and CORBA only. The important areas of performance overheads in the network
involve the tasks of agent migration as well as remote communication of the various
software entities. In this context and for the three available systems, measurements
were taken for the following typical system operations:

• The scheduled remote transmission of a performance report (see Fig. 3, step
5) from the monitoring entity at the managed node to the Master at the
network management station. A performance report contains a list of all the
performance monitoring information produced by the CORBA Monitor. For
our measurements we considered reports containing a list of 25, 50, 75 and
100 ‘double’ numbers, reflecting on information gathered during the metric
monitoring process.

• The Worker agent migration carrying the management logic to a managed
node as well as the Position agent migration to an alternative node (see Fig.
3, step 2 and Fig. 2, step A).

For these operations we have taken the following measurements:
• Traffic measurements: Taken using the tcpdump utility with the sizes

reported reflecting on the total payload at TCP level.
• Response times measurements: Taken using the System.currentTimeMillis()

method included in the API of Sun’ s JDK. The measured values of response
times reported represent the “steady-state” running costs, excluding the
initial setup costs.

In addition to performance overheads in the network we consider the resources
required in the managed node by each system. In this direction we have measured the
memory requirements of each system at a managed node. The measurements were
taken using the totalMemory, and freeMemory methods of the java.lang.Runtime
class. The first method provides the total amount of memory allocated by the Java
Virtual Machine (JVM). The second one returns an approximate value of the amount
of memory left free inside the JVM i.e., memory available for future object allocation.
The difference of these two values provides the amount of memory required by the
performance monitoring system under evaluation including any platform support
objects.

All measurements were taken using a testbed of Linux workstations with
homogeneous features (Redhat 7.1, Intel Celeron 466MHz and 64MB of RAM),
connected to a 100Mbps Ethernet network.

5.2 Results

The response times of the three systems for the operation of transmitting a remote
report of 25, 50, 75 and 100 ‘double’ numbers can be seen in Fig. 5. Note once more
that in the hybrid system remote communication between the Monitor and the Master
objects takes place through the CORBA facilities. Thus, for this operation the hybrid
system has the same performance overheads with a plain CORBA system. Fig. 5
shows that the hybrid system performs about 5 times better than the mobile agents
only system.

0

5

10

15

20

25

30

35

40

0 25 50 75 100 125

Report Size [Number of Elements]

R
es

p
o

n
se

 T
im

e
[m

il
li

se
co

n
d

s]

Hybrid and CORBA
based Systems

Grasshopper Mobile
Agents based System

Fig. 5. Response times for the transmission of performance reports

The traffic that the three systems incurred in the network for the operation of
transmitting a remote report of 25, 50, 75 and 100 ‘double’ numbers can be seen in
Fig. 6. As before, for this operation the hybrid system has same performance
overheads with a plain CORBA system. Fig. 6 shows that the hybrid and CORBA
only systems incur constantly less traffic than Grasshopper Mobile Agents with the
gap increasing as the number of reported elements increases.

0

200

400

600

800

1000

1200

1400

1600

1800

0 25 50 75 100 125

Report Size [Number of Elements]

T
ra

ff
ic

 P
ay

lo
ad

 [
b

yt
es

]

Hybrid and CORBA
based Systems

Grasshopper Mobile
Agents based System

Fig. 6. Traffic incurred for the transmission of performance reports

Software migration is an additional overhead for the two systems involving
mobile agents. In the table below the migration times and traffic incurred by the
mobile agents of the hybrid and mobile agents only systems are reported.

 Hybrid System -
Worker Agent

Mobile Agents System
- Worker Agent

Position
Agent

Response Time [msec] 1705 1524 658
Traffic Payload [bytes] 3282 3096 1316

The Worker Agent of the hybrid system gave slightly higher overheads compared

to the Worker Agent of the Mobile Agents only system. This is due to the additional
CORBA specific code required in the entities of the hybrid system. The Position
Agent is common for both systems and much smaller than the Worker Agent resulting
in significantly smaller performance overheads that make it suitable for the Weak
mobility model. For comparison with the performance overheads of the mobile agents
reported above, in a CORBA distributed objects system the creation of a distributed
object through a factory requires typically less than 15ms to complete and incurs
around 500 bytes of traffic.

Finally, the results regarding the JVM memory usage at a managed node can be
seen in Fig. 7. The hybrid approach requires the most amount of memory as it
combines both CORBA and mobile agent entities and supporting platform facilities.
We have to note here that our reported values of total memory regarding the hybrid
system involve the total of two JVMs used, one for the CORBA target object and one
for the Grasshopper execution environment including the performance monitoring
entities within.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

Hybrid System Mobile Agents
System

CORBA System

JV
M

 M
em

o
ry

 U
sa

g
e

at
 M

an
ag

ed
 N

o
d

e
[b

yt
es

]

Total

Free

Used

Fig. 7. JVM memory usage at a managed node

6 Conclusions

In this paper we presented the approach, design and evaluation of a hybrid network
management solution based on a combination of mobile agents and CORBA. A
demonstrating system for network performance monitoring illustrates the manner that
the approach exploits mobility and autonomy of agents as well the good performance
levels offered by static CORBA objects. An important result arising from this work is
that we can easily enhance an existing CORBA system with mobile agent capabilities,
through a small alteration of the static CORBA objects at the network management
server and no changes necessary to the CORBA servers code executing in the
managed nodes. In our case study for performance monitoring small alterations were
made to the CORBA Master in order to create and communicate with the Worker
Agent while the code of the CORBA Monitor required no modifications. Constrained
mobility of agents provides an easy and effective approach to programmability of
management logic at network nodes. Through our practical experience we have
identified as a rule of thumb that agents exhibiting constrained mobility can be used
to replace CORBA factories located at a managed node. Programmability ensures a
flexible system that evolves quickly along with changing network management
requirements, an element that was missing from the TMN systems of the mid 90s and
hindered their success. As shown by our experimental results the hybrid approach
resulted in a significant reduction of performance overheads in the network for typical
management operations compared to a mobile agents only system and in similar
levels with CORBA. Naturally, agent migration is an important additional overhead
compared to CORBA systems but the constrained mobility aim of long-term
execution in a network node helps to ease the migration overheads concerns. In
addition in our proposed approach weak mobility of agents was exploited efficiently
by ensuring that the size of the Position Agent was small. Our hybrid system approach
also exploits the autonomous nature of mobile agents allowing us to fine-tune the
system’ s operation by efficiently positioning our agents and balancing the usage of
resources in the managed network. While our current work was a first step in

exploiting agent autonomy our future work will focus in the direction of more
sophisticated autonomous decisions and the detailed evaluation of their significance
as compared to a plain delegation approach.

References

[1] J.Case, M.Fedor, M.Schoffstall, J.Davin, “A Simple Network Management Protocol
(SNMP)”, IETF RFC 1157, 1990.

[2] Object Management Group, “The Common Object Request Broker: Architecture and
Specification (CORBA)”, Version 2.0, 1995.

[3] G. Pavlou, G. Mykoniatis, J. Sanchez, “Distributed Intelligent Monitoring and Reporting
Facilities”, IEE Distributed Systems Engineering Journal (DSEJ), Special Issue on
Management, Vol. 3, No. 2, pp. 124-135, IOP Publishing, 1996.

[4] C. Bohoris, A. Liotta, G. Pavlou, “Software Agent Constrained Mobility for Network
Performance Monitoring”, In the Proceedings of the 6th IFIP Conference on Intelligence
in Networks (SmartNet 2000), Vienna, Austria, ed. H.R. van As, pp. 367-387, Kluwer,
September 2000.

[5] F. G. Chatzipapadopoulos, M. K. Perdikeas, I. S. Venieris, “Mobile Agent and CORBA
Technologies in the Broadband Intelligent Network”, IEEE Communications Magazine,
Vol. 38, No. 6, pp. 116-124, June 2000.

[6] M. H. Guiagoussou, R. Boutaba, M. Kadoch, “A Java API for Advanced Faults
Management”, IEEE/IFIP International Symposium on Integrated Network Management
(IM'01), pp. 483-498, 2001.

[7] G. Goldszmidt, Y. Yemini, “The Design of a Management Delegation Engine”,
Proceedings of the IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management, Santa Barbara, CA, October 1991.

[8] D. Levi, J. Schonwalder, RFC2592 – “Definitions of Managed Objects for the Delegation
of Management Scripts”, The Internet Society, May 1999.

[9] ITU-T Rec. X.753, “Command Sequencer”, 1997.
[10] A. Fuggetta, G. P. Picco, G. Vigna, “Understanding Code Mobility”, IEEE Transactions

on Software Engineering, vol. 24, no. 5, pp. 342-361, 1998.
[11] Paulo Simões, João Rodrigues, Luís Silva, Fernando Boavida, “Distributed Retrieval of

Management Information: Is it About Mobility, Locality or Distribution?”, In the
Proceedings of the Network Operations and Management Symposium 2002, Florence,
Italy, 15-19 April, 2002.

[12] A. Liotta, G. Pavlou, G. Knight, “Exploiting Agent Mobility for Large Scale Network
Monitoring”, IEEE Network, special issue on Applicability of Mobile Agents to
Telecommunications, Vol. 16, No. 3, IEEE, May/June 2002.

[13] Sun’ s Java Development Kit, http://java.sun.com/j2se/
[14] IKV++, Grasshopper Mobile Agent platform, http://www.grasshopper.de.
[15] ITU-T Rec. X.739 – “Metric Objects and Attributes” (1992) and ITU-T Rec. X.738 –

“Summarization Function” (1993).

