
Dynamic Policy Analysis and Conflict Resolution for
DiffServ Quality of Service Management

Marinos Charalambides, Paris Flegkas,
George Pavlou, Javier Rubio-Loyola

Centre for Communications Systems Research
University of Surrey

Guilford, GU2 7XH, UK
{m.charalambides, p.flegkas, g.pavlou,

j.rubio-loyola}@eim.surrey.ac.uk

Arosha K Bandara, Emil C Lupu, Alessandra Russo,
Morris Sloman, Naranker Dulay

Department of Computing, Imperial College London
South Kensington Campus

London, SW7 2AZ, UK
{a.k.bandara, e.c.lupu, a.russo, m.sloman,

n.dulay}@imperial.ac.uk

Abstract— Policy-based dynamic resource management may
involve interaction between independent decision-making
components which can lead to conflicts. For example, conflicts
can occur between the policies for allocating resources and those
setting quotas for users or classes of service. These policy
conflicts cannot be detected by static analysis of the policies at
specification-time as the conflicts arise from the current state of
the resources within the system and so can only be detected at
run-time. In this paper we use policies related to Quality of
Service (QoS) provisioning for configuring Differentiated
Services (DiffServ) networks to illustrate techniques for the
dynamic detection and resolution of conflicts. Configuration
includes implementing network provisioning decisions,
performing admission control, and adapting bandwidth
allocation dynamically according to emerging traffic demands.
We identify possible conflicts between policies that manage the
allocation of resources, and we also investigate conflicts that may
arise between these policies and higher-level directives refined at
the dynamic resource management level, acting as constraints.
The paper shows how Event Calculus can be used to detect
conflicts, focusing on the ones that emerge at run-time, and
provides an approach for specifying policies to automate conflict
resolution. The latter is demonstrated through our initial
implementation of a dynamic conflict analysis tool.

Keywords: Conflict detection; Conflict resolution; Policy-based
resource management

I. INTRODUCTION

In recent years, fully-automated, policy-based management
has been proposed as a suitable means for managing Quality of
Service (QoS) in IP networks, storage allocation and
processing resources for server clusters. Yet despite various
research projects, standardisation efforts, and substantial
interest from industry, policy-based management is still not a
reality. There are some vendor tools, mostly part of virtual
private network provisioning toolsets, but policy-based
management is still far from being widely adopted despite its
potential benefits of flexibility and “constrained
programmability”. One of the reasons behind the reticence to
adopt this technology is that it is difficult to analyse policies in

order to guarantee configuration stability given that policies
may have conflicts leading to unpredictable effects.

Work on policy analysis has mainly focused on conflicts
that can be determined statically at compile-time [1]. The
detection process involved simple policy analysis and
resolution based on the specification of policy precedence rules
[1,2] that may not suit many policy-driven systems. Although
we believe that static analysis is very useful for detecting and
resolving some conflicts before policies are deployed, it cannot
detect many conflicts in resource management policies which
occur as a result of the current state of the resources. For
example, policies which increment or decrement allocation of
resources may conflict with policies related to setting upper
and lower bounds for the resources. These conflicts result from
current state of the resource allocation and bounds so can only
be detected and resolved at run-time.

This paper extends our previous work on static conflict
analysis [3] by addressing the area of dynamic conflict
detection and resolution in the domain of QoS management of
IP Differentiated Services (DiffServ) Networks. In order to
identify the policies and conflicts involved in DiffServ QoS
management, we use the framework developed in the context
of the EU IST TEQUILA project [4]. TEQUILA uses DiffServ
together with Multi-Protocol Labelled Switching (MPLS) to
support a network that can dynamically adapt to varying traffic
demands. More specifically, we focus on conflicts that may
arise from policies driving the Dynamic Resource Management
(DRsM) module of the TEQUILA framework. These are
policies specified explicitly for this particular module, or
higher-level directives that are refined at the DRsM level acting
as constraints to its functionality.

The work in this paper is based on the work presented in [5]
where the use of Event Calculus (EC) was proposed as a
specialised first-order logic for formalising policy specification
and the mapping to and from the Ponder policy language [6].
EC allows specification of the system behaviour using familiar
notations, such as state charts, which can then be automatically

This work was carried out in the context of the EPSRC PAQMAN (grant
numbers GR/R31409/01 and GR/S79985/01), and FP6 Information Society
Technologies EMANICS Network of Excellence (IST-026854) research
projects.

   

translated into the logic program representation. In this work,
we identify the possible conflicts that might emerge between
policies driving the behaviour of the DRsM module and
classify them into domain-independent and application-
specific. Using EC we specify a set of rules that define the
conditions for a conflict, focusing on the ones that can only be
determined at run-time. Based on the identified conflict types,
we provide possible resolution strategies in the form of
policies, which are enforced once a conflict is detected and can
be considered as extensions to the DRsM functionality,
supporting resolution logic.

In the next section, we present some background
information on EC and policy analysis, as well as a description
of the resource management aspects of the TEQUILA
framework. Section 3 details the identified policies for dynamic
resource management along with their representation in the
Ponder specification language. In section 4 we present the
classification of the identified conflict types as well as the
conditions under which these conflicts may arise. Section 5
presents the rules for detecting the conflicts along with their
resolution, and in section 6 we provide an example scenario
demonstrating our tool support for dynamic conflict detection
and resolution. Finally, section 7 presents some related work in
this field; and section 8 discusses our conclusions and future
work.

II. BACKGROUND

A. Formal Representation and Event Calculus

Event Calculus is a logic formalism for representing and
reasoning about dynamic systems. Because it supports a time
representation that is independent of any events that may occur,
it provides a particularly useful way to specify a variety of
event-driven systems. In the context of our work, EC serves as
the basis of the formal language we have developed for
describing policies and managed systems. Since its initial
presentation [7], a number of variations have been presented in
the literature. In this work we use the form presented in [8],
consisting of (i) a set of time points (that can be mapped to the
non-negative integers); (ii) a set of properties that can vary
over the lifetime of the system, called fluents; and (iii) a set of
event types. In addition the language includes a number of
base predicates: !"!#!$#%&, #%'(!"$#%&,)*+,&-#,)$..%"&, as
summarised below:

////

Base predicates:
 initiates(A, B, T) event A initiates fluent B for all time > T.
 terminates(A, B, T) event A terminates fluent B for all time > T.
 happens(A, T) event A happens at time point T.
 holdsAt(B, T) fluent B holds at time point T.
 initiallyTrue(B) fluent B is initially true.
 initiallyFalse(B) fluent B is initially false.
/

This is the classical form of Event Calculus where theories
are written using Horn clauses. The frame problem is solved by
circumscription, which allows the completion of the predicates

!"!#!$#%&, #%'(!"$#%& and)$..%"&, leaving open the
predicates)*+,&-#, !"!#!$++01'2% and !"!#!$++03$+&%. This
approach allows the representation of partial domain
knowledge (e.g. the initial state of the system). Formulae
derived from Event Calculus are in effect derived from the
circumscription of the EC representation.

B. Policy Analysis

In an environment where a number of policies need to
coexist, there is always the likelihood that several policies will
be in conflict, either because of a specification error or because
of application-specific constraints. It is therefore important to
provide a means of detecting conflicts in the policy
specification.

The different types of conflicts that can occur are identified
in [1]. Modality conflicts arise when two policies are specified
using the same subjects, targets and actions but are of opposite
modality (e.g. obligation and refrain). This type of conflict is
domain-independent since conflicts could occur irrespective of
the application domain for which the policies are being
specified. Other conflict types identified in the literature fall
into the category of application-specific conflicts. As
described in [9], these include conflicts of duty, conflicts of
interest, multiple manager conflicts, conflicts of priorities for
resources and self-management conflicts.

Considering the types of conflicts described above, it is
possible to define rules that can be used to recognise
conflicting situations in the policy specification. Modality
conflicts involving obligation and refrain policies occur when
the two policies are defined for the same subject, target and
action. The *4+!56*"7+!8# predicate defined below holds if a
modality conflict is detected.
/

/)*+,&-#98*"7+!8#9*4+!56*"7+!8#*4+!56*"7+!8#*4+!56*"7+!8#*4+!56*"7+!8#://
/ 8*"7+!8#;$#$9<=24>:/?. AA:/1A/!/
/)*+,&-#9*4+!59=24>:/?.A:/1A/∧/
/)*+,&-#9'%7'$!"9=24>:/?.A:1AB/
/

In the case of application-specific conflicts, rules must be
defined using constraints that include application-specific data
in addition to policy information. In order to capture the
additional information, we extend the system specification
language to include rules that define each application-specific
conflict that may arise. The rules can include ground literals,
specifying the action/target object combinations that will
potentially conflict. Rules for the detection of application-
specific conflicts, such as conflicts of interest, conflicts of
duties and self-management conflicts can be found in [5].

C. Dynamic Resource Management

A policy-based functional architecture for supporting
quality of service in IP DiffServ Networks has been designed
in the context of the European collaborative research project
TEQUILA (Traffic Engineering for QUality of service in the
Internet at LArge scale). This architecture can be seen as a

   

time

bandwidth

max p

min p

load p

alloc p

Alarm to ND

Alarm to ND

Upper threshold
crossing alarm
from monitoring

Lower threshold
crossing alarm
from monitoring

Lower threshold

Upper threshold

Figure 1. Bandwidth tracking of a single PHB.

detailed decomposition of the concept of a Bandwidth Broker
realized as a hierarchical, logically and physically distributed
system and has been presented in [4]. The Traffic Engineering
(TE) sub-system of the architecture is responsible for
dimensioning the underlying network according to the
projected demands, and for establishing and dynamically
maintaining the network configuration that has been selected to
meet the QoS requirements.

The resource management aspects of TE are realised
through the Network Dimensioning (ND) and Dynamic
Resource Management (DRsM) modules. ND is a centralized,
off-line component responsible for mapping traffic
requirements to the physical network resources and for
providing provisioning directives in order to accommodate the
predicted traffic demand. Since the latter is based on historical
data and customer subscriptions, it is treated as a rough
“nominal” value – actual offered traffic should fluctuate around
forecasted values. For that reason, dynamic TE functions are
deployed by DRsM, which has distributed functionality with an
instance operating in every router. It utilizes actual network
state and load information in order to optimize network
performance in terms of resource utilization while, at the same
time, meeting QoS traffic constraints. In particular, DRsM opts
for dynamic functions that manage network resources
(DiffServ Per-Hop Behaviours - PHBs) following the
guidelines provided by ND.

Policy-based Network Dimensioning allows more
flexibility in defining alternative strategies when performing an
operation. For example, during the post-processing stage of ND
the administrator can choose between different ways in which
over-provisioned bandwidth (BW) is to be reduced to fit the
physical link capacity [3]. Similarly, DRsM policies provide
the flexibility to dynamically introduce logic, in the form of

directives, for tracking the utilization of a PHB and ensuring
that the bandwidth allocated to that PHB (allocp) is in
accordance with the required BW. The latter is determined
according to observed utilization (loadp). Fig. 1 depicts the
functionality that can be achieved by the execution of DRsM
policies. It shows that when the monitored utilisation exceeds
the upper threshold, the allocated bandwidth, upper and lower
thresholds are increased. Similarly when the utilisation crosses
the lower thresholds, these values are decreased. Monitoring
PHB utilizations is achieved through a monitoring component
rather than polling instantaneous values. The triggering of
policy actions is based on upper and lower thresholds of the
BW consumed by a PHB. Monitoring will raise a threshold
crossing alarm when the utilization exceeds the upper threshold
or drops below the lower threshold.

III. POLICIES FOR DRSM

DRsM policies intend to manage resources allocated by ND
during system operation in order to react to statistical
fluctuations and special conditions that may arise. Their main
objective is to guide the distribution of capacity between the
PHBs defined on a link. In the rest of this section, we focus on
policy actions for the calculation of new thresholds and also on
actions that dictate the allocation of link BW, by managing
scheduling parameters, i.e. minimum and maximum rates
associated with PHBs, according to actual load conditions.

A. DRsM Components

The DRsM module comprises two components: the
monitoring and the DRsM main component. The former is
responsible for monitoring the PHB utilization of relevant
links, issuing alarms upon upper or lower threshold crossings
and calculating new thresholds. The main component is

   

drsmAlarmRaised

idle

processing

raiseDrsmAlarm(Th,
 Link, PHB) - M1.1

 calcedThs(Link) - M1.3

calcThs(Link) - M1.2

Figure 2. Monitoring component behaviour.

responsible for the calculation of required BW and the
allocation of that BW to the various PHBs sharing a link.

Figs. 2 and 3 depict the behaviour of the two components
through state machine representations. The triggering of
actions supported by the monitoring component MO (Managed
Object) depends on the conditions/events that arise from the
current PHB link utilization. For example, if the upper
threshold of a particular PHB is exceeded, an alarm will be
raised (CDBD) that causes new thresholds to be calculated
(CDBE). This alarm acts as a trigger for the main component
functionality (main component MO - CEBD), which in turn
generates a new required BW for the PHBs sharing the link.
Once the calculated BW is configured (CEBE), the component
returns to the idle state (CEBF). The monitoring component goes
idle after new thresholds have been calculated (CDBF).

B. DRsM Extended Functionality

In the previous section we provided an explanation of the
basic functionality of the DRsM module. The state chart
representations illustrate the simplest possible logic the module
can incorporate along with actions that cause state transitions.
Previous work on ND [3] demonstrated how the use of policies
could extend the hard-wired functionality and also provide the
policy administrator with more strategies when performing an
operation. Similar logic extensions can be specified for the
DRsM module as described in this section.

During the processing stage of both components, DRsM
aims to provide new values for all the PHBs on a particular link
based on a specific algorithm that takes into account PHB
priorities as well as trend analysis of historical data.
Alternatively, this could be achieved through explicit actions
that only apply to the PHB the alarm was raised for. This
means that each PHB is treated independently through
appropriate methods that increase or decrease the
thresholds/allocation upon upper/lower threshold-crossing
alarms:
/

/ !"8'1)&9G!"H:/IJK:/KLA/ 9CDBEDA/ /
/ ,%8'1)&9G!"H:/IJK:/KLA/ 9CDBEEA/
/ !"8'-++*89G!"H:/IJK:/KLA// 9CEBDDA/
/ ,%8'-++*89G!"H:/IJK:/KLA/ 9CEBDEA/
/

Further logic can be introduced by providing more options
as to how the new values are to be calculated. For example,
when an upper threshold has been crossed the administrator
can opt for the allocation to be increased by an absolute value

idle

processing configuringLink

calcAlloc(Link)/

configLink(Link) - M2.2

- M2.1/

configedLink(Link) - M2.3

Figure 3. Main component behaviour.

(kbps), a relative value (e.g. %5), or by using a specific
algorithm. A well known method would be to use an
Exponentially Weighted Moving Average (EWMA) approach
providing even more flexibility by setting parameters such as
the size of the extrapolation window, the number of historical
data to be used in the extrapolation function, etc. The relevant
methods for the above process are as follows:
/

/ !"8'1)&-4&9G!"H:/IJK:/KLA/ 9CDBEDDA/
/ !"8'1)&M%+9G!"H:/IJK:/KLA/ 9CDBEDEA/
/ !"8'1)&-+59G!"H:/IJK:/<.$'$(& A/ 9CDBEDFA/
/ !"8'-++*8-4&9G!"H:/IJK:/KLA/ 9CEBDDDA/
/ !"8'-++*8M%+9G!"H:/IJK:/KLA/ 9CEBDDEA/
/ !"8'-++*8-+59G!"H:/IJK:/<.$'$(& A/ 9CEBDDFA/
/

C. Policy Representation

Extended research on policy-based systems identified
several types of policies that are useful for managing
distributed systems [6]. Obligation policies fall in the category
of management policies and are of particular interest to our
work. They can be used to specify management operations that
must be performed when a particular event occurs given some
supplementary conditions being true. They are specified in
terms of a subject that should perform a particular action on a
target when a specified condition is true.

The methods supported by the two DRsM components
described in the previous section can be used to encode the
action part of an obligation policy that follows the format
provided by the Ponder specification language [6]. In the
context of this work, the subject for all DRsM related policies
is a management entity known as the DRsM PMA (Policy
Management Agent). The examples that follow encode
methods CDBEDD and CEBDDE in the policy specification:
/

/ !!!!"&#"&#"&#"&#/*4+!5*4+!5*4+!5*4+!5/N.*+!8!%&N,'&(NI*+-/I*+-/I*+-/I*+-/O/
/ *"*"*"*"////,'&(-+$'(M$!&%,92..'1):/+!"HD:/%7AP/
/ &24>&24>&24>&24>//&/Q/,'&(IC-P/
/ #$'5#$'5#$'5#$'5//#/Q/,'&(N(*"!#*'C?P/
/ ,*,*,*,*////#B!"8'1)&-4&9+!"HD:/%7:/RAP/
/ S)%"/S)%"/S)%"/S)%"//8*"&#'$!"#&P/
/ T/
/
/ !"&#/*4+!5!"&#/*4+!5!"&#/*4+!5!"&#/*4+!5/N.*+!8!%&N,'&(NI*+KI*+KI*+KI*+K/O/
/ *"*"*"*"////,'&(-+$'(M$!&%,92..'1):/+!"HD:/%7AP/
/ &24>&24>&24>&24>//&/Q/,'&(IC-P/
/ #$'5#$'5#$'5#$'5//#/Q/,'&(N($!"C?P/
/ ,*,*,*,*////#B!"8'-++*8M%+9+!"HD:/%7:/DUAP/
/ S)%"S)%"S)%"S)%"//8*"&#'$!"#&P/
/ T//
/

The policy targets are the specific MOs, provided by
DRsM, supporting the relevant methods ((*"!#*'C? and
($!"C?). Additional constraints can be specified to define any
further conditions that have to be met, such as the time period

   

for which the policy is valid. This constraint can be useful
when the administrator needs to specify a different network
configuration for busy or non-busy hours of the day.

IV. DRSM POLICY CONFLICTS

The fact that policies are downloaded to the DRsM module
on the fly while the system is operating may cause
inconsistencies, since policies have not been tested to coexist
with one another or with the rest of the system functionality
without conflicts. This section provides a taxonomy of
identified conflict types and describes the conditions under
which these conflicts would arise.

A. Conflict Classification

We have identified a number of potential conflicts related
to obligation policies that guide the DRsM functionality, and
classified them as shown in Fig. 4. Some of these conflicts can
be detected using static analysis at policy specification-time,
while others can only be detected at enforcement-time because
they depend on the current state of the managed network and
the DRsM components.

The first category, redundancy and mutual exclusion,
involves conflicts that are domain-independent and apply to
any policy driven system. The rest are application-specific
conflicts, related to QoS resource management policies that are
responsible for the allocation of BW to the different PHBs or
QoS classes. These can be classified into intra and inter-
module conflicts, the former being specific to policies applying
to a single module of the TEQUILA architecture. Inter-module
conflicts arise due to the hierarchical relationship between
policies defined for different layers of the architecture, for
example between ND and DRsM policies.

Figure 4. DRsM conflict classification.

The identified domain-independent conflicts have been
presented in previous work [3] for the ND module and they
also apply to DRsM. Redundancy conflicts may arise because
of duplicate policies or policies with inconsistent action
parameters in relation to others. If two policies are
characterized by the same subjects, targets, actions and action
parameters, they are said to be duplicate and should not be
allowed to coexist.

The functionality of DRsM allows for a choice of methods
related to a specific process, i.e. different strategies for
realising a goal. Such process is, for example, the calculation of
new required BW in the processing stage of the main
component where the allocation for a specific PHB can be
increased by a constant value, a relative value or using an
algorithmic approach. The different actions are said to be
mutually exclusive since there should not be more than one
directive specifying how the allocation is to be increased. The
same principle applies to policies driving the processing stage
of the monitoring component. Therefore, two policies will
result in a conflict if their actions are mutually exclusive.

B. Application-specific Conflicts

In a hierarchical architecture like TEQUILA, policies may
be introduced at every level but higher-level policies may
possibly result in the introduction of related policies at lower
levels during a refinement process [10]. Thus policies for a
level-(N+1) module may also influence the functionality of a
level-N module.

One such relationship is between the ND and DRsM
modules that constitute the main body of the TEQUILA Traffic
Engineering sub-system. ND-specific policies allow the
administrator to constrain the amount of network resources
which can be allocated for each PHB by providing upper and
lower bounds. These policies are communicated to the relevant
lower-level DRsM modules during the refinement process,
acting as constraints throughout the dynamic allocation of
resources. This means that if a new required BW calculated by
the DRsM main component exceeds the upper bound specified
in the policy originating from ND, or drops below the lower
bound, an inter-module conflict should be signalled to indicate
the violation of these constraints. More specifically, an
ndMaxViolation conflict occurs when a DRsM policy tries to
increment the allocation for a specific PHB but the calculated
required BW exceeds the upper bound, KLD, set by a ND-
refined policy:

/ !"8'-++*89G!"H:/IJK:/KLA conflicts with/

/ &%#KLC$V9G!"H:/IJK:/KLDA/
/

Similarly, an ndMinViolation conflict occurs when a DRsM
policy tries to decrement the allocation for a PHB but the
calculated required BW is less than the lower bound, KLD, set
by a ND-refined policy:

/ ,%8'-++*89G!"H:/IJK:/KLA conflicts with/
/ &%#KLC!"9G!"H:/IJK:/KLDA/
/

   

Another high-level directive that is refined down to the
DRsM level is a general resource management policy, which
explicitly specifies that during a DRsM operational cycle, the
full link capacity should be allocated between the various
PHBs. This implies that a DRsM policy action aiming to
increase the allocation for a specific PHB will violate the above
rule since the resulting allocation will exceed the link capacity.
We term this intra-module conflict as over-allocation
(overAlloc):

/ !"8'-++*89G!"H:/IJK:/KLA conflicts with/
/ '%&-++*89G!"H:/DUUWA/
/

In a similar fashion, an underAlloc conflict will occur when
a DRsM policy aims to decrement the allocation for a
particular PHB, since the resulting allocation will be less than
the maximum link capacity:

/ ,%8'-++*89G!"H:/IJK:/KLA conflicts with//

/ '%&-++*89G!"H:/DUUWA/
/

The last of the application-specific conflicts is an intra-
module conflict and involves DRsM policies responsible for
the computation of new thresholds and required BW (as
explained in section IIc). In view of the fact that these values
are calculated separately by the two components, there is a
potential that the allocated BW for a PHB is below its
respective upper threshold, in which case a threshold
incompatibility (thIncompat) conflict should be signalled.

V. CONFLICT ANALYSIS

According to the description of the conditions under which
a conflict in the policy specifications may arise, specific rules
can be defined to detect such an event. For the process of
conflict detection we follow the approach presented in [5],
where both the rules and the policies are expressed in EC
notation. The occurrence of conflicts indicates the need for
resolution so that DRsM can continue its operation and
generate the correct values for the configuration of the
underlying network. For the identified domain-independent
conflicts the intervention of a human administrator is
necessary, whereas for application-specific conflicts we have
defined a set of policies, called resolution policies, which are
enforced on the event of a conflict aiming to handle the
situation in an automated manner.

A. Conflict Detection

Based on the identified conflict types, we have defined a set
of rules that aim to signal a conflict. The rules are expressed in
the form of logic predicates that encapsulate the conditions to
be met for a conflict to occur. These predicates are used as
conflict fluents in EC notation and can be considered as goal
states that, when they are achieved, signify the detection of a
conflict. The advantage of using such a methodology is that, in
addition to detecting possible conflicts, an explanation as to
why a conflict occurred will always be provided.

The detection process regarding domain-independent
conflicts requires mainly information provided for the policy
specification. This information can be used to express the
conditions under which specific predicates should signal a
conflict. The predicates responsible for the detection of
redundancy and mutual exclusion conflicts have been
presented in previous work [3]. The former aims to match
certain key parameters as well as actions in the policy
specification, whereas the latter makes use of mutually
exclusive action domains resulting from the refinement process
in [10]. Policy actions that belong to the same domain, e.g.
incrBWDom, are conflicting and should not be allowed to
coexist.

While the above conflicts can be detected through static
analysis at policy specification-time, the identified application-
specific conflicts can only be detected at enforcement-time
depending on the state of the underlying network and the
output from the processing stages of the two DRsM
components. For this reason, the relevant conflict predicates
require not only information provided by the policy
specification, but also information regarding the run-time state
of DRsM. In the context of our work, the conditions under
which a conflict will arise are presented by constraints that
depend on the conflict type. The rules for detecting such
conflicts are based on the fact that two or more policies violate
these constraints.

The 8*"7+!8#9",C$V6*"7+!8#:/…A fluent defined below
indicates a violation of a ND-refined directive defining a
maximum BW allocation for a PHB. Here, the constraints
conveyed to the conditional part of the predicate include the
specific policy actions with matching IJK and G!"H parameters,
and the actual value of required BW calculated in the
processing stage of the main component. The latter is
represented as an argument of the reqBW term, the details of
which are covered in section Vc. The conditions for an
ndMaxViolation conflict will be satisfied if this value exceeds
the maximum BW specified by the ND-refined policy.
/

/)*+,&-#98*"7+!8#9",C$V6*"7+!8#",C$V6*"7+!8#",C$V6*"7+!8#",C$V6*"7+!8#:/8*"7+!8#;$#$9<I*+X;D:/
/ I*+X;E:/G!"H:/IJK:/KLE:/KLF AA:/1A/!/
/
/)*+,&-#9*4+!59I*+X;D:/=24>:/*.91$'5://
////////////////////!"8'-++*89G!"H:/IJK:/KLDAAA:/1A/∧/
////)*+,&-#9*4+!59I*+X;E:/=24>:/*.91$'5://
////////////////////&%#KLC$V9G!"H:/IJK:/KLEAAA:/1A/∧/
/ '%YKL9G!"H:/IJK:/KLFA/∧/
/ KLF/Z/KLEB/
/

A similar rule to the above can be specified for the
ndMinViolation conflict, encapsulating the conditions
described in section IVb. Threshold incompatibility conflicts
can be detected by the 8*"7+!8#9#)X"8*(.$#6*"7+!8#: …A
fluent defined below. The conditions for this conflict will be
satisfied if there exist policy actions for incrementing or
decrementing the allocation and thresholds of a PHB, the result
of which provides an inconsistent allocation with respect to the
upper threshold of that PHB.

   

/

/)*+,&-#98*"7+!8#9#)X"8*(.$#6*"7+!8##)X"8*(.$#6*"7+!8##)X"8*(.$#6*"7+!8##)X"8*(.$#6*"7+!8#:/8*"7+!8#;$#$/
//////////9<I*+X;D:/I*+X;E:/IJK:/KLR:/1)[..' AA:/1A/!/
/
/ 9)*+,&-#9*4+!59I*+X;D:/=24>:/*.91$'5D:/
/////////////////////!"8'-++*89G!"H:/IJK:/KLDAAA:/1A/∧/
/ /)*+,&-#9*4+!59I*+X;E:/=24>:/*.91$'5E:/
/////////////////////!"8'1)&9G!"H:/IJK:/KLEAAA:/1AA/∨/
/ 9)*+,&-#9*4+!59I*+X;F:/=24>:/*.91$'5D:/
/////////////////////,%8'-++*89G!"H:/IJK:/KLFAAA:/1A/∧/
/ /)*+,&-#9*4+!59I*+X;\:/=24>:/*.91$'5E:/
/////////////////////,%8'1)&9G!"H:/IJK:/KL\AAA:/1AA/∧/
/ '%YKL9G!"H:/IJK:/KLRA/∧//
/ #)&9G!"H:/IJK:/1)[..':/1)G*S'A/∧/91)[..'/Z/KLRAB/
/

The presence of policies regarding the full allocation of link
resources during a DRsM operational cycle implies that actions
for incrementing or decrementing the allocation of a PHB will
induce an overAlloc or underAlloc conflict respectively. By
this, we mean that after the processing stage of the main
component, the collective allocation of the various PHBs will
always violate the constraint of the high-level directive. Since
these conflicts are guaranteed to occur, there is no actual need
to provide relevant predicates for their detection.

B. Conflict Resolution

The process of resolving domain-independent conflicts
involves giving precedence to one or more of the conflicting
policies. Research on conflict resolution [1,2] identified metrics
that can be used to assign priorities to conflicting policies,
which can automate the conflict resolution in limited situations.
However, many types of conflicts rely on human intervention
for resolution. Although this process is manual, it does not
impose any overheads on the functionality of the underlying
DRsM modules since conflicts can be detected by static
analysis before policy enforcement.

In contrast to the above, application-specific conflicts are
dynamic and can only be determined at run-time, depending on
the current state of the underlying network and DRsM
components. This signifies the need for an automated
resolution process so as to minimize the delay induced on the
operation of a DRsM module when a conflict is to be resolved.

Having identified the different conflict types that may arise
at run-time, the administrator can pre-specify policies that aim

M1.5

idle

allocDecrsd

allocIncrsd configuringLink

processing

conflict handling

spareCap
Split

overAlloc
Decrsd

M1.1

M1.2

M1.4 M1.3

M1.6

ndMinSet ndMaxSet

conflict handling

configedLink(Link)

configLink(Link)

Figure 5. Main component behaviour with resolution logic.

to provide a resolution strategy in the event of a conflict. The
resolution methodology presented here does not involve
identifying which of the conflicting policies will prevail, but
provides separate resolution policies aiming to handle potential
inconsistencies in our application-specific environment. These
policies are triggered once the conditions for a conflict have
been satisfied, extending the DRsM functionality to support
resolution logic – Figs. 5 and 6.

 Following the sequence with which conflicts may arise
during system operation, we present the resolution policy
actions we have defined for the various conflict types. After a
policy for explicitly incrementing or decrementing the
allocation of a particular PHB is enforced (CDBD/CDBE), a
respective overAlloc or underAlloc conflict occurs by default.
In this case the administrator can define how over-allocated
BW will be reduced to fit the physical link capacity or how
spare BW is to be shared among the various PHBs. This is
achieved by methods CDBF and CDB\ in Fig. 5, for which we
provide different strategies:
/

/ '%,?]%'KL^Y2$+9G!"HA/ 9CDBFDA/
/ '%,?]%'KLI'*.9G!"HA/ 9CDBFEA/
/ '%,?]%'KL^V.+9G!"H:/IJK:/KLA/ 9CDBFFA/
/ $++*8=.$'%KL^Y2$+9G!"HA/ 9CDB\DA/
/ $++*8=.$'%KLI'*.9G!"HA/ 9CDB\EA/
/ $++*8=.$'%KL^V.+9G!"H:/IJK:/KLA/ 9CDB\FA/
/

The methods above define three ways for handling these
conflicts: the reduction/distribution of resources can be done
equally between the PHBs, proportionally to the current
allocation or explicitly, where the amount of BW is specified as
a percentage. The decision on which of the strategies to use
would depend on the PHB involved in the conflict and the
associated link.

Once a new required BW is generated, there is a need to check
whether the calculated value violates upper or lower constraints
imposed by policies originating from ND. In the event of an
ndMinViolation or ndMaxViolation conflict for a particular
PHB, possible resolution actions would be to set the allocation
to the value associated with the relevant bounds provided by
ND:
/

/ &%#_;C$V9G!"H:/IJK:/_;($VA/ 9CDBRA/
/ &%#_;C!"9G!"H:/IJK:/_;C!"A/ 9CDB`A/
/

idle

thsDecrsd thsIncrsd

drsmAlarmRaised

processing

M2.1

UpprThSet lowrThSet

M2.3
ndAlarmRaised M2.2

M2.4 M2.5

M2.6 M2.6

conflict handling

calcedThs(Link)

Figure 6. Monitoring component behaviour with resolution logic.

   

The resolution of the above conflicts implies that there will
be under-allocation in case of an ndMaxViolation and over-
allocation in case of an ndMinViolation. This situation can be
resolved by re-visiting the previous stage and enforcing
methods CDBF or CDB\ to reduce or distribute the BW among
the PHBs sharing the link, excluding the one involved in the
violation.

It should be noted that conflict detection is triggered based
on the state of the main component. While resolution is
performed, the monitoring component calculates new
thresholds and returns to the idle state (Fig. 6). If an
ndViolation conflict is detected during the operation of the
main component, further resolution policies should define how
thresholds are to be treated. The actions to handle the event of
an ndMaxViolation conflict could be to set the value of the
upper threshold equal to the upper bound defined by the ND-
refined policy (CEB\), and for an ndMinViolation to set the
lower threshold to zero (CEBR) as to avoid further decrease in
allocation. In both occasions an alarm is issued (CEB`)
notifying the ND module about the event. The latter may
decide to initiate a new resource provisioning cycle depending
on the frequency of these events and the DRsM modules
involved.
/ /

/ &%#1)[..'9G!"H:/IJK:/KLA/ 9CEB\A/
/ &%#1)G*S'9G!"H:/IJK:/KLA/ 9CEBRA/
/ '$!&%_;-+$'(96*"7+!8#10.%:/G!"H:/IJK:/;M&CX;A/ 9CEB`A/
/

The detection for a thIncompat conflict is triggered once
the main component enters the configuringLink state. In a
similar manner to the strategies proposed above, this conflict is
resolved by setting the upper threshold equal to the allocated
value (CEB\). The latter need not be specified in the resolution
action at specification-time as it can be acquired from the
relevant parameter of the conflict predicate.

C. System Architecture

The system architecture for the process of conflict analysis
is presented in Fig. 7, involving a centralised Policy
Management Tool (PMT) and one instance of a DRsM module
along with the associated PMA. Our approach towards static
conflict detection as presented in [3], is based on the output of
the refinement process, where high-level policy specifications
introduced in the Policy Creation Environment (PCE) are
decomposed into low-level implementable ones and mapped
onto their respective EC representation. With domain
information regarding mutually exclusive actions as described
in [3], static detection logic is applied to a pool of low-level
policies in the PMT, to determine if there are any domain-
independent conflicts between them. Conflict-free policies are
stored in a repository. Note that resolution policies are also
checked for static conflicts; they are passed directly to the
detection component after being mapped to EC representation.
The communication between static detection logic and the
repository is bi-directional signifying that we not only aim to
detect conflicts that may exist between new policies from the

Figure 7. System architecture.

output of the refinement process, but also between new policies
and ones already stored in the repository.

Policies related to a specific DRsM module are stored
locally in the associated PMA, and then activated by relevant
events from the two DRsM components or, in the case of
resolution polices, by the detection component. As mentioned
previously, dynamic detection logic is triggered with events
generated by the main component. For example, the necessary
logic to detect a possible ndMaxViolation conflict is activated
once the allocation of a PHB has been decreased when
resolving an overAlloc conflict. Once possible conflicting
policies have been identified, a conflict will occur if there are
inconsistencies related to the calculated values from the two
DRsM components. These values are generated at each of the
processing stages of the two components and are stored locally
in the form of logic terms:
/

/ #)&9G!"H:/IJK:/1)[..':/1)G*S'A/
/ '%YKL9G!"H:/IJK:/KLA/
/

 The first concerns upper and lower threshold values from
the monitoring component and the second, required BW values
from the main component. Multiple instances of the above
terms define values for the various PHBs sharing the links in
the underlying network. The detection of a conflict triggers the
appropriate resolution policy, which is enforced on the relevant
DRsM component signalling the resolution of the conflict.

VI. CASE STUDY

In this section we present an example scenario that
demonstrates the use of dynamic logic to detect and resolve
conflicts emerging during the operation of the DRsM module.
The results presented are taken from our initial implementation
of a tool that supports dynamic conflict analysis. We assume
that two traffic types are defined for the underlying network,
namely EF and AF1, for which the associated values regarding

   

allocation, thresholds and ND constraints on +!"HD are
presented in Table I. All values are expressed as a percentage
of the total link capacity.

TABLE I. PHB ASSOCIATED VALUES

Below, we define a set of policies enforced on DRsM in
their EC representation. Policies .D and .E specify how the
allocation and thresholds are to be increased in case of an upper
threshold-crossing alarm, policies .F-.` represent the ND-
refined directives, .a signifies the full allocation of link
capacity, and policies .b-.DD provide resolution strategies for
underAlloc, overAlloc and ndMaxViolation conflicts.
/

/ !"!#!$#%&9&0&^]%"#9,'&(-+$'(M$!&%,92..'1):/+!"HD:/%7AA:/
/ *4+!59.D.D.D.D:/,'&(IC-:/*.9($!"C?:/
/ //////!"8'-++*8M%+9+!"HD:/%7:/EUAAA:/1AB/
/
/ !"!#!$#%&9&0&^]%"#9,'&(-+$'(M$!&%,92..'1):/+!"HD:/%7AA:/
/ *4+!59.E.E.E.E:/,'&(IC-:/*.9(*"!#*'C?://
/ //////!"8'1)&M%+9+!"HD:/%7:/DRAAA:/1AB/
/
//!"!#!$#%&9&0&^]%"#9.*+M%8%!]%,A://
////////////*4+!59.F.F.F.F:/,'&(IC-:/*.9($!"C?://
//////////////////&%#KLC$V9+!"HD:/%7:/`RAAA:/1AB/
/
//!"!#!$#%&9&0&^]%"#9.*+M%8%!]%,A://
////////////*4+!59.\.\.\.\:/,'&(IC-:/*.9($!"C?://
//////////////////&%#KLC!"9+!"HD:/%7:/\UAAA:/1AB/
/
/ !"!#!$#%&9&0&^]%"#9.*+M%8%!]%,A://
////////////*4+!59.R.R.R.R:/,'&(IC-:/*.9($!"C?://
//////////////////&%#KLC$V9+!"HD:/%7:/RUAAA:/1AB/
/
/ !"!#!$#%&9&0&^]%"#9.*+M%8%!]%,A://
////////////*4+!59.`.`.`.`:/,'&(IC-:/*.9($!"C?:/
//////////////////&%#KLC!"9+!"HD:/%7:/EUAAA:/1AB/
/
/ !"!#!$#%&9&0&^]%"#9.*+M%8%!]%,A://
////////////*4+!59.a.a.a.a:/,'&(IC-:/*.9($!"C?:/
//////////////////'%&-++*89+!"HD:/DUUAAA:/1AB/
/
/ !"!#!$#%&9&0&^]%"#98*"7+;%#%8#%,9*]%'-++*8://
// /////////8*"7+!8#;$#$9I*+-:/I*+K:/G!"H:/%7AAA://
////////////*4+!59.b.b.b.b:/,'&(IC-:/*.9($!"C?:/
//////////////////'%,?]%'KL^Y2$+9G!"HAAA:/1AB/
/
/ !"!#!$#%&9&0&^]%"#98*"7+;%#%8#%,92",%'-++*8://
/////////////////////8*"7+!8#;$#$9I*+-:/I*+K:/G!"H:/%7AAA://
////////////*4+!59.c.c.c.c:/,'&(IC-:/*.9($!"C?:/
//////////////////$++*8=.$'%KL^V.+9G!"H:/$7:/DUUAAA:/1AB/
/
/ !"!#!$#%&9&0&^]%"#98*"7+;%#%8#%,9",C$V://
/////////////////////8*"7+!8#;$#$9I*+-:/I*+K:/G!"H:/IJK:/
//////////////////////////////////_;C$VKLAAA://
/ *4+!59.DU.DU.DU.DU:/,'&(IC-:/*.9($!"C?:/
///////////////////&%#_;C$V9G!"H:/IJK:/_;C$VKLAAA:/1AB/
/
/ !"!#!$#%&9&0&^]%"#98*"7+;%#%8#%,9",C$V://
/////////////////////8*"7+!8#;$#$9I*+-:/I*+K:/G!"H:/IJK:/
//_;C$VKLAAA://
/ *4+!59.DD.DD.DD.DD:/,'&(IC-:/*.9(*"!#*'C?:/
/ //////&%#1)[..'9G!"H:/IJK:/_;C$VKLAAA:/1AB/
/

By using one of the conflict fluents (e.g.
*]%'-++*86*"7+!8t) as a goal state of a deductive query, it is
possible to detect any conflicts between active policies. The
query has the following format, and is triggered at specific
stages of the main component operation depending on the
conflict type to be detected:
/

/)*+,&-#98*"7+!8#910.%:/6*"7+!8#;$#$A:/1AB/
/

The results of the query indicate if there is a conflict of a
particular type and the detection of a conflict causes the system
to generate an event containing the conflict information which
in turn triggers the relevant resolution policy. The following
timeline shows the sequence of events (&0&^]%"#9…A), actions
(,*-8#!*"9…A), and fluents (*4+!59…A: 8*"7+!8#9…A) that
describe the different stages that our system goes through, upon
an upper threshold-crossing alarm for EF traffic, before
producing the appropriate configuration for +!"HD:

/
////1/1/1/1/dddd/^]%"#/N/3+2%"#/^]%"#/N/3+2%"#/^]%"#/N/3+2%"#/^]%"#/N/3+2%"#////
ddd/
/D/d/&0&^]%"#9,'&(-+$'(M$!&%,92..'1):/+!"HD:/%7AA//
///e/
/E/d/*4+!59.D:/,'&(IC-:/*.9($!"C?://
///e///////////////////////!"8'-++*8M%+9+!"HD:/%7:/EUAAA/
///e/*4+!59.E:/,'&(IC-:/*.9(*"!#*'C?://
///e///////////////////////!"8'1)&M%+9+!"HD:/%7:/DRAAA/
/F/d/,*-8#!*"9,'&(IC-:/*.9($!"C?://
///e///////////////////////!"8'-++*8M%+9+!"HD:/%7:/EUAAA/
///e/,*-8#!*"9,'&(IC-:/*.9(*"!#*'C?://
///e///////////////////////!"8'1)&M%+9+!"HD:/%7:/DRAAA/
///e/&0&^]%"#9$++*8X"8'&,9+!"HD:/%7AA/
///e/&0&^]%"#9#)&X"8'&,9+!"HD:/%7AA/
///e/
/R/d/8*"7+!8#9*]%'-++*8:/6*"7+!8#;$#$A/8*"7+!8#9*]%'-++*8:/6*"7+!8#;$#$A/8*"7+!8#9*]%'-++*8:/6*"7+!8#;$#$A/8*"7+!8#9*]%'-++*8:/6*"7+!8#;$#$A////
///e/
/`/d/&0&^]%"#98*"7+;%#%8#%,9*]%'-++*8://
///e////////////////////////8*"7+!8#;$#$9.D:/.a:/+!"HD:/%7AAA/
///e/
/a/d/*4+!59.b:/,'&(IC-:/*.9($!"C?:/'%,?]%'KL^Y2$+9+!"HDAAA/
///e/
/b/d/&0&^]%"#9,*-8#!*"9,'&(IC-:/*.9($!"C?:///
///e///////////////////////////////'%,?]%'KL^Y2$+9+!"HDAAA/
///e/
/c/d/&0&^]%"#9*]%'KL'%,8%,9+!"HDAA/
///e/
DU/d/8*"7+!8#9_;]!*+$#!*":/6*"7+!8#;$#$A8*"7+!8#9_;]!*+$#!*":/6*"7+!8#;$#$A8*"7+!8#9_;]!*+$#!*":/6*"7+!8#;$#$A8*"7+!8#9_;]!*+$#!*":/6*"7+!8#;$#$A////
///e/
DD/d/&0&^]%"#98*"7+;%#%8#%,9",C$V://
///e//////////////////8*"7+!8#;$#$9.D:/.F:/+!"HD:/%7:/`RAAA/
///e/
DE/d/*4+!59.DU:/,'&(IC-:/*.9($!"C?://
///e////////////////////////&%#_;C$V9+!"HD:/%7:/`RAAA/
///e/*4+!59.DD:/,'&(IC-:/*.9(*"!#*'C?://
///e////////////////////////&%#1)[..'9+!"HD:/%7:/`RAAA/
///e/
DF/d/&0&^]%"#9,*-8#!*"9,'&(IC-:/*.9($!"C?:/
///e///////////////////////////////&%#_;C$V9+!"HD:/%7:/`RAAA/
///e/&0&^]%"#9,*-8#!*"9,'&(IC-:/*.9(*"!#*'C?:/
///e///////////////////////////////&%#1)[..'9+!"HD:/%7:/`RAAA/
///e/
D\/d/&0&^]%"#9",C$V=%#9+!"HD:/%7:/`RAA/
///e/&0&^]%"#92..'1)=%#9+!"HD:/%7:/`RAA/
///e/
DR/d/8*"7+!8#92",%'-++*8:/6*"7+!8#;$#$A8*"7+!8#92",%'-++*8:/6*"7+!8#;$#$A8*"7+!8#92",%'-++*8:/6*"7+!8#;$#$A8*"7+!8#92",%'-++*8:/6*"7+!8#;$#$A/
///e/
D`/d/&0&^]%"#98*"7+;%#%8#%,92",%'-++*8://
///e////////////////////////8*"7+!8#;$#$9.D:/.a:/+!"HD:/%7AAA/
///e/
Da/d/*4+!59.c:/,'&(IC-:/*.9($!"C?://
///e///////////////////////$++*8=.$'%KL^V.+9+!"HD:/$7:/DUUAAA/
///e/&0&^]%"#9,*-8#!*"9,'&(IC-:/*.9($!"C?:/
///e///////////////////////////////$++*8=.$'%KL^V.+9+!"HD:/
///e///////////////////////////////$7:/DUUAAA/
///e/
Db/d/&0&^]%"#92",%'KL$++*8,9+!"HDAA/
///e/
Dc/f/8*"7+!8#9_;]!*+$#!*":/6*"7+!8#;$#$A8*"7+!8#9_;]!*+$#!*":/6*"7+!8#;$#$A8*"7+!8#9_;]!*+$#!*":/6*"7+!8#;$#$A8*"7+!8#9_;]!*+$#!*":/6*"7+!8#;$#$A/
///e/
EU/d/*4+!59,'&(IC-:/*.9($!"C?:/8*"7!5G!"H9+!"HDAAA/
///e/
ED/d/&0&^]%"#9,*-8#!*"9,'&(IC-:/*.9($!"C?:/
///e///////////////////////////////8*"7!5G!"H9+!"HDAAA/
///e/
EE/d/8*"7+!8#91)X"8*(.$#:/6*"7+!8#;$#$A8*"7+!8#91)X"8*(.$#:/6*"7+!8#;$#$A8*"7+!8#91)X"8*(.$#:/6*"7+!8#;$#$A8*"7+!8#91)X"8*(.$#:/6*"7+!8#;$#$A//
///e/
///]/
/

The generated alarm, at T=1, triggers policies .D and .E,
which increase the allocation and thresholds for EF traffic by
20% and 15% respectively. At this point, dynamic detection
logic is triggered aiming to detect an allocation conflict, based
on the newly calculated required BW value. The query signals

Link PHB Alloc NDMin NDMax UpprTh LowrTh

+!"HD/ ^3/ `U/ \U/ `R/ Ra/ \a/

+!"HD/ -3D/ \U/ EU/ RU/ FE/ E\/

   

an overAlloc conflict between .D and .a since the sum of the
required BW values for EF and AF1 exceed the maximum link
capacity (112%). This result acts as a trigger for the relevant
resolution policy (.b), which in turn reduces the over-allocated
BW equally between the two PHBs, giving a new required BW
of 66% and 34% for EF and AF1 respectively. The new value
for EF traffic fulfils the conditions for an ndMaxViolation
conflict, which is detected by the next query. The resolution of
this conflict is handled by .DU and .DD, which set the required
BW and upper threshold for EF traffic to 65%. This means that
1% of the link capacity remains unallocated, signalling an
underAlloc conflict in the next query. At this point, the last of
the resolution policies (.c) allocates the spare BW to AF1.
Subsequent queries provide no solutions with respect to our
conflict fluents, so the calculated values are configured
accordingly.

VII. RELATED WORK

Research in conflict analysis has been actively growing
over the years, but most of the work in this area addresses
general management policies. The authors in [1] classify
conflicts as domain-independent and application-specific, and
in [9] the authors identify application-specific conflicts like
conflicts of duty, conflicts of priorities for resources and self-
management conflicts. The methodology presented in [1], and
probably the only approach for conflict resolution in the
literature, makes use of policy precedence rules to define which
of the conflicting policies is to prevail after a conflict has been
detected. The disadvantage of such a methodology is that, for
dynamic conflicts the process could introduce delays while
deciding for the appropriate resolution.

Work on computational efficiency for conflict detection
and resolution mechanisms was presented in [11] and [2]. The
authors identified several conflicts that may occur in open
distributed systems and classified them into static and dynamic.
Their detection mechanism involves identifying and predicting
all possible conflicts at compile-time, based on knowledge of
the temporal characteristics of the policies in the specification.
In the case of dynamic conflicts the relevant conditions are
stored in a database and subsequent monitoring of system
events can lead to determining the occurrence of a conflict.
Furthermore, they developed an approach as to when it is
appropriate to resolve conflicts. Based on the fact that a
resolution process can be computationally intensive, they
proposed different approaches according to the likelihood of a
conflict occurring and the cost of resolving that conflict. The
actual resolution methodology presented by the authors follows
the guidelines provided in [1], where policy precedence rules
are being used.

The authors in [12] and [13] also make use of priorities
when resolving a conflict. This is part of a ratification process
where new policies are approved before being committed in a
system. They identify the primitive operations that can be used

for policy ratification, namely dominance check, potential

conflict check, coverage check and consistent priority

assignment, and they provide the relevant algorithms to
implement these operations. Although this work is independent
of the policy model used in a system, it does not address
inconsistencies that may arise in application-specific
environments. In particular, the assignment of priorities to
conflicting policies may not be a flexible solution to the
problem of conflict resolution, as demonstrated in some of our
examples where new policies need to be enforced.

There are few conflict analysis examples that target specific
application domains. In [14], all possible firewall rule relations
have been formally defined and were used to classify firewall
policy anomalies. The tool developed in the context of this
work, called the Firewall Policy Advisor, can detect the
presence of anomalies in the policy specification and alarm the
administrator to make the necessary changes. Another example
involves work on using policies for adaptation of mobile
devices [15] and proposes EC as a suitable formalism for
obligation policy specification. However, conflict detection
using the notation is still under development.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have indicated the types of potential
conflicts that may arise in the domain of dynamic resource
management for QoS support. We identified that conflicts may
occur between policies applied to a single module of the
TEQUILA architecture (i.e. DRsM), which we term as intra-
module conflicts, or between policies specified for different
modules (ND-DRsM) as a result of the architecture’s
hierarchical relationship, termed as inter-module conflicts. We
classified these conflicts into domain-independent and
application-specific, and specified the conditions under which
these conflicts may arise.

Event Calculus was used to analyse the policy specification
by defining the rules for conflict detection, and the supported
reasoning methods provided the means to not only identify a
conflict but also provide an explanation as to how that conflict
occurred. For domain-independent conflicts static detection at
specification-time was adequate to identify any conflicts in the
policy specification, but for the case of applications-specific
conflicts dynamic detection was necessary as their occurrence
depended on the run-time state of the DRsM components.

While the resolution of domain-independent conflicts
requires the intervention of a human administrator, we
demonstrated how the occurrence of application-specific
conflicts could be handled in an automated manner through the
use of pre-defined resolution policies. Although we provided
possible resolution strategies for the identified dynamic conflict
types, an administrator may decide on other resolutions that
suit the underlying network (e.g. topology) and traffic types.
Furthermore, only few resolution policies are required per
conflict type, catering for the different PHBs and associated

   

links. The fact that these policies can be specified in advance
makes the resolution process efficient, as it is only a matter of
triggering the appropriate decision instead of generating one on
the fly.

Part of our future work will involve the classification,
detection and resolution of possible conflicts related to the rest
of the TEQUILA modules, such as the SLS Subscription and
SLS Invocation. More specifically, we are interested in the
hierarchical relationships between the modules that will
possibly bring more inter-module related conflicts into the
picture. This will allow us to identify conflicts originating from
policies specified for higher-level modules and to possibly
integrate the approach on conflict analysis with the ongoing
work on policy refinement.

Another area that will be targeted is the one of
computational efficiency. As far as static conflicts are
concerned, there are no performance issues associated with
their detection and resolution since this process is carried out
off-line at policy specification-time. In the case of dynamic
conflicts we need to consider the delay induced by the
detection and resolution mechanism before providing a new
configuration for the network.

REFERENCES

[1] E.C. Lupu and M.S. Sloman, “Conflicts in policy-based distributed
systems management,” in IEEE Transactions on Software Engineering -
Special Issue on Inconsistency Management, vol. 25, pp. 852-869, 1999.

[2] N. Dunlop, J. Indulska, and K. Raymond, “Methods for conflict
resolution in policy-based management systems,” proceedings of the 7th
International Conference on Enterprise Distributed Object Computing
(EDOC 2003), Brisbane, Australia, 2003.

[3] M. Charalambides et al., “Policy conflict analysis for quality of service
management,” presented at 6th IEEE Workshop on Policies for
Networks and Distributed Systems (Policy 2005), Stockholm, Sweden,
2005.

[4] P. Flegkas, P. Trimintzios, and G. Pavlou, “A policy-based quality of
service management architecture for IP DiffServ networks,” in IEEE
Network Magazine Special Issue on Policy Based Networking, vol. 16
No. 2, pp. 50-56, 2002.

[5] A.K. Bandara, E.C. Lupu, and A. Russo, “Using Event Calculus to
formalise policy specification and analysis,” presented at 4th IEEE
Workshop on Policies for Networks and Distributed Systems (Policy
2003), Lake Como, Italy, 2003.

[6] N. Damianou, N. Dulay, E.C. Lupu, and M.S. Sloman, “The Ponder
policy specification language,” presented at 2nd IEEE Workshop on
Policies for Networks and Distributed Systems (Policy 2001), Bristol,
UK, 2001.

[7] R.A. Kowalski and M.J. Sergot, “A logic-based calculus of events,”
New Generation Computing, vol. 4, pp. 67-95, 1986.

[8] A. Russo, R. Miller, B. Nuseibeh, and J. Kramer, “An Abductive
approach for analysing event-based requirements specifications,”
presented at 18th Int. Conf. on Logic Programming (ICLP),
Copenhagen, Denmark, 2002.

[9] J.D. Moffett and M.S. Sloman, “Policy conflict analysis in distributed
system management,” Journal of Organisational Computing, vol. 4, pp.
1-22, 1994.

[10] A.K. Bandara et al., “Policy refinement for DiffServ quality of service
management,” proceedings of 9th IEEE/IFIP Integrated Management
Symposium (IM 2005), Nice, France, 2005.

[11] N. Dunlop, J. Indulska, and K. Raymond, “Dynamic conflict detection in
policy-based management systems,” proceedings of the 6th International
Conference on Enterprise Distributed Object Computing (EDOC 2002),
Lausanne, Switzerland, 2002.

[12] D. Agrawal, J. Giles, K.W. Lee, and J. Lobo, “Policy ratification,”
presented at 6th IEEE Workshop on Policies for Networks and
Distributed Systems (Policy 2005), Stockholm, Sweden, 2005.

[13] D. Agrawal, J. Giles, K.W. Lee, and J. Lobo, “Policy-based management
of networked computing systems,” in IEEE Communications Magazine,
vol. 43 No. 10, pp. 69-75, 2005.

[14] E. Al-Shaer and H. Hamed, “Modeling and management of firewall
policies,” in IEEE Transactions on Network and Service Management
(eTNSM 2004), Volume 1-1, April 2004.

[15] C. Efstratiou, A. Friday, N. Davies, and K. Cheverst, “Utilising the
Event Calculus for policy driven adaptation on mobile systems,”
presented at 3rd IEEE Workshop on Policies for Networks and
Distributed Systems (Policy 2002), Monterey, CA, USA, 2002.

   

