
This work was supported partly supported by the EU EMANICS Network of
Excellence on the Management of Next Generation Networks IST-026854,
and the IST ENTHRONE phase 2 projects.

Abstract- Efficient Web Services (WS) based network
monitoring of managed devices is a difficult task due to the
relatively big overhead WS impose. In the past we proposed
mechanisms to perform distributed monitoring efficiently,
minimizing the relevant overhead. Standardization of WS
operations is also important in order to achieve interoperability.
The WS Resource Framework (WSRF) tries to standardize the
messages exchanged with resources representing the state of a
device. Adopting WSRF’s concepts, the Management Using Web
Services (MUWS) standard aims to support device management
in an interoperable manner. In this paper we propose methods to
use the mechanisms introduced in our previous work combined
with MUWS in order to establish the means to retrieve
management information efficiently and at the same time achieve
interoperability. We also present our experiences in using custom
as well as standardized solutions for monitoring devices that
range from small to large resource-capable systems. We describe
the motivations for this research and present ideas on techniques
that need to be adopted for WS based monitoring based on what
we have learned in the process.

Index Terms—WS, MUWS, WSRF, interoperability

I. INTRODUCTION

VER the past few years, various research groups defined
many WS-based specifications for Network and Service
Management (NSM). Some of the most prominent work

comes from the Organization for the Advancement of
Structured Information Standards (OASIS) Web Services
Distributed Management (WSDM) group.

From this group of most notable importance are two
specification documents; (a) the MUWS specification [1] (b)
the Management of Web Services [2] specification (MOWS).
In the MUWS specification authors describe how to manage
the resources of devices with the use of WS. In MUWS the
authors also recognize the importance of managing state when
interacting with distributed resources. This is necessary
because although WS are typically stateless [3], “the interface
maintained by a WS is clearly stateful, since its behavior is
defined with respect to the underlying state” [4].

MUWS concepts of managing state come from the Web
Services Resource Framework (WSRF [5]) which partitions
the functionality required for managing state into several
specifications and introduces the concept of the WS-Resource
[8]. Expanding the work in [5], MUWS introduces the concept

of the manageable resource, a refinement of a WSRF resource.
Through the use of the concept of the manageable resource
and standardization, MUWS promotes interoperability in
managing a resource’s state. Despite the interoperability
benefits, the use of standards such as MUWS, raise efficiency
and scalability issues as for example is explained in [6].

In the past we have suggested mechanisms to improve the
efficiency of WS management applications [7], [15], [16]. We
have built and deployed a query tool that tries to increase the
performance of management applications for monitoring and
event reporting. This tool supports (a) distributed monitoring
as part of an architecture that gives a complete view of
management services through ONE agent by supporting
federation of management requests. (b) it supports efficient
bulk and selective retrieval through information processing in
cases where the entire state of a device is not required and (c)
it exploits the conceptual relationships between state data,
structuring the WS encompassing them in hierarchies for
effective monitoring (the importance of exploiting the
relationships between state data is shown in [25] and [17]).

 Reading through the specifications of MUWS three
features of the latter seem very promising for integration of
our query tool and architecture with MUWS for efficient and
effective monitoring and interoperability. The first is the
support of MUWS for resource specific query languages such
as the one supported by our query tool. The second feature is
the support that MUWS provides in defining relationships
between WS, based on the Resource Properties (RPs) the latter
share. Our query tool exploits these relationships for
monitoring and MUWS promotes an XML schema for
defining them as common MUWS RPs. In our previous work
[7] we introduced how to use relationships between
management state data for efficient monitoring. Based on the
relationships between state data we introduced the idea of
structuring a hierarchy of WS interfaces which can be
searched more efficiently using our query tool. The third
feature is the support of MUWS to WSRF’s WS-
ServiceGroup (WS-SG) specification [11]. The concepts in
[11] can be used for composition of resources based on RP
they share. This way collective access to RP can be achieved.
Even more, resources can be grouped forming hierarchies of
resources enabling better access to RP for monitoring. Our
query tool exploits-requires such hierarchies for effective
retrieval of state information. Enabling combination of custom
solutions for management with standards can promote
efficient management solutions especially now that the use of

Experiences in Using MUWS for Scalable
Distributed Monitoring

Aimilios Chourmouziadis1, Oscar F. Gonzalez Duque1, George Pavlou2,
1Centre for Communications Systems Research (CCSR), University of Surrey, Guildford, UK,

2Networks and Services Research Lab, University College London, UK.

O

561978-1-4244-3487-9/09/$25.00 c© 2009 IEEE

custom solutions within a domain and the use of standards at
the edges are promoted so as to increase WS scalability [20].

Based on the above this paper will try to perform the
following: (a) show how to potentially integrate our query tool
and distributed monitoring architecture with MUWS (b)
evolve the concept of navigation of relationships between WS
for monitoring even further compared to our work in [7], this
time for relationships between MUWS’ WS-Resources (c)
present a full monitoring example where navigation of
relationships between WS-Resources takes place (d) share our
experiences in integrating our query tool and architecture with
Apache MUSE (a MUWS framework implementation), (e)
test the performance of MUWS based on a number of
monitoring scenarios that require use of a query tool against a
custom framework we have built for monitoring and SNMP.

To perform the above the rest of the paper is organized as
follows. Section 2 provides a background on WSRF, MUWS
and our query tool and architecture. Section 3 analyzes the
potential for integrating our query tool and architecture with
MUWS and evolves the concept of navigating relationships
between WS-Resources for monitoring. Section 4 analyses an
example of navigating relationships between WS-Resources
for monitoring. Section 5 analyzes our experiences in
integrating MUWS and our query tool and architecture, and
analyzes measurements on specific scenarios for polling based
monitoring. In section 6 we draw our conclusions.

II. BACKGROUND AND ANALYSIS

A. Managing state with stateful resources using the WSRF
framework and MUWS

Using WS for distributed management requires
standardization of the interactions of WS with stateful
resources in order to facilitate interoperability. As such the
WSRF defines mechanisms and constructs to enable WS to
access state in a consistent and interoperable manner. To
retain the WS characteristic of being stateless, WSRF
proposes to distinguish WS from state and RPs by introducing
the WS-Resource [8] construct. WS-Resources represent an
association between a WS and a number of stateful resources
in terms of the implied resource pattern.

WSRF partitions the functionality required for managing
state into five interrelated specifications, each of which tackles
a different aspect of managing state. The WS-Resource
standard [8] analyzes how to associate a WS with a resource.
The WS-ResourceProperties (WS-RP) standard [9] defines
how RP are modeled in RP documents exposing a number of
the available properties of a resource to users (consumers) that
want to access, change or delete them. The WS-Resource
Lifetime (WS-RL) [10] specification standardizes the message
exchanges taking place in order to manage the lifetime of a
WS-Resource. The WS-ServiceGroup (WS-SG) [11] specifi-
cation defines how to collectively access RPs of various WS-
Resources based on several constraints. The WS-BaseFaults
(WS-BF) [12] standard describes fault types for describing
errors produced when exchanging messages with resources.

Based on the concepts of the WSRF, MUWS introduces a

new concept; the manageable resource. A manageable
resource is a refinement of a WSRF resource. A resource is
manageable when it exposes a set of manageability
capabilities. The latter is a set of RPs, operations, events,
metadata describing the specific behavior of a resource and
defining its ability to be managed. Some of the operations
MUWS defines for accessing and managing resources allow
the managing entity to access RPs of a resource, subscribe to
events, or, control the resource. Most of these operations are
inherited by WSRF and the WS-BaseNotification [13]
standard, the latter being used for manipulating event
information. Some of these operations are given in Table I.

TABLE I
SOME OF THE MUWS OPERATIONS TO MANAGE WS-RESOURCES

QueryResourceProperties
(QRP)

Retrieves specific RPs using a query
language (e.g. using XPath).

QueryRelationshipsByType
(QRBT)

Retrieves information for particular
relationships resources share.

Subscribe Requests that specific notifications are sent to
an event consumer

Notify Notifies a consumer about an event

B. A custom Query Tool for information processing and
distributed monitoring

The query tool we have developed in [7] supports bulk and
selective retrieval through information processing, exploiting
the relationships between state data for effective distributed
monitoring. This is performed through the use of four types of
queries each one with a special functionality. All queries are
carried as parameters in operations exposed by WS interfaces.
Each WS interface exposes management data from SNMP
MIB’s which represent state data from a managed device. The
types of queries supported are: (a) Service Selection (SS), (b)
Single Instance Data (SID), (c) Multiple Instance Data (MID),
and, (d) Filtering Data (FD) queries. SS queries are a
combination of WS endpoint addresses, level restrictions and
relationship restrictions in order to select local or remote WS
exposing the state data of a managed device from which state
information will be retrieved. Level restrictions are applied in
order to specify from which levels of a hierarchy of WS data
can be retrieved. Relationship restrictions are applied to
enforce selecting WS whose state data share specific
relationships with the state data of other WS. Relationship
restrictions are applied by an agent according to the
hierarchical view of WS the latter has (such as that in Fig. 1).
How the agent acquires this view is explained fully in [7].
SID, MID and FD queries are called data queries because they
are used to retrieve the state data of a managed device. SID
and MID queries allow the retrieval of single and multiple
instance data respectively (i.e. a table’s rows are represented
by multiple instance objects) from a WS. FD queries can be
applied to MID queries to filter the collected data. Usage of
the four types of queries supports distributed monitoring as
shown in Fig. 1.

In Fig.1 a process where the retrieval of management data
from WS implementing SNMP MIB’s occurs is depicted. In
this figure a manager sends a request to an agent that has a WS
interface using an operation it exposes. As part of the
operation’s operands the manager sends SS, SID, MID, FD

562 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

queries and a callback address (Fig.1 step 1). Each SS query
has an association with data queries and their combination is
used to retrieve management data. On receiving a number of
queries the agent extracts each SS query to determine whether
local or remote data from WS exposing these data need to be
accessed (Fig.1 step 2 and 3). In case remote data from
managed devices need to be accessed, the current agent tries to
route the SS and data selection queries to the remote agent of
these devices (step 4 alternative). This is achieved by
extracting the remote agent’s address from each SS query and
sending a request to the next hop agent through which this
address can be reached. This continues from agent to agent
until the remote agent is reached. Each request made to a next
hop agent contains the SS query and their associated data
queries. The request also contains the callback address of the
manager that sent these queries in the first place. At the
remote agent, the manager’s callback address is used to send
back the required data to it using a process similar to the one
for retrieving local data explained below (step 4 alternative).
This process distributes the monitoring load to several agents.
If local data need to be accessed (step 4), the agent uses the
relationship and level restrictions in a SS query to find the WS
whose state data share specific relationships with other WS.
This process is called service selection. During this process
the agent picks the services to retrieve data from. After service
selection the agent dispatches the data queries to each WS
through an operation that each one exposes. Each WS uses its
query tool instance to analyze the queries it received. After
determining which data to retrieve, each WS sends a request
for the data to the associated managed device (step 5 and 6).
Each WS responds to the agent with the required data in XML
format although management data are held in programming
language objects (step 8). The agent concatenates the data and
sends back the response to the manager (step 9). An
implementation of the query tool was presented in [16],
demonstrating the scalability of our query tool to XPath.

Fig. 1. Distributed monitoring using the custom query tool to support bulk and selective

retrieval monitoring

In order to perform efficient distributed monitoring as

described previously using the standard operations and
concepts of the MUWS framework, it is required to (a) have a
number of agents to manage the monitoring process (b)
expose management state data using the WS-Resource concept
(c) build WS interfaces supporting the standard operations of
MUWS (d) support the custom tool queries within the
standard operations of MUWS (e) build a hierarchy of WS-
Resource interfaces as shown in Fig. 2 using the WS-SG
specification. All the previous characteristics can be supported
using the concepts of the MUWS architecture with some
adjustments to the architecture described in Fig.1. The details
of this are presented in section 3.

III. INTEGRATING MUWS WITH OUR QUERY TOOL AND

ARCHITECTURE

A. The MUWS potential to support our distributed
monitoring scheme

The QRP operation in Table 1 enables retrieval of RPs in a
selective or bulk manner. This is achieved using a query
language. MUWS supports two well known query languages;
XPath v1.0 and v2.0. The use of one or the other is supported
by a dialect attribute pointing to the specification of their
syntax. In theory any resource specific query language can be
used as stated in [14]. This clearly shows that we can use our
own query tool with MUWS for data retrieval, especially since
it has been proven to be more scalable than XPath ([15], [16]).

The QueryRelationshipsByType (QRBT) operation also
presents great application potential for use with our query tool.
QRBT is an operation that can be used for retrieving
information about relationships that exist between WS-
Resources. According to MUWS, relationships are RPs inside
a RP document that resources share. In the past, research has
been conducted by the authors where relationships between
management data representing the state of a managed device
were used in order to search the management data hierarchy
more effectively [17]. This way bulk access to network
management state data was provided. At the time though
programming concepts such as classes and containment were
used to model the state of managed devices and the
relationships between state data (OSI-SM). Relationships in
OSI-SM though are shared between state data and the objects
that encompass them. Since WS or WS-Resources also
encompass state data or RP, they also share relationships. To
define these relationships MUWS provides elements to model
them as RPs and provides the QRBT operation to access them.
This way MUWS standardizes the means to define and access
relationships among WS-Resources. This is vital to support
our agents functionality in Fig.1 for effective monitoring.

A difference though between the work in [17], and using
relationships to search a hierarchy of WS or WS-Resources, is
that object oriented principles such as containment facilitated
the structuring of state data in hierarchies with different levels
of abstraction. This allowed searching for state data more
effectively. WS or WS-Resources offering access to RP don’t
do this by default. This is where the WS-SG Specification [11]
supported by MUWS comes into play. With the use of WS-SG

2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009) 563

1
Fig. 2 is not an exhaustive list of relationships between resources and

should not be considered as normative but only as a possible way to structure
resources.

collective access to WS-Resources can be provided using
membership constraints based on PRs that resources share.

A. Building WS-Resource hierarchies

To structure a hierarchy of WS as that in Fig. 1, this time
though with WS-Resources we need to evolve the ideas
presented in [7] and introduce three new rules for structuring
WS-Resources in hierarchies, as well as advance the idea
about relationships between state data-RPs that can be used for
monitoring. An example of how to organize WS-Resources
representing management state data in hierarchies is given in
Fig. 2. In this figure examples of 5 types of relationships
between management data are given. Containment
relationships are the most common relationships and are the
basis for building hierarchies of objects or WS-Resources. In
programming language terms, objects at higher level of a
hierarchy (i.e. level 0) contain a portion of management state
data from objects at lower levels of a hierarchy (i.e. level 1) as
well as their own data. The same can happen with WS-
Resources. Using WS-SG concepts, a WS-Resource at level 1
can be created from WS-Resources at level 2 and thus contain
RPs from the latter layer as well as its own. Thus access to
WS-Resources at level 2 can be provided from level 1. A very
good example of containment relationships can be borrowed
from SNMP Management Information Bases (MIBs). An
SNMP table contains management state data representing its
columns and rows. Another type of relationship common to
SNMP MIBs is augmentation. A table augments another table
when both have common row identifiers. When augments
relationships or any other type of relationship apart from
containment exist between two WS-Resources, those
resources lie at the same level. If a WS-Resource shares
containment and other relationships with other resources,
containment is the dominant relationship when classifying
WS-Resources in hierarchies. Based on containment and the
above two rules, the hierarchy in Fig.2 is built between data of
the Traffic Engineering (TE) MIBs (RFCs 3812, 3813, 3814).

Fig. 2. Organizing WS-Resources state data in hierarchies
1

In Fig. 2 another common relationship between SNMP MIBs
is a References relationship. References relationships occur
when for example an attribute references another attribute. An

example of this relationship is the mplsInSegmentTraffic-
ParamPtr attribute in the mplsInSegmentTable of the MPLS
Label Switching Router (LSR) [18] MIB referencing a row of
the mplsTunnelResourceTable in the MPLS Traffic
Engineering MIB [19] containing the characteristics of a QoS
Traffic Class. AssociatesTo and AssignedTo relationships are
also very common between the traffic engineering MIBs. A
Label Switched Path (LSP) is associated to a Per Hop
Behaviour (PHB-traffic class). A Service Level Specification
(SLS-traffic contract) is assigned to a PHB.

B. Distributing monitoring of WS-Resources

In order to support our distributed monitoring architecture
and query tool using the concepts of the MUWS framework, it
is vital to meet the requirements given at the end of section 2.

1) First Requirement
In terms of the requirement to have a series of agents to

manage the monitoring process, the MUWS framework
specification defines that it supports both agentless or with an
agent implementations when managing WS-Resources. Thus
supporting the agents of the architecture in Fig. 1 with MUWS
is possible.

2) Second and Third Requirement
 In terms of exposing management data using the WS-

Resource concept for the architecture in Fig. 1 there are 4
conditions that need to be met. First each WS exposing a
manageable resource should expose the MUWS operations
through a WS addressing endpoint. Second resources should
be exposed in terms of RP. Third RP documents should be
linked with the WS interfaces through their WSDL portType
elements (to form a WS-Resource). Fourth the agent itself
should be a WS-Resource having access to all the other WS-
Resources. The first condition can be satisfied as long as the
WS of Fig. 1 are built in order to expose the standard
operations of MUWS. The second condition can also be
satisfied since the WS-RP specification and thus MUWS also
support implementations of the RP document that are not
instances of an XML Schema. This is necessary since our
query tool needs to dynamically construct the RP document
and their values from data held in programming language
objects by binding these elements to an XML document
instance. MUWS allows resource specific implementations of
the RP document and thus the second condition can be met
without risking being non-conformant to WSRF’s and
MUWS’ concepts for exposing state as RPs. For the third
condition each WS exposing management data should be
linked with a RP document by referring to it in its WSDL
portType. This can be achieved with any WSDL
implementation. For the fourth condition to be met the agent
should use the concept of the WS-SG specification to group
WS-Resources so that collective access to resources is
provided. This can be achieved as explained in the fifth
requirement below but also requires the agent to be a WS-
Resource. This can be supported by the architecture of Fig. 1
by making the appropriate changes so that the WS
representing the agents to be turned into WS-Resources.

564 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

Fulfilling the second requirement mandates that both the agent
and management data be exposed as WS-Resources exposing
the standard operations of MUWS. This means that the third
requirement is also satisfied.

1) Fourth Requirement
The fourth requirement can be achieved using the QRP and

QRBT operations of MUWS. The QRBT operation can be used
to retrieve the relationships that WS-Resources share in order
for an agent to build its conceptual view of WS-Resources.
This way when a SS query is dispatched from a manager to an
agent, the latter will be able to select the WS-Resources to
retrieve data from. The QRP operation can be used to perform
bulk and selective retrieval of RPs from WS-Resources using
our query tool. This requires the QRP operation to support our
custom tool queries. This can be achieved by using the dialect
attribute of the QRP operation to point to a specification of our
query tool. Since [14] states that query languages are resource
specific, this should not be a problem. Fig. 3 shows a usage
example of the QRP operation to support our tool queries.

2) Fifth Requirement
Fulfilling the fifth requirement requires using the WS-SG

specification to build a hierarchy of WS-Resources. Using this
hierarchy, data from WS-Resources can be retrieved more
efficiently. In order to build such a hierarchy, containment can
be the relationship between WS-Resources that can serve as
the basis of a member constraint to build the levels of the
hierarchy. Fig. 4 gives an example of a containment
relationship between two WS-Resources one of which resides
at level 2 of the hierarchy and one at level 3. In this figure, the
relationship type and level association elements can be used
by the agents of our architecture to build a conceptual
hierarchy of WS-Resources and are defined in a separate XML
schema (belonging in the rel namespace). Inserting schema
specific information such as those in the rel schema inside the
type and participant elements of the MUWS schema is
allowed by the latter in order to describe any schema specific
information about WS relationships. WS-Resources can share
other types of relationships apart from containment given in
Fig. 4. As long as relationships are defined in MUWS within
relationship elements and stored as RPs of a WS-Resource,
our agents can look them so as to build the hierarchy of Fig. 2.

In order to actually support the tree of Fig. 2, collective
access from a WS-Resource at a higher level to WS-Resources
of lower levels is necessary. As such it is necessary for a
higher level resource to be able to access the WSDL
operations and RP documents of WS-Resources at lower
levels. For WSDL 2.0 this is straightforward due to its
extensible nature. Accessing operations from the WSDL
document of another WS-Resource necessitates that the latter
references these operations in its portType. WSDL 2.0 allows
this through an extension attribute in the portType definition.
In order for a WS-Resource to be able to have access to other
RP of other WS-Resources, the WSDL RP document schema
of the former has to reference the WSDL RP schemas of the
latter resources. This in WSDL 2.0 can be achieved by first
defining each RP document of a WS-Resource in a separate
XML schema. Then using the import attribute of an XML

schema inside the WSDL document of a WS-Resource it is
possible to refer to elements of other schemas of other
resources. WSDL 1.1 though is not as extensible as WSDL
2.0. As such, in order to perform the above with WSDL 1.1,
the schemas and operations of lower level resources have to be
manually imported in the WSDL document of the higher level
WS-Resource. It is obviously more flexible to build
hierarchies of WS-Resources with WSDL 2.0.

Fig. 3. Custom tool queries with MUWS’s QRP operation

Fig. 4. Defining relationships of WS-resources as RPs

IV. WS-RESOURCE MONITORING EXAMPLE

Having explained how to use MUWS to achieve the
requirements of the distributed monitoring architecture in
Fig.1, it is now possible to provide an example. This example
will show how to use MUWS operations for distributed
monitoring across a network domain.

In the distributed monitoring example using MUWS
operations we have to imagine that the architecture in Fig. 1
has been transformed to support the WS-Resource concept and
the operations of MUWS. In addition, we need to assume that
each agent has a view on a hierarchy of WS-Resources that
looks like the one between WS-Resources in Fig. 2. The
example begins by having the manager of Fig.1 query the WS-
Resource interface of the agent associated with the local
queries router by invoking its QRP operation. This operation
carries the data shown in Fig.3. The agent extracts the
<qrt:SS_Query> elements from the QRP operations and
checks the addresses they contain. The agent thus realizes that

<wsrp:QueryResourceProperties>
 <wsrp:QueryExpression Dialect=’http:131.227.88.70/custom/query>
 <qrt:SS_Query>{http://192.168.50.4:8080/WS-
 Resource/1/,2,3,AssociatesTo*Augments}
 </qrt::SS_Query>
 <qrt:MID_Query>{mplsInSegmentPerfEntry[]}
 </qrt:MID_Query>
 <qrt:FD_Query>{mplsinSegmentPerfDiscards<=500}
 </qrt:FD_Query>
 <qrt:SS_Query>{http://192.168.60.3:8080/WS-
 Resource/2/,2,3, AssociatesTo*Augments}
 </qrt:SS_Query>
 <qrt:MID_Query>{mplsInSegmentPerfEntry[]}
 </qrt:MID_Query>
 <qrt:FD_Query>{mplsinSegmentPerfDiscards>=1000}
 </qrt:FD_Query>
 <qrt:CBackAddress>…</qrt:CBackAddress>
 </wsrp:QueryExpression>
</wsrp:QueryResourceProperties>

<muws2:Relationship>
 <muws2:Name>…</muws2:Name>
 <muws2:Type><rel:containment></muws2:Type>
 <muws2:Participant>
 <muws1:ManageabilityEndpointReference>..EPR2…
 </muws1:ManageabilityEndpointReference>
 <wsa:EndpointRefence>...EPR2…
 </wsa:EndpointReference>
 <muws1:ResourceId>…</muws1:ResourceId>
 <muws2:Role>…</muws2:Role>
 <rel:Lvl>3</rel:Lvl>
 </muws2:Participant>
 <muws2:Participant>
 <muws2:Self/>
 <muws2:Role>…</muws2:Role>
 <rel:Lvl>2</rel:Lvl>
 </muws2:Participant>
</muws2:Relationship>

2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009) 565

2
MplsInSegmentPerfEntries and MplsInSegmentPerfDiscards do not appear as

properties of WS-Resources in Fig.2 because the figure would look crowed.

the first query is for the local router and the second for a
remote router. As such, it dispatches the remote SS query and
its associated MID and FD queries to the next hop remote
agent by invoking the latter’s QRP operation. In this operation
the agent also inserts the callback address of the manager.
Back to the local queries agent, monitoring resumes by having
the latter process the local SS query. The agent then
determines that the manager wants to retrieve properties from
the WS-Resources in level 2 and 3 that can be reached by first
following relationships of type AssociatesTo and then type
Augments starting the search from WS-Resource 1. The agent
then searches the conceptual tree by invoking each WS-
Resource’s QRBT operation by searching for relationships of
type AssociatesTo. This eliminates all WS-Resources apart
from 30,31,4 to 7, 13 to 17 because they cannot be reached by
an AssociatesTo relationship. The agent then queries again the
remaining WS-Resources for relationships of type Augments.
The latter results in having the agent select WS-Resources 40
and 41 in order to retrieve state data. Then the agent applies
the level restrictions which mandate selecting only WS-
Resources between and including levels 2 and 3. Since WS-
Resources 40 and 41 belong to level 2, they remain selected.
The agent then dispatches the MID and FD queries to WS-
Resources 40 and 41 using their QRP operations. In each WS-
Resource the mplsInSegmentPerfEntry instances are selected
which have mplsInSegmentPerfDiscards values less than 500
2. WS-Resource 41 does not contain any information as the
ones requested by the agent and thus sends an empty response.
WS-Resource 40 responds to the agent with the result
contained in an XML document. The agent would normally
concatenate results, but in this case it does not happen because
from the WS-Resources selected, only WS-Resource 40
provides a number of RPs. The agent then sends back to the
manager the result in XML format. A similar process as for
the local agent also takes place in the remote agent when it
receives the remote queries.

I. EXPERIMENTAL WORK

To test the performance of MUWS and our query tool for
monitoring WS-Resources we need to introduce two scenarios
based on a QoS MPLS network and the traffic TE MIBs [18],
[19] which require information processing as well as
retrieving data in a bulk or selective manner.

The first scenario, is one that we used in [15] and [16] to
test the performance of XPath 1 & 2 and our query tool. In this
scenario a QoS network interface fails and the manager after
being notified by an event needs to determine the contracts
and the Logical Switched Paths (LSPs) that are affected for a
small (30 LSPs) and a big network (900 LSPs) (for the
measurements 6 LSPs and contracts are affected for both types
of networks thus only the volume of data that needs to be
searched changes - this is why Fig.5 contains only one traffic
overhead figure). Based on this scenario we will test the
performance of MUWS against a Custom Framework (CF),
using XPath 1 or 2 or our query tool for MUWS, and only our
query tool for the CF. For this scenario either when using
XPath 1 or 2 or our custom query tool three queries

(qry1,qry2, qry3 in Fig.5) must be sent from the manager to an
agent. As shown in [15] the XPath 1 and 2 queries are more
verbose than our query tool and require more merging and
filtering operations thus more processing.
For the measurements of this scenario we used Java 1.6.0. The
MUWS framework implementation is supported by Muse
2.2.0 which is based on Apache Axis 2.1.1 software to deploy
and build WS. Axis uses the Streaming API for XML
processing (StAX) pull parser to efficiently split an XML
stream into small sized chunks. As such it can build a partial
XML infoset tree in memory in an incremental manner,
allowing applications to start processing the XML content
even before the entire document has been parsed minimizing
latency. One of the most interesting features of Axis 2.0 is its
AXIOM object model (AXIs Object Model) and its built-in
support for the W3C XOP (XML-binary Optimized
Packaging) and MTOM (Message Transmission Optimization
Mechanism) standards used in the latest version of SOAP
attachments. These two standards work together providing a
way for XML documents to logically include blobs of
arbitrary binary data into SOAP messages. XOP and MTOM
are crucial features of the new generation of Web services
frameworks since they finally provide interoperable
attachment support, increase performance and end the current
problems in this area [21]. Version 2.1.1 of AXIS 2 though
has problems with its StaX XML stream utilities so we
tweaked Muse to support version 2.1.4. Muse currently only
supports XPath 1.0 so in order to support XPath 2.0 and our
query tool we tweaked Muse according to the guide in [22].
Additionally Muse only currently supports XML
representations of RPs so we had to change its source code to
support JAXB object representations (raw data) of an XML
document and schema which our query tool requires. The CF
which uses our query tool also uses Axis 2.1.4. For XPath 1
support we used JAXP 1.4 and for XPath 2 Saxon 8.9 by
Michael Kay one of the standard authors of XPath 2.0. Both
implementation of XPath are conformant to the standards,
come from reliable bodies and provide full support to XPath
capabilities. To calculate traffic overhead we used Linux’s
tcpdump utilities. For latency we used Java’s
currentTimeMillis() function using the average of 10 results
for each sample. One thing to note is that version 9.0 of Saxon
introduces considerably more latency than version 8.x so we
opted for version 8.
 From the measurements in Fig.5 we can see that our CF is
less verbose than MUSE (6639 bytes to 10137). This explains
why both for a small and a big network the MUWS version
that uses our query tool introduces a bit more latency than the
CF (230ms vs 238ms for a small network, 349ms vs 384ms
for the big network). This would not be the case though if
MUWS was using XPath 1.0 or 2.0. The fact that XPath 1.0 as
explained in [16] has more verbose queries, introduces
MUWS with more traffic overhead. Additionally the fact that
XPath 1.0 and 2.0 require more filtering and merging
operations introduces considerably more latency for MUWS
than our CF especially when the amount of information to be
processed increases (1.5 to 13 times more latency for XPath 2,
2.9 to 17 times more latency for XPath 1). The latter is
attributed as explained in [16] in DOM’s inefficiency. As such

566 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

MUWS when using XPath 1.0 or 2.0 would not be a scalable
solution for monitoring and even for event reporting.

In the second scenario the manager would like to query an
agent to determine to which traffic class (Per Hop Behavior-
PHB) an LSP in the ingress router of an MPLS network is
assigned. For this scenario we will test the performance of
MUWS against the CF built in Apache AXIS 2.1.4 & 1.1.4
and the SNMP GetNext and GetBulk operations for a varied
number of LSPs (from 1 to 980 objects). Please note that
SNMP cannot process data at the agent and thus the SNMP
manager fetches all the required data so that it can process
them. In the measurements the processing overhead at the
SNMP manager is not included.

0

200

400

600

800

1000

1200

1400

1 30 70 11
0

16
0

23
0

32
0

42
0

52
0

64
0

77
0

91
0

Number of Objects

Latency(ms) MUWS-Custom Query tool-
Axis 2.1.4

CF-Custom query tool-Axis
1.1.4

SNMP GetNext

SNMP GetBulk

CF-Custom query tool
MTOM enabled-Axis 2.1.4

Fig. 6. Scenario two latency measurements

During these measurements we noticed that when the size of
the AXIOM element returned after a query to the agent for
AXIS 2.1.4 and the CF exceeds 4 KBs an invocation
exception occurs. We managed to be able to return responses
greater than 4KBs only when we enabled the MTOM
mechanism of AXIS which “binarizes” the AXIOM response
element. Though we can not compare MUWS and the CF on
the same terms this is a good opportunity to check the
performance of the new binarization scheme of AXIS 2, since
techniques like the SOAP with Attachments (SwA) API or
embedding data in xs:base64Binary or xs:hexBinary
encodings suffered from interoperability and performance
issues respectively (the latter schemes increased message size

by a factor of 1.33x to 2x [23], [24]) (AXIOM=up to 25%
smaller size for normal character encodings and faster
processing without the overhead of encoding and decoding
base64 data [21]). Additionally we noticed that the MTOM
feature is not supported by Muse probably because the latter
uses DOM node elements to form a response serialized in an
XML Document (not AXIOM elements).

0

20000

40000

60000

80000

100000

120000

0 200 400 600 800 1000 1200 Number of objects

Traffic (bytes) MUWS Axis 2.1.4
(Document/literal)

CF Axis 2.1.4 MTOM
enabled
(Document/literal)
CF Axis 1.1.4
(RPC/literal)

SNMP GetNext

SNMP GETBULK

Fig. 7. Scenario two traffic overhead measurements

As it can be observed in Fig. 6, the latency performance of
MUWS using Axis 2.1.4 against the custom framework using
Axis 1.1.4 has been decreased by 3 times when the number of
objects retrieved reaches 980. It is even worthy of attention
that MUWS latency performance exceeds the performance of
the SNMP GetBulk operation when more than 130 objects are
retrieved not even considering the processing overhead for
SNMP at the manager. Compared to GetNext, MUWS
performs better in terms of latency when more than 50 objects
are retrieved. From Fig.6 we can also observe that the
binarization scheme of Axis 2.1.4 performs quite well. When
less than 160 objects are retrieved, the CF with MTOM
enabled performs a bit better than Muse but when this number
is exceeded the fact that data are exchanged using Mutlipart
MIME binary encodings increases latency for the CF, though
its performance is still better than SNMP (130 to 980 objects).

In terms of traffic overhead MUWS and the CF either with
Axis 1.1.4 and 2.1.4 performs better than SNMP GetNext
operations (after more than 45 or 60 objects are retrieved for
CF and MUWS respectively) and worse than SNMP’s

C
F

-A
xi

s2
.1

.4
-q

ry
 3

M
U

W
S

-A
xi

s2
.1

.4
-C

us
to

m
-q

ry
2

M
U

W
S

-A
xi

s2
.1

.4
-C

us
to

m
-q

ry
3

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h1

-q
ry

3

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h2

-q
ry

1
M

U
W

S
-A

xi
s2

.1
.4

.-
X

P
at

h2
-q

ry
2

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h2

-q
ry

3
M

U
W

S
-A

xi
s2

.1
.4

.-
X

P
at

h2
-T

ot
a l

C
F

-A
xi

s2
.1

.4
-q

ry
1

C
F

-A
xi

s2
.1

.4
-q

ry
2

C
F

-A
xi

s2
.1

.4
-T

ot
al

M
U

W
S

-A
xi

s2
.1

.4
-C

us
to

m
-q

ry
1

M
U

W
S

-A
xi

s2
.1

.4
-C

us
to

m
-T

ot
a

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h1

-q
ry

1
M

U
W

S
-A

xi
s2

.1
.4

.-
X

P
at

h1
-q

ry
2

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h1

-T
ot

al

0

1000

2000

3000

4000

5000

6000

latency
(ms)

C
F

-A
xi

s2
.1

.4
-q

ry
2

C
F

-A
xi

s2
.1

.4
-q

ry
 3

M
U

W
S

-A
xi

s2
.1

.4
-C

us
to

m
-q

ry
2

M
U

W
S

-A
xi

s2
.1

.4
-C

us
to

m
-q

ry
3

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h1

-q
ry

3

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h2

-q
ry

1
M

U
W

S
-A

xi
s2

.1
.4

.-
X

P
at

h2
-q

ry
2

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h2

-q
ry

3
M

U
W

S
-A

xi
s2

.1
.4

.-
X

P
at

h2
-T

ot
al

C
F

-A
xi

s2
.1

.4
-q

ry
1

C
F

-A
xi

s2
.1

.4
-T

ot
al

M
U

W
S

-A
xi

s2
.1

.4
-C

us
to

m
-q

ry
1

M
U

W
S

-A
xi

s2
.1

.4
-C

us
to

m
-T

ot
a

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h1

-q
ry

1
M

U
W

S
-A

xi
s2

.1
.4

.-
X

P
at

h1
-q

ry
2

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h1

-T
ot

al

0

50

100

150

200

250

300

350

400

450

500

latency
(ms)

C
F

-A
xi

s2
.1

.4
-q

ry
1

C
F

-A
xi

s2
.1

.4
-q

ry
2

C
F

-A
xi

s2
.1

.4
-q

ry
 3

M
U

W
S

-A
xi

s2
.1

.4
-C

us
to

m
-q

ry
2

M
U

W
S

-A
xi

s2
.1

.4
-C

us
to

m
-q

ry
3

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h1

-q
ry

3

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h2

-q
ry

1
M

U
W

S
-A

xi
s2

.1
.4

.-
X

P
at

h2
-q

ry
2

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h2

-q
ry

3
M

U
W

S
-A

xi
s2

.1
.4

.-
X

P
at

h2
-T

ot
a l

C
F

-A
xi

s2
.1

.4
-T

ot
al

M
U

W
S

-A
xi

s2
.1

.4
-C

us
to

m
-q

ry
1

M
U

W
S

-A
xi

s2
.1

.4
-C

us
to

m
-T

ot
a

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h1

-q
ry

1
M

U
W

S
-A

xi
s2

.1
.4

.-
X

P
at

h1
-q

ry
2

M
U

W
S

-A
xi

s2
.1

.4
.-

X
P

at
h1

-T
ot

al

0

2000

4000

6000

8000

10000

12000

14000

Traffic
(bytes)

Fig. 5. Latency and traffic overhead for a small and a big QoS network for scenario 1

2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009) 567

GetBulk operations. Additionally we can observe that MUWS
is more verbose than the CF.

I. CONCLUSIONS

OASIS and DMTF are two groups in the process of
standardizing the WS operations on manageable resources for
the purpose of increasing the interoperability of WS
management applications. Collaboration between the two
working groups has led them to issue a roadmap in order to
converge their frameworks so as to provide the basis to build
interoperable management applications in an end to end
fashion. Efficiency though as shown in [6] is an issue that
these groups have to solve. A great aspect of the specifications
of these two groups though, is that they have left undefined all
the implementation details of their frameworks standardizing
only a few common aspects of the capabilities of managed
devices and the operations to access these capabilities. This is
a key requirement for open management which can lead to
efficient implementations of management applications.

One such application was a custom query tool built by us to
support distributed monitoring as part of an architecture of
management agents on network devices. The tool also
exploits the relationships between management data so as to
provide bulk and selective retrieval capabilities through
information processing over the state data of managed devices.

In this paper we have shown how to integrate our query tool
and distributed monitoring architecture with MUWS by
satisfying a number of requirements. We have also evolved
the concept of navigation of relationships between WS. As
such we have shown how to structure hierarchies of WS-
Resources for effective monitoring by introducing 3 rules and
we have also elaborated on the relationships that exist between
state data that can be exploited for monitoring. Additionally
in this paper we have also presented a full monitoring
example where navigation of relationships between WS-
Resources takes place and where information processing is
required for bulk and selective retrieval of RPs. To show the
potential of MUWS for efficient and scalable monitoring we
have shown how to integrate our query tool with Apache
MUSE, an implementation of MUWS. After integrating our
query tool we have tested the performance of MUWS based
on two monitoring scenarios that require use of our query tool
against XPath 1 and 2 and against a custom framework we
have built for monitoring and SNMP.

In the measurements we have shown that MUWS is more
scalable and efficient for monitoring when using our query
tool against XPath 1 which is currently supported by the
Apache Muse software and also more scalable than XPath 2
(both in terms of traffic and latency overhead). Based on the
Apache Axis 2.1.4 engine we have also shown that MUWS
can be quite scalable in terms of latency compared to SNMP
even when not considering the information processing
operations that have to be performed by the latter for the
scenarios we examined. In terms of traffic overhead MUWS
starts producing less traffic than SNMP’s GetNext traffic
when more than 60 objects are retrieved but always more
traffic than GetBulk. Nevertheless MUWS can still be a

scalable solution for network monitoring in terms of traffic
and latency overhead when using our custom query tool.

On the other hand we must recognize that XPath and
standardized solutions also have great benefits. XPath
implementations have more functionality, they enable the user
to be more expressive when processing management
information, and they are well known tools that many are
familiar with. Learning a new tool even with a simpler syntax
such as our query tool might not be desirable. As such it is
probably more desirable to use XPath implementations with
MUWS at the edges of a network domain especially for
interoperability while using custom solutions within a network
domain. The use of such an approach is recognized in [20] for
event reporting as more scalable but it can also be applicable
as we have shown in this paper for polling based monitoring.

REFERENCES

[1] W. Vambenepe, “WS Distributed Management: Management Using
Web Services (MUWS 1.1) Part 1&2”, OASIS standards, August 2006.

[2] H. Kreger et al, “WS Distributed Management: Management of Web
Services 1.1” OASIS, 01 August 2006.

[3] W. Vogels, “Web Services are not Distributed Objects: Common
Misconceptions about the Fundamentals of Web Service Technology”,
IEEE Internet Computing, December 2003.

[4] I. Foster et al, “Modeling stateful Resources with Web Services”, IBM
library white paper, May 2004.

[5] K. Czajkowski et al “The Web Services Resource Framework v1.0”
OASIS standard version 1.0, May 2004.

[6] G. Moura, G. Sanchez, R. Gaspary “On the Performance of WS
Management Standards-An Evaluation of MUWS and WS-Management
for Network Management” IM 2007, May 2007, pp. 459-468.

[7] A. Chourmouziadis, G. Pavlou, “Efficient Information Retrieval in
Network Management Using Web Services”, DSOM 2006, October
2006.

[8] S. Graham, J. Treadwell, “The WS-Resource”, OASIS standard ver. 1.2.
[9] S. Graham, J. Treadwell, “The WS-ResourceProperties” OASIS

standard v.1.2, April 2006.
[10] L. Srinivasan, T. Banks, “The WS-ResourceLifeTime” OASIS standard

v 1.2, April 2006.
[11] T. Maguire, T. Banks, et al, “The WS-ServiceGroup” OASIS standard v.

1.2, Apr. 2006.
[12] L. Liu, S. Meder, “The WS-BaseFault”, OASIS standard v.1.2.
[13] S. Graham et al, “Web Services Base Notification”.
[14] K. Klein, J. Cohen et al “Towards converging Web service standards for

resources, events, and management” white paper March 2006.
[15] A.Chourmouziadis G.Pavlou, “Web Services Monitoring: An Initial

Case Study on the Tools Perspective”, poster, NOMS 2008.
[16] A.Chourmouziadis, G. Pavlou, “An Evaluation of WS Tools to Address

Efficient Information Retrieval for Network Management”, to appear in
the International Symposium on Computer Networks (ISCN 2008).

[17] G. Pavlou, A. Liotta, et al “CMIS/P++: extensions to CMIS/P for
increased expressiveness and efficiency in the manipulation of
management information”, INFOCOM 98, April 1998.

[18] C. Srinivasan, et al, “MPLS LSR MIB” RFC 3813, June 2004.
[19] C. Srinivasan, et al, “MPLS TE MIB” RFC 3812 June 2004.
[20] H. Saiedian, S. Mulkey “Performance Evaluation of Eventing WS in

Real-Time Applications” IEEE magazine, Vol 46, p.p. 106-111.
[21] D. Sosnoski, “Java Web services, Part 2: Digging into Axis2: AXIOM”,

IBM article, Nov 2006
[22] D. Jemiolo, “Craft Custom Query Dialects with Apache Muse”, IBM

article, June 2007.
[23] Y. Yang, “Faster Data Transport Means Faster Web Services with

MTOM/XOP”, DevX article, http://www.devx.com/xml/Article/34797
[24] A. Bosworth, D. Box, et al,”XML, SOAP and Binary Data”, white paper

from BEA and Microsoft, February 2003.
[25] J. Schonwalder, A. Muller, “Reverse Engineering Internet MIBs”,

International Symposium of Integrated Network Management, May
2001

568 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

