

Programmable Middleware for the Dynamic
Deployment of Services and Protocols in Ad
Hoc Networks

S.Gouveris, S.Sivavakeesar, G.Pavlou, A.Malatras
Centre for Communication Systems Research, Dept. of Electronic Engineering,
University of Surrey, Guildford, Surrey GU2 7XH, UK
{S.Gouveris, S.Sivavakeesar,G.Pavlou, A.Malatras}@eim.surrey.ac.uk

Abstract
Mobile ad hoc networks (MANETs) are characterized by their heterogeneity and the
diverse capabilities of the nodes forming the network. Almost any device equipped
with a wireless network interface can join an ad hoc network. In such an environment
it is difficult to deploy common services without a common understanding among the
participating nodes and their capabilities, in terms of processing power, battery life,
expected residence time and also in terms of already installed and operational
software. This paper presents a middleware-based programmable infrastructure that
allows the nodes of a mobile ad hoc network to download and activate required
protocol and service software dynamically. This enables the alignment of the nodes’
capabilities so that common services and protocols are used among heterogeneous ad
hoc network nodes. We first present the middleware functionality and architecture and
then evaluate it through both testbed experimentation and simulation. Our evaluation
shows that the proposed approach and architecture perform relatively well, with
overall convergence time growing linearly with the number of nodes and without any
adverse effects because of increasing node density.

Keywords
Programmability, Middleware, Ad hoc Network Management

1. Introduction

The concept of mobile ad hoc networks (MANETs) has recently received significant
attention due to the increasing popularity of tetherless computing and the rapid
growth of wireless networking. In ad hoc networks, the mobile nodes (MNs) are free
to move randomly and organise themselves arbitrarily; thus, the network’s wireless
topology may change rapidly and unpredictably. Typically this kind of network
operates in a standalone fashion or may be connected to an infrastructure-based
network through a gateway, e.g. wireless LAN access point, base station, etc.
Conventional wireless networks require as prerequisite some form of fixed network

0-7803-9087-3/05/$20.00 ©2005 IEEE

infrastructure and centralised administration for their operation. In contrast, since
MANETs are self-creating, self-organising and self-administrating, individual MNs of
the network are responsible for dynamically discovering other nodes they can
communicate with. This way of dynamically creating a network often requires the
ability to rapidly create, deploy and manage services and protocols in response to user
demands.

There has been no proper previous research on deploying application-level
services or routing protocols dynamically in MANETs, but such aspect is important in
ad hoc networks. For example, while routing and Quality of Service (QoS) conform
to standardised frameworks and protocols in fixed IP networks, there are many
potential solutions for ad hoc networks that depend also on the characteristics of the
particular ad hoc network, e.g. topology volatility, characteristics of radio links,
capabilities of nodes, etc. Given the multitude of potential solutions that may be
environment-dependent, programmability is of paramount importance to allow mobile
nodes to be enhanced on the fly with the required capabilities in the ad hoc
environment. In addition, application servers may migrate to more powerful devices
that have the required capabilities while less powerful devices may outsource
computing tasks (cyber foraging). Programmability is possible through recent
advances in distributed systems technologies and transportable “execute-anywhere”
software. In this paper we present a novel programmable middleware that is capable
to support cooperation, adaptability and alignment with respect to the required basic
capabilities and additional services of the devices that form an ad hoc network,
allowing a degree of self-management to be achieved.

A key aspect of MANETs, given their fluidity, is the possibility to adapt to their
environment through context-awareness for many co-operation and co-ordination
scenarios. The sheer amount of context information necessary for relevant adaptation
places an important burden on the network, as potentially large amounts of data from
diverse sources need be managed. This requires an infrastructure for sensing,
collecting, and providing context information to applications [14][15]. The proposed
programmable middleware takes this into consideration and takes an elementary step
to provide such an infrastructure. In this paper though we mostly concentrate on the
programmable middleware aspects that support self-management.

The rest of the paper is organised as follows. Section 2 provides basic
background, on network programmability. The proposed middleware functionality
and architecture are described in section 3. Section 4 presents the evaluation of the
proposed approach, first through testbed experimentation and then through simulation.
Finally, section 5 presents our conclusions and future work.

2. Background on Network Programmability

As already mentioned, programmability in ad hoc networks is of paramount
importance given the multitude of potential solutions for routing, QoS support and
other application services. There are various different approaches to achieve
programmability. Active control packets may carry code to be evaluated in routers
[1]; this approach has also been used for active routing in ad hoc networks [5].

4 Session One Network Management

Mobile agents may be used in full mobility scenarios, carrying code and state to
manipulate different network nodes, or in a constrained mobility mode [6] as a more
flexible means for the management by delegation approach [7]; in the latter, code is
uploaded and executed in network nodes through “elastic management agents”,
augmenting the node functionality. Programmability is also possible through the
provision of suitable management interfaces that allow code to be uploaded to
network nodes and activated in a controllable fashion. This approach has been first
adopted in the Xbind framework, targeting the quick and flexible introduction of new
telecommunication services in programmable network infrastructures [8]. It has given
rise to the IEEE P1520 initiative for Programmable Network Interfaces [9]. The
Mobiware approach has relied on the Xbind approach, modifying and extending it for
cellular networks [10]. Other related approaches have been the Tempest framework,
targeting the creation of virtual partitions in ATM networks [11] and the Phoenix
framework, targeting new network services on reprogrammable router processors [12].
It should be finally mentioned that while there exists research work on network
programmability, there has been no attempt to apply it to ad hoc networks in the
manner proposed here.

3. Programmable Ad Hoc Middleware Functionality and
Architecture

Our programmable platform follows a lightweight approach to achieve
programmability through the use of loadable plugins. The latter are blocks of code
that can be uploaded and executed on the ad hoc network nodes i.e. terminodes, in
order to perform specific operations. This can be an installation of a new routing
protocol, extensions to an existing one or any other function that the MANET could
benefit from. In order to decide on a particular plugin to be used for a given scenario,
a plugin election should take place utilising the current contextual information. This
involves advertisements from every MN that can provide suitable plugins for a given
election. A predefined election algorithm should be used and identify a plugin to
install globally. The latter should then be distributed throughout the MANET in a
peer-to-peer fashion. Following the installation of the elected plugin, the mobile
nodes should activate, i.e. execute, the plugin. In the following sub-sections we
describe the functionality and architecture of the middleware platform, highlighting
important design decisions and presenting the relevant reasoning.

3.1 Centralized vs. Distributed Management

A key consideration in an ad hoc network is the management approach to be deployed.
In a centralized approach, the whole MANET is grouped into clusters, each electing a
local leader or cluster head (CH). CHs then cooperate and elect a global leader or
network head (NH). Key management decisions, such as triggering and coordinating
the plugin election process, are taken by the NH. This hierarchical approach is similar
to that of routing protocols, e.g. OSPF, and scales well, limiting interactions within a
cluster or among cluster heads. It also allows operation in a controlled distributed
fashion, when decisions are taken not only by the NH but through cooperation and

5Programmable Middleware for the Dynamic Deployment
of Services and Protocols in Ad Hoc Networks

“voting” among the CHs. A diametrically different approach is a fully distributed one,
in which all the terminodes have “equal rights” and determine collectively any
management decisions to be taken. This approach requires more complex cooperation
protocols and may not scale for large networks with 100’s of nodes.

For our intended use of aligning dynamically the capabilities of terminodes
through programmability, we have opted for the centralised approach, employing CHs
and a NH. This approach is chosen due to its inherent desirable features outlined
below: i) the leader or NH can impose a uniform management approach over the ad
hoc network formed, ii) it is easy for a leader, at any point in time, to make a decision
as to the selection of the most optimal protocol to be deployed relatively quickly; this
holds both at bootstrap time or when the already deployed protocol/service becomes
inappropriate for the current context, and iii) this clustering approach is more scalable
for a larger network. The decentralised approach has the key drawback that the voting
mechanism can be time-consuming. This is especially lengthy when in our scenario
the already deployed protocol becomes inappropriate for the current context. The
difficulty arises because there is no central node (NH) or few nodes (CHs) responsible
for triggering the re-deployment process. More importantly, the decentralised
approach would lead to a dangerous situation where any node may trigger this process
unnecessarily.

The CHs/NH election process is based on contextual information and can take
into account location, capabilities such as processing power, memory, battery life, etc.,
expected residence time and possibly owner’s privileges. For example, the CH/NH
needs to be a relatively central node in the cluster or network respectively while there
is no point in having a cluster head with high probability to move radically away from
its current location soon. There is a lot of work in the literature on cluster formation
and cluster head election, we have also proposed relevant algorithms. Stable cluster
formation is important, and hence the CH election heuristic can be similar to the one
we proposed in [1] for a longer-term large-scale MANETs or similar to the one we
proposed in [2] for more spontaneous MANETs. In [1] and [2], we compared our
cluster head election heuristic with other similar approaches, and showed that our
heuristics result in stable cluster formation in comparison with others. It should also
be noted that a deputy cluster head or network head is also elected, so that there is
immediate “functionality fallback” should a CH/NH leave.

3.2 Middleware Communication and Components

We have chosen to use the lightweight XML-RPC [16] protocol as the basis of
communication between terminodes running the programmable platform. XML-RPC
can be considered as a subset of the SOAP protocol, unburdened from unnecessary
complexity. Like all remote call approaches, it allows software running on different
operating systems and hardware architectures to communicate through remote
procedure calls (RPCs). XML-RPC uses the HTTP protocol as transport and XML
encodings for the RPC protocol itself. We chose an XML-based approach because we
also use XML to represent contextual data in terminodes and this achieves easy
integration. We could have possibly chosen Web Services, but this approach would
have certainly been more heavyweight. In addition, Web Services, in the same fashion

6 Session One Network Management

with distributed object technologies such as CORBA, necessitate object
advertisement and discovery functionality, which is not required in our platform that
relies on simple message passing modeled through RPCs. Given our recent
performance evaluation of XML and other management approaches [3], we believe
that XML-RPC provides a useful blend of functionality and performance.

In addition, in order to make the platform even less demanding on processing
power and portable to mid-range and small devices, we used the Java 2 Micro Edition
(J2ME) virtual machine. The latter requires a much smaller memory footprint than the
standard or enterprise edition, but at the same time it is optimized for the processing
power and I/O capabilities of specific categories of devices. We used the Connected
Device Configuration (CDC) framework instead of the limited (CLDC) one, as the
latter lacks the required support of advanced operations.

The programmable platform can be divided into two middleware modules
according to relevant functionality, as shown in Fig. 1: the Cluster (or Network) Head
and the Terminode modules. Depending on a node’s current status, middleware
functionality switches between Cluster/Network Head and Terminode mode
respectively. For the time being, we have implemented and validated Cluster Head
but not Network Head functionality, since our experiments were conducted in a small
testbed with 4 terminodes – we plan to implement cluster head cooperation and
network head functionality in the future.

The Cluster Head components deal with the management of the programmable
Terminodes regarding programmable plugin election and distribution, as well as (re)
configuration. The key components of the Cluster Head module are:

 Plugin Election and Distribution: it is responsible for the initiation and
coordination of the election process. It implements the plugin election
algorithm and is responsible for the initiation, distribution and activation of
the elected plugins across the ad hoc network.

 Plugin Configuration: it is responsible for the (re-)configuration of installed
plugins across the ad hoc network. It is also able to modify on-the-fly key
parameters of active plugins, if the latter support this functionality.

The Terminode components deal with the management of the programmable plugins
regarding plugin advertisement, installation, storage, distribution and configuration.
The key components of the Terminode module are:

 Plugin Management: is responsible for advertising available plugins to the
Plugin Election component, listening for requests from the latter for
distributing a specific plugin, communicating with its peer nodes for the
purpose of exchanging network plugins, as well as for installing, executing,
reconfiguring and terminating the operation of a particular plugin.

 Plugin Repository (PR): is responsible for storing and exposing available
plugins to the Plugin Management component when required. The latter
should be able to extract and advertise to the Plugin Election component the
characteristics of the stored plugins for the purpose of plugin election. The
Plugin Management component offers all the necessary operations for
storing and deleting plugins, as well as searching for a plugin by name or
type.

7Programmable Middleware for the Dynamic Deployment
of Services and Protocols in Ad Hoc Networks

Terminodes

Cluster Head

Terminode Manager

Java

Flooding

Plugin
Management PRPR

Plugin
Download Plugin

Management

Terminode Manager

Java

XML-RPC

XML-RPC

XML-RPC XML-RPC

Execution Environment Execution Environment

Plugin
Election & Distribution

Plugin
Configuration

Terminodes

Cluster Head

Terminode Manager

Java

Flooding

Plugin
Management PRPR

Plugin
Download Plugin

Management

Terminode Manager

Java

XML-RPC

XML-RPC

XML-RPC XML-RPC

Execution Environment Execution Environment

Plugin
Election & Distribution

Plugin
Configuration

Figure 1: Middleware Platform Architecture

3.3 System Operation

We describe here the complete system operation, from election triggering to plugin
activation, considering an ad hoc network that consists of a single cluster. According
to the current context or human user command, the CH triggers the election process
by contacting Plugin Election and providing the type of the plugin currently required
by the MANET. The Plugin Election object contacts all the terminodes of that cluster
in order to request advertisements of candidate plugins. Each member node performs
a lookup in its plugin repository for one or more suitable plugins that can satisfy the
requirements of the election process and replies to the CH Plugin Election with the
characteristics of the retrieved plugins. The CH Plugin Election executes the election
algorithm and decides on the most suitable plugin, based on the current context, e.g.
by assigning different weights to criteria such as CPU time, memory required, etc.
Following the actual plugin election, the CH contacts terminodes that already possess
the elected plugin and instructs them to distribute it across the cluster. Plugin
distribution is carried out in a peer-to-peer fashion, with the “owning” nodes flooding
the plugin to their peers, and so on. Prior to any plugin exchange, each node probes its
peers in case they already have acquired the plugin, so as to avoid unnecessary
retransmissions. For the actual transmission, the terminode currently distributing the
plugin contacts the neighbor MN and passes all the characteristics of the elected
plugin, followed by the actual transfer of the plugin’s execution code. When a new
plugin has been successfully installed, the node sends a notification to the Plugin
Election of the CH. At this point, the plugin is installed and available to be activated.
The CH Plugin Election object, after receiving installation notifications from all the

8 Session One Network Management

member nodes or after a predefined timeout period, it floods an activation message
across the cluster to instruct the member nodes to execute the elected plugin. Each
member MN should then perform a lookup in its Repository for the plugin, in order to
obtain its reference in the local file system and consequently execute it in user space.

3.4 Loadable Plugins

A programmable plugin is a dynamically loadable object or module that can be
installed, removed, activated and configured on-the-fly in order to extend the
functionality of a node. A loadable plugin is a Java object that implements a generic
interface with methods supporting common necessary functionality. Such
programmable plugins can be loaded and activated dynamically into the operating
system’s user space at run-time. They can be instantiated as often as required, while it
is possible to have several instances of the same plugin with different configurations.
We should note here that the plugins execute only in user space, so a new or extended
ad hoc routing protocol should operate in user space. This implies a performance
limitation for plugins that implement network device functionality but it is too
difficult and dangerous to achieve programmability at kernel level. The key reason
behind the selection of Java for implementing the programmable plugins is platform
independence. This is required in a diverse ad hoc environment, as is also the case in
our ad hoc network testbed, which consists of laptops and a PDA with different
computing architectures. It would have been possible to cater for plugins in compiled
languages, e.g. C/C++, but this would complicate the system and would require many
versions available for each plugin, one for each node operating system / hardware
architecture combination present.

Plugins expose two programmable interfaces for the purpose of configuration and
monitoring. This first interface is used to configure and alter various aspects of the
plugin functionality at run-time. On the other hand, through the monitoring interface
plugins can provide some information regarding their status and possibly various
useful statistics collected from their operation. For each programmable plugin there
are several characteristics to be considered, such as the CPU cycles required for its
operation, the run-time memory size required, and the plugin physical size which
governs the distribution overhead. Each characteristic is assigned a unique and
ordered identifier in order to be comparable with other candidate plugins during the
election process. Due to the dynamic nature of plugins’ installation and
reconfiguration, a security mechanism for authorization and certification would be
required in order to ensure stability in an untrusted environment – this aspect is
however outside the scope of our current work.

3.5 Plugin Election and Distribution

As already explained, an election procedure takes place among the member nodes.
The coordinator of the election phase is the cluster head, whose functionality switches
to Cluster Head mode. At this point, each terminode, whose functionality switches to
Terminode, collects the characteristics of the plugins that fit the current requirement
as advertised by the CH and sends them to the Cluster Head in a unicast fashion. The
CH decides on the most suitable plugin for the current context by executing the

9Programmable Middleware for the Dynamic Deployment
of Services and Protocols in Ad Hoc Networks

election algorithm. The plugin election is based on a deterministic selection process,
where each characteristic of a plugin has a comparable identifier. The election
mechanism uses a simple cost algorithm based on weights assigned to selection
criteria. Each criterion is assigned a mathematical weight based on its importance to
the election process, while each plugin characteristic has a unique identifier, ordered
from 0 to 10. The election algorithm used is given by equation (1). It is possible to
adjust the criteria weights, based on the current context and on constraints the nodes
might impose. The plugins characteristics that are considered during the election
process are the CPU utilization, memory size required and the plugin size.

() ()∑
=

×=
n

i
ii xAwxf

1

, x is the specific plugin

where:, wi []1,0∈ , ∑ = 1
i

w and Ai []],1[,10,0 ni ∈∀∈

Following the plugin election process, it is required to distribute the elected
plugin by requesting the nodes that possess it to distribute it to their immediate
neighbors that don’t have it. This technique minimizes the network traffic and
convergence time to achieve complete flooding of a particular plugin. The actual
plugin transfer is achieved using the Trivial FTP (TFTP) protocol. Compared to FTP,
the former is less complex and demanding on network resources. TFTP has no user
authentication, which spares time and traffic in a trusted environment, but most
importantly it uses only one connection contrary to FTP that required two connections,
one for control and one for data traffic.

A key aspect of plugin flooding is that a terminode should not receive the same
plugin twice. This is deliberately prevented as the plugin size might be considerable
and prove costly to the network. In order to prevent this from happening, the
transmitting node will have to first probe its peer if it has already acquired the plugin
and then only transmit it. The plugin distribution includes apart from the actual plugin
transfer, the transmission of the plugin characteristics.

4. Platform Evaluation

4.1 Testbed Experimentation

For the purpose of evaluating the programmable platform in a real ad hoc network,
we deployed the former in our ad hoc testbed. This consists of three laptops and one
personal digital assistant, running the Linux Debian operating system. The ad hoc
testbed supports the 802.11b wireless standard for all the required communication
between nodes. Packet routing is achieved using the AODV-UU, user space routing
daemon by Uppsala University, which implements the Ad hoc On-Demand Distance
Vector (AODV) routing protocol [13]. In order to create custom network topologies
without having to place the nodes far from each other, we used a MAC address based
filtering tool to simulate an “out of reach” situation. In this case, nodes discard
incoming packets from predefined source MAC addresses, as for example AODV

(1)

10 Session One Network Management

“hello” messages from specific nodes [13]. Several network topologies were used and
test cases were carried out in order to validate and evaluate the ad hoc programmable
platform. The scenarios implemented were different static network topologies and a
case where a link between two nodes breaks and AODV has to construct an
alternative route on-the-fly – this verified that the ad hoc routing protocol worked as
expected.

The initial measurement taken was the response time and traffic generated by a
single XML-RPC method call. The selected method was the “advertisePlugin”, which
is invoked by the Cluster Head to the Terminodes for requesting advertisements for
candidate plugins. The selected method call carries as argument the “advertisePlugin”
string and has no return type. The traffic generated for that method was measured to
be 1211 bytes and the response time was 6.5 milliseconds when the call was made
between two laptops and 23 ms when it was made between a laptop and the PDA. As
expected, the PDA exhibits a much slower processing time and therefore the parsing
of XML messages needs considerable more time than on the laptops. The latter
appears to be around 3.5 times faster.

The next set of measurements that were recorded, involved the complete system
run for different topologies of the ad hoc network. For the first test case, the topology
shown in Fig. 2 was realized. The CH in this case is manually selected to be node
“ares”, as it is powerful and is a single hop away from every other node. During the
plugin advertisement procedure, all four nodes will have a number of plugins to
advertise but the plugin with the highest identifier is deliberately selected to be the
one that belongs to node “zeus”. The elected plugin is a simple echo server and its
size is 1450 bytes. For a complete system execution as described in 3.3, the
measurements taken were the overall time and the traffic generated by AODV, the
interaction between Terminodes and the Cluster head modules and the transfer of the
elected plugin from the owner to all other member nodes within the cluster. The time
taken for a complete system operation within the considered cluster, from the request
for plugin election to the activation of the elected plugin, was measured to be 2.56
secs over a number of samples. If “ares” had the plugin, which is a more central node,
the convergence time is 2.40 secs. During this period, the overall AODV traffic
observed across the whole network was 528 bytes, which mainly includes “hello”
messages. The traffic when the Cluster Head module is involved includes the request
for plugin election (1084 bytes), which initiates the system, the advertisements of
candidate plugins by the Terminodes module (3475 bytes), the request to the elected
plugin owner to distribute the plugin (1095 bytes) and the plugin installation
confirmation by the Terminode modules (2096 bytes). Overall, the Cluster Head
related traffic was recorded to be 7750 bytes. On the other hand, there is the
Terminode related traffic, which includes the communication between member nodes
only. This was recorded to be 15114 bytes and includes the flooding messages for
requesting the plugin advertisement (3633 bytes), the method for querying an
adjacent Terminode module if it has the plugin under distribution (4392 bytes), the
distribution of the elected plugin and its characteristics (3429 bytes) and the flooding
messages for requesting the plugin activation (3660 bytes). Finally, there is the plugin
distribution traffic, caused by the TFTP file transfers. In the specific test case, three

11Programmable Middleware for the Dynamic Deployment
of Services and Protocols in Ad Hoc Networks

plugin transfers are required and the overall traffic generated was measured to be
5253 bytes.

zeuszeus aresares

apolloapollo

poseidonposeidon

zeuszeus aresares

apolloapollo

poseidonposeidon

Figure 2: Test Case 1 TestBed configuration

For the second test case, the requirement was to examine the ability of the
programmable platform to follow the sudden changes in the topology of the ad hoc
network. The original topology of this scenario was the same as the previous case, but
with the difference this time that during the plugin election process, the link between
nodes “ares” and “Poseidon” was deliberately broken to form a “chain-like” topology.
That would mean that all packets from “ares” to “poseidon” and vice versa would
have to be routed via “apollo”. It was found that this function is well supported by the
AODV-UU daemon and was indeed effortless. The same holds for the programmable
platform, which successfully completed its operation regardless of the sudden
topology change. The time taken for a complete system run in this case is 2.71 sec,
which is 150 ms longer than the first case. This was expected as AODV had to
discover a new route and any packets going from “Poseidon” to the CH and vice
versa would have to do an extra hop. Due to the fact that the AODV daemon had to
construct a new route, the AODV traffic was also increased to 576 bytes. On the other
hand, the Cluster Head related traffic remained the same (7750 bytes), as it is mainly
dependent on the number of nodes in the network and the ones owning plugins. The
Terminode related traffic however, which is heavily depended on the network
topology and the number of neighbors of every node, was reduced to 14016 bytes.
This is because the traffic caused by the message flooding in this chain-like topology,
had one strict route. Finally, the plugin distribution traffic remained the same (5253
bytes), as again there is one plugin owner (zeus).

Key results to note from the experiments are the following. First, the overall
amount of control traffic required is in the order of few Kbs per node and it is actually
more for the terminodes than for the cluster head. In the next section we validate
through simulation that the control traffic per node does not increase with the number
of nodes, which guarantees scalability. In addition, the transmission traffic required
for a 1.45 Kb plugin is 3.43 Kb because its characteristics are also flooded to the
adjacent node through an RPC. The plugin size has obviously no impact on the
control traffic, but for a 64 Kb plugin, which is a typical size of applications in Java
Microedition, the transmission traffic becomes 66 Kb.

Another important result is that for a network of 4 nodes, the overall convergence

12 Session One Network Management

time is 2.56 secs with two hops and 2.71 secs with three hops of uploading a 1.45 Kb
plugin. Increasing the plugin size to 64 Kb brings those times close to 3.5 and 4 secs
respectively, mainly because of the additional transmission time. This means that the
average latency per node is approximately 1 sec for a 64 Kb plugin in a 4 node
network. In the next section we validate through simulation that this value increases
almost linearly with the number of nodes, which again guarantees controlled
convergence times. For example, for a network of 20 nodes the average latency is 2
secs per node, which means 40 secs overall convergence time (Fig. 4).

4.2 Simulation

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600 700
Increasing Number of Nodes

Av
g.

 C
on

tr
ol

 C
os

t p
er

 N
od

e
(b

yt
es

)

Plugin related Cost

Clustering Related
Cost

Figure 3: Average control traffic incurred per node as part of clustering and plugin

deployment processes as a function of increasing node count.

While testbed experimentation gave us an initial idea about the relative performance,
traffic overhead and convergence time of our system, as well as values for key
elemental interactions, simulation allows us to experiment with much larger node
populations and topologies and assess in much more detail the performance of our
approach. The simulation works attempts to investigate the performance of our plugin
election process in terms of the average control traffic incurred per node and the
overall convergence time involved for the complete plugin deployment process. We
performed our simulations using the GloMoSim simulation package in which we
implemented the associativity-based CH election heuristic of [2] – note that in the
testbed experiments we hard-assigned the CH role - and the already described plugin
election process. The transmission range of each node is set to 100 m, and the link
capacity takes a value of 2 Mbps (worst-case scenario). The simulations were
performed for a stationary MANET and the simulation parameters are similar to those
of [2], with key values used as measured in the testbed experiments. AODV was used
in the simulations. Due to space limitations, we showed only the assessment of the
scalability of our plugin election scheme in terms of increasing node-count only in
this paper.

13Programmable Middleware for the Dynamic Deployment
of Services and Protocols in Ad Hoc Networks

0
2
4
6
8

10
12
14
16
18

0 100 200 300 400 500 600 700
Increasing Number of Nodes

A
vg

. C
on

ve
rg

en
ce

 ti
m

e
pe

r
no

de
 (s

ec
on

ds
)

Figure 4: Average convergence time involved for the plugin deployment process as a

function of increasing node count.

In order to assess the effect of increasing network size on the clustering and plugin
election schemes, the terrain-area is also increased with an increase in the number of
nodes, so that the average node-density is kept constant in the first set of simulations.
The number of nodes in this case is varied from 25, 100, 225, 400 and 625. The
terrain-area size is varied so that the average node degree remains the same and
accordingly 200X200 m2, 400X400 m2, 600X600 m2, 800X800 m2 and 1000X1000
m2 are selected for each scenario. Fig.3 shows the average control traffic incurred per
node during the clustering as well as plugin election processes as a function of
increasing number of nodes. The control traffic of CH election process is actually the
traffic involved due to HELLO packet transmissions, and the control traffic of our
plugin election process is the total traffic involved for the whole plugin deployment
process. As it can be inferred from Fig. 3, the average control traffic per node does
not depend on the increasing node count, and hence both the clustering and plugin
election schemes are scalable. Fig. 4 depicts the average convergence time involved
per node for a complete plugin deployment process as a function of increasing nodes.
The convergence time involved is actually the time the plugin process takes from the
point when a terminode receives the plugin election trigger message from the CH
until it finally receives the plugin activation message. As it can be seen from Fig. 4,
the convergence time increases almost linearly with the node count. This is somehow
expected as we assume that the number of plugin “owner” nodes also increases
proportionally with network size. Although these nodes are randomly distributed, they
appear to be reasonably well distributed as the network grows in size, avoiding
“empty” areas, hence the almost linear convergence time increase.

5. Conclusions and Future Work

In this paper we presented a programmable middleware platform that can align the
capabilities of the nodes of an ad hoc network through the use of loadable plugins.
This is crucial in a heterogeneous environment if a common communication
infrastructure is to be deployed that could achieve, for instance, quality of service

14 Session One Network Management

based communication across the ad hoc network. For the platform communication we
used the lightweight XML-RPC message-oriented protocol, where relevant
management information is encoded in XML and transferred over HTTP. The
platform was implemented in the Java 2 Microedition programming language, which
can cater for small to medium devices, such as PDAs.

Our initial performance evaluation seems encouraging, with a few seconds
required for convergence in a small network and linear increase with node count. In
addition, high node density does not seem to have adverse effects until a threshold,
above which it results in increased 802.11 collisions and performance deterioration,
which is expected. Given the fact that we have adopted Java-based plugins for
platform independence and XML-RPC for communication due to the easy integration
with XML-formatted data, the overall performance seems encouraging.

We have adopted a centralized management approach, with cluster heads
administering geographical clusters and one of them nominated as network head,
administering the whole network. The approach could be centralized, with the
network head taking all decisions, or partly distributed, with management decisions
reached through collaboration among cluster heads. For the time being, the platform
focuses in a single cluster only, with the cluster head being also the network head.
Cluster-to-cluster interaction will be investigated in the future.

Furthermore, given the peer to peer nature of the platform, it is valid to state that
the whole ad hoc network could be in risk if a loadable plugin was an engineered
computer virus. In this case, a secure mechanism for verifying the advertised plugins
would be a requirement in untrusted networks. Last but not least, the plugin election
and distribution process could benefit from additional contextual information,
gathered from the terminodes and their behavior in the mobile ad hoc network. We
plan to work towards this direction in the future.

ACKNOWLEDGMENT

The work presented in this paper was carried out in the context of the Programmable
Ad hoc Networks (PAN) EPSRC project – GR/S02129/01.

References

[1] S. Sivavakeesar, and G. Pavlou, Stable clustering through mobility prediction for
large-scale multihop intelligent ad hoc networks, Proc. of the Wireless
Communications and Networking Conference (WCNC 2004), vol. 3, Mar. 2004,
pp. 1488 – 1493.

[2] S. Sivavakeesar, and G. Pavlou, Associativity-Based Stable Cluster Formation in
Mobile Ad Hoc Networks, to appear in the proc. of the IEEE Consumer
Communications & Networking Conference (CCNC’ 2005), Nevada, USA, Jan.
2005.

[3] G. Pavlou, P. Flegkas, S. Gouveris, A. Liotta, On Management Technologies and
the Potential of Web Services, IEEE Communications, special issue on XML-
based Management of Networks and Services, Vol. 42, No. 7, pp. 58-66, IEEE,
July 2004.

15Programmable Middleware for the Dynamic Deployment
of Services and Protocols in Ad Hoc Networks

[4] D. Tennenhouse, J. Smith, D. Sincoskie, D. Wetherall, G. Minden, A Survey of
Active Network Research, IEEE Communications, Vol. 35, No. 1, pp. 80-86,
January 1997.

[5] C. Tschudin, H. Lundgren, H. Gulbrandsen, Active Routing for Ad hoc Networks,
IEEE Communications, Vol. 38, No. 4, April 2000.

[6] C. Bohoris, A. Liotta, G. Pavlou, Evaluation of Constrained Mobility for
Programmability in Network Management, Proc. of the 11th IEEE/IFIP Int.
Workshop on Distributed Systems: Operations and Management (DSOM’00),
Austin, Texas, USA, A. Ambler, pp. 243-257, Springer, December 2000.

[7] G. Goldszmidt, Y. Yemini, Evaluating Management Decisions via Delegation,
Proc. of IEEE Integrated Network Management III, pp. 247-257, Elsevier, 1993.

[8] A. Lazar, Programming Telecommunication Networks, IEEE Network, Vol. 11,
No. 5, pp. 8-18, Sep.-Oct. 1997.

[9] J. Biswas, A. Lazar, J.-F. Huard, K. Lim, S. Mahjoub, L.-F. Pau, M. Suzuki, S.
Torstensson, W. Wang, S. Weinstein, The IEEE P1520 Standards Initiative for
Programmable Network Interfaces, IEEE Communications, Vol. 36, No. 10,
October 1998.

[10] O. Angin, A.T. Campbell, M. Kounavis, R. Liao, The Mobiware Toolkit:
Programmable Support for Adaptive Mobile Networking, IEEE Personal
Communications, Vol. 5, No. 4, August 1998.

[11] J.E. van der Merwe, S. Rooney, I. Leslie, S. Crosby, The Tempest: A Practical
Framework for Network Programmability, IEEE Network, Vol. 12, No. 3, May-
June 1998.

[12] D. Putzolu, S. Bakshi, S. Yadav, R. Yavatkar, The Phoenix Framework: A
Practical Architecture for Programmable Networks, IEEE Communications, Vol.
38, No. 3, March 2000.

[13] C. E. Perkins, E. M. Belding-Royer, and S.R. Das, Ad hoc On-Demand Distance
Vector (AODV) Routing, draft-ietf-manet-aodv-13.txt.

[14] D.Mandato, E.Kovacs, F.Hohl, and H.A-Alikhani, CAMP: A context-aware
mobile portal, IEEE Communications Magazine, no. 1, Jan. 2002, pp. 90-97.

[15] B.N.Schilit, D.M.Hilbert, and J.Trevor, “Context-aware communication”, IEEE
Wireless Communications, no. 5, Oct. 2002, pp. 46-54.

[16] XML-RPC specifications web site, http://www.xmlrpc.com/spec.

16 Session One Network Management

