
A Development Framework for Network

Management Systems based on

Reconfigurable Components

E.Jaén, J.Serrat G.Pavlou

Universitat Politècnica de Catalunya University of Surrey

Barcelona Guildford, Surrey

Spain United Kingdom

enric@estos.upc.es, serrat@tsc.upc.es G.Pavlou@eim.surrey.ac.uk

Abstract

This contribution presents a prototype of network management framework based

on distributed plug-in component technology. The main innovative aspect is the

exhibited capacity to facilitate network management applications to be

reconfigured at runtime by changing the communication channels used by the

constituent components to communicate. This adds great flexibility because the

system functionality is not "closed" at the system design time. The ensemble

constitutes a development framework for component-based management

applications. An scenario is presented to demonstrate the system in action.

Keywords

Component framework, dynamic management system, events.

1. Introduction

Software applications in any topic area are typically conceived as monolithic black

boxes. This means that they are glued parts of code with internal dependencies that

cannot be easily separated, observed or changed. This is a serious drawback with

respect to code reusability in other applications, modification of its functionality

and potential integration with other vendor products. The idea of component-based

applications tries to solve the afore-mentioned problems. Thus it tries to open those

internal dependencies, yielding modular architectures with public interfaces

between constituent modules [1]. Architectures conceived in this way are easily

reusable, extensible and compatible with other implementations by replacing

pieces of code or adding new ones.

 The contribution of this paper is in the area of integration frameworks. Other

topics in components where significant contributions have been made include

component description languages, repositories to store components, composition

tools and composition models. By using the presented framework, the application

administrator can at runtime insert or extract components and dynamically define

the links between components without stopping the execution. This can be done

because components are conceived as groups of CORBA objects with reflection

capability, i.e. they are able to make public the events that can emit/receive. For

0-7803-6719-7/01/$10.00 (c) 2001 IEEE

example, a routing algorithm component could be changed with a more optimum

one or a component with a poor performance could be duplicated or relocated.

2. The Integration Model

The component framework described hereafter is an enhancement of the approach

initially conceived Flowthru project [2]. Figure 1 shows a high level functional

architecture. The elements with triangular shape represent the components.

Components can be classified as application components and support components

(application-independent). Support components capture events and perform actions

such as encrypting event payload, monitoring, compressing data, filtering events

and so on. The elements with elliptic shape are framework services. The novelty of

this contribution is the Integration service.

Figure 1: Component framework architecture

In this framework components are CORBA objects. Components can be classified

as application components and support components (application-independent).

Support components capture events and perform actions such as encrypting event

payload, monitoring, compressing data, filtering events and so on.

 The Naming Service is a standard CORBA service used to store component

references in a directory-based structure so that they can be transparently located

under the same context.

 The Administrator allows the user (application administrator) to choose the

connections that will be established between components. Besides, it lists all the

components currently in the system, it shows which events produces/consumes

each component, and allows the user to create the event channels.

 The Integrator service maintains at runtime the channels established between

the components. It receives requests to add/remove components, and

subscribe/unsubscribe event channels. Figure 2 depicts the process of inserting a

new component in an application.

NS INT ADMIN

User
Viewpoint

Component
Framework

AC AC AC Application
user

Application
administrator

AC: Application component
NS: Naming Service
INT: Integrator Service
ADMIN: Administrator Service

events

Session Eight Posters302 302

Figure 2: Steps involved in the insertion of a new component in a system

In step 1, the administrator launches the component, which is wrapped inside a

CORBA server. In step 2, the component is registered automatically; the

component contacts the Naming Service and registers itself under the /component

context. In step 3, the administrator connects manually the component. The

establishment of a connection means to create an event channel for each event

consumed/produced. Finally, in step 4 the Integrator creates the connections by

invoking directly to the components.

3. The Component model

The component model in this framework supports event introspection. An event is

modelled as a packet with a header and a body. The header identifies the type of

event. The body contains the business information. The body is implemented as a

sequence of CORBA type Any, containing the business information.

From a client point of view, a component behaves like a CORBA object. It

contains three types of CORBA objects; an object for each event channel

consumed an object for each type of event produced and finally an object for the

introspection interface. See Figure 3.

FW: Framework code

U: User-writen code

FW

FW

incoming event 1

incoming event 2

outgoing event 1

outgoing event 2

introspection
interface

UFW

UFW

Sink

Sink

Source

Source
Base

FW U

NS

ADMIN

INT

current system a new component is

integrated

new system

2

1

3

4

Application
administrator

Figure 3: Component Architecture

Development Framework for Network Management Systems 303

4. Use Case: ATM configuration system

To test the framework, a prototype of a simulated ATM configuration management

application was developed. The application is able to detect new nodes, store them

in a repository, establish connections and display them in a GUI. It is decomposed

in the following components: Node, Network, Planner, Administrator GUI,

Operator GUI, a component collector of events and a generic listener of events. See

Figure 4. The operator is able to add new components on line, modify its

connections and to replace existing components. See Figure 4. This prototype was

implemented using free CORBA platforms [3].

Figure 4. Prototype showing how events can be

redirected. All connections are dynamic.

Conclusions

The proposed initial framework has worked fine in applications conceived to stress

its capabilities, although improvements are currently under way. For example, it

will use the standard CORBA Event Service as the communication service to

isolate component crashes, there will be predefined configuration of component

connections, a new component installation service will be developed and additional

middleware services such as Transaction or Persistence Services will be supported.

We also plan to redefine the component model to be fully compliant with the

standard CORBA Component Model [4].

Acknowledgement

E.Jaén wishes to thank Dr. Johan Zuidweg for his support in the research that has

been the base for this paper.

References

[1] SIGS Component Strategies, February 1999

[2] Flowthru ACTS 335 project, 1998-2000.

[3] MICO and JacORB, freeware CORBA implementation

[4] Corba Component Model, OMG:orbos/ccm-99-02-05.pdf

Node1

Planner

GUICollector

Panel operator Network

Node2

NAPs

NAPs

NAPs

NAPs

SNCs

trigger

trigger

old event channels

new event channels

NAPs SNCs

Session Eight Posters304 304

