
Name Enhanced SDN Framework for Service
Function Chaining of Elastic Network Functions

Sameer G Kulkarni∗, Mayutan Arumaithurai∗, Argyrious Tasiopoulos‡, Yiaonis Psaras‡,
K.K. Ramakrishnan†, Xiaoming Fu∗, George Pavlou‡

∗University of Göttingen, Germany, ‡University College London, †University of California, Riverside.

Abstract—Middleboxes have become an integral part of Inter-
net infrastructure, providing additional flow processing for policy
control, security, and performance optimization. Network Func-
tion Virtualisation (NFV) proposes the deployment of software-
based middleboxes on top of commercial off-the-shelf (COTS),
enabling the dynamic adjustment of Virtual Network Functions
(VNFs), both in terms of instance numbers and computational
power. The performance of Data center and Enterprise networks
depend strongly on efficient scaling of VNFs and the traffic load
balance across VNF instances. To this end, we present Name
enhanced SDN framework for service function chaining of elastic
Network functions (NSN) that extends the Function-Centric
Service Chaining (FCSC) with load balancing functionalities to
achieve efficient network utilization while reducing the switch
flow rules by 2-4x compared to traditional SDN approaches.

I. INTRODUCTION

Software Defined Networking (SDN) enables to realize
the policy enforcement by providing greater flexibility and
control in steering the packets through desired function chain.
With logically centralized controller, it is easier to enforce
heterogeneous policies for different flows and to steer the
traffic across the network. In addition, with the global view
of network topology, it is easier to monitor the resource
utilization. Network Function Virtualization (NFV) has caused
the paradigm shift towards deploying the soft middleboxes that
provide flexible realization of network services with greater
cost optimization [1]. SDN and NFV greatly augment to
provide flexible and dynamic software-based network environ-
ment. On the other hand, Information-Centric Networks (ICN)
and Named Data Networking (NDN) architectures introduce
the naming layer to the network architecture that decouple the
content/name from the location. This offers greater flexibility
in routing the flows based on service types, without actually
knowing the exact location in the network.

Traffic dynamics often trigger for reallocation and reconfig-
uration of network resources. In case of high demands, some
resources end up being over-utilized, resulting into higher
latency and SLA degradation, while on other occasions, end
up being underutilized. In such circumstances, in order to
meet the performance and energy objectives, the NF instances
(NFIs) need to be dynamically instantiated or decommissioned
or even relocated/migrated. However, to make it happen,
several key decisions need to be made in terms of knowing
when to instantiate, decommission or migrate the instance,
which network instances need to be scaled, where in the
network to place the instances and how to redistribute the

Fig. 1: NSN Architecture

load among the available instances. Several recent works [1],
[2], [3] have tried to address these aspects within the hood of
traditional or SDN framework.

FCSC [4] exploits the benefits of NDN in combination
with SDN to provide a more flexible, scalable and reliable
framework to realize service function chaining. However, it
falls short of incorporating a reliable mechanism for applying
load balancing over NFIs. Load balancing is fundamental
to ensure efficient utilization of resources and to meet the
SLA requirements. Herein, we present Name enhanced SDN
framework for service function chaining of elastic Network
functions(NSN) that exploits named service instances and
compliments the SDN framework by providing the capabil-
ities of efficient load balancing and elastic scaling of VNF’s
via service instantiation, consolidation, while supporting flow
redirections for achieving higher VNF utilization.

II. RELATED WORK

Slick [1] provides a programming model abstraction, where
the SDN controller employs heuristic based approaches for
estimating the dynamic placement, steering and consolidation
of VNFs. However, load balancing is not explicitly addressed
and the routing does not take into consideration the network
load upon the load steering decisions. E2 [2] presents a
NFV scheduling framework that supports affinity based NF
placement while trying to minimize the traffic across switches
as well as deploying dynamic scaling of NF instances. SIM-
PLE [3] primarily addresses the SDN based traffic steering
approach that tries to optimize on the total rules. It relies on
the ILP solver to provide online load balancing.

III. NSN ENHANCED ARCHITECTURE

We present the high level architecture and design of NSN,
that incorporates name based network function instances and
enhances SDN’s capability to handle placement, routing and
flow redirections.

A. Name based Routing

NSN enhances FCSC’s name based routing mechanism to
perform NFI based routing, wherein all the NFIs are uniquely
identified by a name. Policy enforcement on the flows is
performed by the controller by encoding the names of the
sequence of network functions that are required for the flow
to pass through. This aspect is essentially the concept of
Information-Centric Networking, wherein the function that a
flow requests is decoupled from the location where this func-
tion/service is going to be executed. That is, packets indicate
through their headers the service function they require and
the network is responsible for routing those packets towards
the right location. This notion of location-independence can
support real-time flow steering and redirection to dynamically
instantiated/re-located services out of the box. Once a packet
goes through a NF and the corresponding service is executed,
the header is modified to remove this service from the chain
of required services.

A key difference compared to current IP based SDN
solutions is that the intermediate switches do not need to
maintain per flow forwarding information or similar fine-
grained forwarding rules, but only need to store forwarding
information to reach the named instances. The switches that
only route packets at specific service instances, have to keep
a single forwarding rule for each service instance. Thus, the
state maintained at intermediate routers is proportional to the
number of instances and not to the number of flows. Moreover,
these rules can be set in a proactive manner as soon as an
NFI is instantiated, removed or re-located. Only the ingress
switches and the edge switches connected to NFI that are
servicing the flow, keep a per flow state forwarding table
to ensure that the right labels (i.e., the next hops service
instances) are placed on the flow’s header.

Another advantage compared to existing IP based solutions
is that when an NFI is removed or re-located, in the case
of NSN, only the forwarding entries to these instances need
to be changed, whereas in the case of current solutions, all
entries pertaining to flows that are being serviced by this NFI
needs to be modified. Similarly, in case of flow redirection,
the proposed scheme provides a notion of atomic rule update
as it needs one rule update. NFI node just needs to change the
NFI tag to another instance.

B. VNF Placement and Elastic Scaling

NSN supports placement, instantiation, removal and reloca-
tion of instances to better support the dynamic requirements
of flows. The NSN architecture can facilitate for different
heuristic based placement mechanisms. NSN enables SDN
framework to make quicker heuristic based placement de-
cisions, and allows for finer and quicker course corrections
to redistribute the load by either redirecting flows via other
instances and/or by instantiating, removing or relocating the
NFIs, and thereby enables to overcome the disadvantages
of making such heuristic based decisions instead of time
consuming and complex ILP [3] decisions. SDN controller can
periodically monitor the utilization of the NFIs and network

5 10 25 50 75 100
0

200

400

600

800

1,000

1,200

1,400

53 86 112 140 151 167
55 102

183
313 371 407

109
231

408

677

1,035

1,264

No. of Flows

#
F
lo
w

R
u
le
s

FCSC NSN S-SDN

(a) Total Switch rules for flows.

Svc-A Svc-B Svc-C
0

20

40

60

80

100

Network Functions

N
o
r
m
a
li
z
e
d
L
o
a
d

FCSC NSN S-SDN

(b) Load across different NFs.

Fig. 2: Evaluation Results indicating Flow rule optimization
and load balancing characteristics.

link utilization, that can assist in identifying the optimal
placement of NFI’s that need to be dynamically instantiated.
One such approach is to compute the optimal location by
accounting available resources with greater affinity for the
flows. On the same lines, the under-utilized NF instances
can be decommissioned. NSN estimates the load on each
instance based on the gathered link statistics, flows in the
system, and the explicit notifications from instances. Based
on the load thresholds, it can then dynamically instantiate
and decommission specific network instances to ensure the
instance utilization rates are kept within the optimal levels.

IV. IMPLEMENTATION AND EVALUATION

We implemented NSN, as set of modules on top of POX
SDN contoller in Python (around 2500 lines of code). We use
the Open vSwitch (2.4.0) for SDN switches and implemented
custom network modules in linux using python scapy utility.

We evaluate NSN using the Mininet network emulator and
use the data center tree topology. As in [3], each flow has a
policy chain of 3 distinct NFs that originate and terminate at
random nodes. Key focus of our evaluation is to measure and
quantify the benefits in terms of overall number of flow rules
required for steering and load across active network instances.
We compare NSN with Standard SDN (S-SDN) that employs
IP 5-tuple based rule setting and with FCSC that employs rule
setting purely based on the named network functions.

Figure 2(a) depicts the total number of flow rules installed
across all switches in the network for different number of
flows. Figure 2(b) indicates the normalized average load
observed across all the active instances of services A, B and
C. We can see that NSN provides significant reduction in the
total number of rules stored at switches compared to S-SDN.
Moreover, NSN ensures load balancing capability identical to
that of the S-SDN solution.

ACKNOWLEDGEMENT

This work was supported by EU FP7 Marie Curie Actions
CleanSky ITN project Grant No. 607584, and NICT EU-
JAPAN GreenICN project Grant No. 608518.

REFERENCES
[1] B. Anwer, T. Benson, N. Feamster et al., “Programming slick network

functions,” in ACM SOSR. ACM, 2015.
[2] S. Palkar, C. Lan, S. Han et al., “E2: A framework for nfv applications,”

in ACM SOSP, 2015.
[3] Z. A. Qazi, C.-C. Tu, L. Chiang et al., “Simple-fying middlebox policy

enforcement using sdn,” in ACM SIGCOMM, 2013.
[4] M. Arumaithurai, J. Chen, E. Monticelli et al., “Exploiting icn for flexible

management of software-defined networks,” in ACM ICN, 2014.

