
A Self-adaptable Agent System for Efficient
Information Gathering

Antonio Liotta1, George Pavlou1, Graham Knight2

1 CCSR, University of Surrey, Guildford, GU2 7XH, UK
{A.Liotta, G.Pavlou}@eim.surrey.ac.uk

2 Computer Science Department, University College London, London WC1 6BT, UK
G.Knight@cs.ucl.ac.uk

Abstract. As networks become all-pervasive the importance of efficient
information gathering for purposes such as monitoring, fault diagnosis, and
performance evaluation can only increase. Extracting information out of large-
scale, dynamic networked systems is becoming increasingly difficult. Distributed
monitoring systems based on static object technologies such as CORBA and
Java-RMI can cope with scalability problems only to a limited extent. They are
not well suited to monitoring systems that are both very large and highly dynamic
because the monitoring logic, although distributed, is statically pre-determined at
design time. The paper presents an active distributed monitoring system based on
mobile agents. Agents act as area managers which are not bound to any particular
network node and can sense the network, estimate better locations, and migrate in
order to pursue location optimality. Simulations demonstrate the capability of this
approach to cope with large-scale systems and changing network conditions. The
limitations of our approach are also discussed in comparison to more
conventional monitoring systems. Keywords. Self-adaptable monitoring;
Scalable Information Gathering; Adaptable Information Gathering; Mobile
Agents.

1 Introduction

While the size of networked systems grows at an incredible pace, it becomes
increasingly difficult to extract information out of those systems. Networked systems
and even the networks themselves need constant monitoring and probing for the
purposes of management, particularly for fault diagnosis and performance evaluation.
For instance, network monitoring entails the collection of traffic information used for a
variety of performance management activities such as capacity planning and traffic
flow predictions, bottleneck and congestion identification, quality of service
monitoring for services based on service level agreements, etc. In this case, a key
aspect is that collection of traffic information should be supported in a timely manner,
so that reaction to performance problems is possible, and without incurring excessive
additional traffic on the managed network. In this article, we highlight the limitations
of existing solutions and propose an approach that uses the emerging paradigm of
mobile software agents.

Conventionally, information is gathered following a centralized paradigm, where
most of the intelligence is concentrated in a single management station which is in

charge of collecting and processing information. This approach has been widely
criticized for its limited responsiveness, accuracy and scalability. Typically, the system
is partitioned into smaller areas, each of which is monitored by a separate ‘area’
manager. More generally, static decentralized monitoring is realized with an n-level
hierarchy of area managers. This is a static approach because the locations of the area
managers are computed off-line and do not change after deployment. It scales better
than its centralized counterpart but still lacks the adaptability necessary to cope with
the frequently changing conditions of large-scale, dynamic networked systems.

To support such adaptation, the information gathering system needs to be able to
sense the network state, which is generally dynamic and transient, and react
appropriately. Numerous efforts have been devoted to monitoring and probing
networks according to a static decentralized approach. Very few, however, have
pursued a more dynamic approach to distributed monitoring where the area managers
can actually re-locate themselves at run time to adapt to changing conditions in the
underlying monitored system. We term this approach active distributed monitoring and
present our views on how it can be realized with Mobile Agents (MAs).

Analogous requirements to those assumed herein have been addressed using an
approach based on static co-operating agents to build a scalable network measurement
infrastructure [1]. The possible advantages of using agent mobility for network
management have been discussed extensively in the agent community and are detailed
in [2]. Some of these advantages are reduction in network traffic, increased
responsiveness, and support for disconnected computing. Furthermore, the authors
elaborate on possible applications of MAs to fault management, remote diagnostics,
configuration management and performance management.

However, most commonly, in the context of management, MAs are not exploited to
the full extent of their capabilities. In fact, the majority of examples presented in the
literature use MAs more simply as a mechanism to realize dynamic programmability of
remote elements according to the Management by Delegation (MbD) concept,
discussed in [3]. We have carried out some work in that direction, identifying key
performance issues and studying a possible implementation of MbD based on MAs
which we have termed constrained agent mobility [4]. We have then shown the
benefits (in terms of added flexibility and dynamic re-programmability) of constrained
mobility in the particular context of network performance monitoring by comparing it
with conventional approaches based on static distributed object technologies [5] such
as CORBA and Java-RMI.

MbD and constrained mobility may be realized with agents bound to single-hop
mobility, from manager to remote elements. What is not commonly exploited in
management is the agent multiple-hop capability. In the work presented herein we
elaborate on the benefits of agent weak mobility [6] –the ability of an agent of carrying
code and data when traveling from node to node– for adaptable distributed monitoring.
Conversely, agent strong mobility is the ability of carrying also execution state, a
property which is not believed to be suited to management applications.

Given our proposal to use MAs as area monitoring stations, a distributed algorithm
is required to compute the agent locations both initially and at run time. During the
execution of the monitoring task agents will need to sense their environment and take
actions in order to adapt to changing conditions and, by doing so, maintain location
optimality. Optimality in this case concerns the minimization of the network traffic

incurred by the agent-based monitoring system and of the latency in collecting the
necessary information.

A similar problem regarding the optimal placement of p servers in a large network
has been studied since the early seventies. This belongs to the class of p-center and p-
median problems, both NP-complete when striving for optimality [7, 8]. Approximate
polynomial algorithms, such as the lagrangian algorithm [8], have been proposed but
none of them suites the requirement of our agent system. Proposed algorithms are
centralized, requiring the network distance matrix at the main monitoring distance.
While this is less of a problem in off-line calculations for medium to long-term optimal
locations, it becomes an important problem for active distributed solutions in which
optimal locations need to be (re)-calculated by the agents themselves. In this case the
monitoring station should retain an up-to-date version of whole network topology,
which obviously is an unrealistic requirement for large-scale, dynamic networked
systems.

In this article we describe our solution to the agent location problem, evaluate its
computational characteristics, and demonstrate by computer simulation some of the
important features of the proposed agent-based distributed monitoring system. Our
algorithm relies on agents learning about the network topology through node routing-
table information which is accessed through standard management interfaces. The
monitoring system is initially deployed through a “clone and send” process starting at
the centralized network-wide station. The same algorithm is also used by the agents to
adapt to network changes through migration. Key features of this algorithm are its
distributed nature, i.e. each agent carries and runs the algorithm, and its low
computational complexity and typical computational time. We discuss the scalability of
our approach and its ability to adapt to network congestion and faults.

2 Real-time computation of the agent locations

The agent location problem consists of two phases. Initially, we need to determine what
is the appropriate number of agents for a given monitoring problem and compute the
location of each of those agents. Subsequently, upon agent deployment the agent
system needs to be able to self-regulate in order to adapt to changing conditions. This is
achieved by triggering agent migration in a controlled fashion to avoid instability due
to continuous agent migration.

In the proposed solution, the location of area managers is neither fixed nor pre-
determined at design time. Area managers are realized with mobile agents, simple
autonomous software entities that, having access to network routing information, can
adapt and roam through the network. The distributed monitoring system is deployed by
progressively partitioning the network and by populating each partition with
monitoring agents. We assume the existence of an agent system supporting weak
mobility and agent cloning –i.e. the ability of agents to create and dispatch copies, or
‘clones’, of themselves. Agents are assumed to have access to routing information
obtainable from network routers through standard network management interfaces.

2.1 Agent Deployment

The agent deployment process is illustrated Fig. 1.

The number and location of mobile agents is computed by subsequently comparing the
monitoring task parameters with routing information extracted from network routers.
Starting from the monitoring station, the list of monitored objects (MOs) is matched
against next-hop addresses and routing costs to reach those MOs from the current
location. This simple matching operation is sufficient for the agent to create a first
partitioning of the network. A number of agents equal to the number of partitions is
cloned. Each agent is assigned to a different partition and is configured to monitor the
subset of the MOs belonging to that partition. Then, each agent autonomously resumes
the “partitioning & cloning” process that ends when the number of MOs per partition
falls below a given heuristic threshold.

1 Get monitoring task specs (at the monitoring station)
2 Generate 1 MA implementing the task (set MA parameters to the values
extracted from task spec)
3 Extract list of MOs from current MA
4 For each MO extract routing info from local router
 * get next-hop node id from current MA location to MO
 * get cost to reach MO from current MA location
5 Estimate cost for current MA to monitor its MOs
6 Use cost to compute number of MAs to be cloned by MA and clone them
7 Decompose task of current MA into a suitable number of sub-tasks
8 For each current MA
 * set its task to one of the above sub-tasks
 * set its list of MOs to a disjoint subset of the total current MOs
 * estimate cost to start monitoring from current location
 * estimate cost to monitor from one neighbor location
 * IF (lowest cost is from current location)
 THEN start MA
 * ELSE {
 migrate to the cheapest location
 GOTO 3
 }

Fig. 1. Proposed agent location algorithm.

The algorithm can be further illustrated by showing the basic steps performed in the
case of the simple network depicted in Fig. 2i. Those steps are depicted in Fig 3.
Initially, the manager delegates a given task to one agent and starts it at the monitoring
station (a). By extracting routing information from the local router and matching them
with the list of MOs, this agent estimates the need for an extra agent. An agent is thus
cloned, and the original task is decomposed into two sub-tasks, including the
redistribution of the MOs between the two agents (b). Then each agent autonomously
searches its best location and migrates to it (c). The agent in location 1 is now ready to
start since it has estimated that its current location is the one with minimum cost. In
contrast, the agent in location 2 decides to share its task with another agent and clones
it (d). The decomposition/migration process starts again leading to one agent running in
node 2 and the other migrating to node 8 (e). Eventually, the agent in location 8 has
found its cheapest location and start executing (f).

It should be noted that the use of cloning results in minimal traffic around the
monitoring station. In fact, only two agents leave the station, although the resulting
number of agents is three. The cloning algorithm is executed in a distributed fashion
(on nodes 1, 2, and 8). Finally, the processing is performed in parallel among nodes at
the same level (1 and 2). This algorithm is computed dynamically in the sense that the
final agent location depends critically on the network status detected at deployment
time.

1 2

3

4

5

6

7

8

9

10

11

12

13

14

0

0 Monitoring Station Nodes Links

1 2

3

4

5

6

7

8

9

10

11

12

13

14

0

0 Monitoring Station

Network links
Monitoring path

Other Nodes

Nodes with agents

Broken link

Fig. 2. i) Sample network topology. ii) Example adaptation through agent migration following a
link failure.

2.2 Run time Agent Self-regulation

The ability of a monitoring system to adapt to network changes is a very attractive
property, especially in view of the dynamic behavior of current and future networks.
Network congestion and failures, along with mobile computing result in rapidly
changing network logical topologies.

The conventional approach is to achieve adaptability by dynamically changing the
routing tree rooted at the monitoring station. This is performed by the routing
protocols. Consequently, as a result of congestion or failures, monitoring packets get
re-routed through generally longer paths and both traffic and response times tend to
deteriorate.

1 2 3

4 5 6 7 8 9 10

0

a)

11 12 13 14

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

b)

d) e)

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

0 Monitoring Station

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

c)

f)

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

Mobile Agents during execution

Mobile Agents during Deployment/cloning

Routing distribution tree

Agents deployment path

Fig. 3. Example agent deployment process.

In active monitoring, agents keep sensing the network during their operation and can
periodically estimate the cost of alternative locations. Agent migration is triggered
when the cost reduction justifies the migration overheads. In our implementation,
agents adopt the same logic used during deployment time to sense the network and
estimate costs associated to candidate neighbor nodes.

A simple example illustrating agent self-regulation in response to a link failure is
depicted in Fig. 2ii. In this case, following a loss of connectivity between node 8 and
13, a new (longer) monitoring path is established between node 8 and node 13. As a
result, the central node for the system partition comprising nodes {8, 11, 12, 13, and
14} becomes node 14. Hence, the agent originally located in node 8 will relocate to
node 14, bringing the system back to optimality.

This adaptation strategy is based solely on local decisions. An agent knows which
nodes belong to its partition and builds cost functions based on the information
concerning those nodes, available at the local router. One can argue that the self-
reconfiguration mechanism considered as a whole might suffer as a result of this
myopic approach. On the other hand, agent myopia has the advantage of simplicity and
reduced processing overheads. What the system cannot do is to apply global
optimization strategies at run time.

Consequently, the agent system may gradually shift away from optimality if the
monitoring task is relatively long and for extreme modifications of the network state.
To provide adaptation to those situations we followed the simple approach of re-
initiating the whole deployment process. This is more expensive than just migrating a
subset of the agents because involves terminating all the agents and starting all over
again. Agent re-deployment may be triggered periodically with a period which depends
on the system dynamics. Alternatively, it could be triggered automatically by alarms or
directly by a human operator.

In practice, our simulations with realistic network topologies (see sections below)
has shown that agent re-deployment is not typically necessary because agents tends to
end up precisely in the same locations in most cases.
Therefore, trade-off design choices between agent migration and periodic re-
deployment are necessary for an efficient self-regulating system. In addition, other
simple control mechanisms will contribute to the stability of the system. For instance,
agents need to incorporate some inertial mechanism to prevent a situation in which
minor, high-frequency fluctuations in the network trigger inconsiderate agent
migration. Finally, more sophisticated control mechanisms may be considered such as
run-time cloning or new agents to respond to rapid increase in system scale. These are
not been included in the current prototype because we first tried to approach the
location problem in a simple way. Run-time cloning will require mechanisms such as
orphan control, containment of agent proliferations etc, which are out of the scope of
this paper.

3 Evaluation Methodology

The proposed agent-based monitoring system has been evaluated from different points
of view. First, the feasibility of the system depends critically on the agent deployment
(or re-deployment) time. We assessed this aspect mathematically to be able to draw

conclusions not only on the asymptotic computational complexity of the deployment
algorithm but also on typical deployment times under realistic conditions.

Having proved the feasibility of our algorithm we assesses its goodness through
simulations. A crucial point was to run the algorithm for a set of realistic network
topologies, composed of routers, links, and hosts. These have been generated using the
GT-ITM topology generator [9, 10, 11]. In particular, transit-stub topologies
resembling the Internet topology and having 16, 25, 32, 50, 64, 75, and 100 nodes
respectively, have been generated in order to assess the sensitivity of the location
algorithm to network size. For each network size, simulations have been repeated at
least 10 times over randomly generated networks characterized by identical topological
features. This was done to guarantee statistical significance of the results. Example 50-
node topologies are reported in Fig. 4. You can notice that the actual topologies are
significantly different despite other topological features such as average node degree
and network diameter are comparable.

Fig. 4. Example 50-node randomly generated network topologies.

In order to simulate IP network and protocol behavior we have adopted the NS-2
simulator from U.C. Berkeley/LBNL [12] and extended it with Mobile Agent
capabilities. Agent migration and cloning have been implemented along with the actual
agent location algorithm, which is incorporated in each agent. This algorithm has been
optimized to minimize the total incurred monitoring traffic. Total hop-distance and
maximum weighted distances have been measured for increasing “agents to number of
monitored objects” ratios. Those metrics are directly related to the total traffic incurred
by the monitoring system and to its response time.

An important parameter we measured was the distance from optimality. To assess
how far from optimality our agents ended up we computed the agent locations using
three different algorithms: 1) the proposed algorithm; 2) the lagrangian algorithm [8];
and 3) a random location. The lagrangian algorithm is provably near-optimal; hence, by
achieving smaller traffic and response time than the ones obtained with it we proved
near-optimality of our algorithm. The lagrangian algorithm was computed using the
software package SITATION [8]. We also generated the agent location randomly to
emulate the worse possible agent distribution.

An important feature of distributed monitoring systems is their ability to scale better
than their centralized counterparts. To quantify the potential benefits we have measured
traffic and response time for increasing values of polling rate, number of monitored
nodes, network diameter, and number of agents. Due to lack of space though we report
only the first case.

Finally, we started studying the self-reconfigurability of our agent system by
simulating various conditions in which link failures led to increased traffic and
response time. We deployed the agent system before the failures; then generated link
failures at random locations; assessed the costs associated to agent migration; and
finally measured traffic and response time after re-configuration. We repeated the same
experiment several times for statistical significance.

4 Adaptation through re-deployment

4.1 Agent Deployment Timescale

The agent location is actually computed during agent deployment. Hence, the
algorithmic asymptotic complexity can be estimated by looking at the predominant
factors involved from start up until all agents are deployed.

Steps 1-2 of Fig. 1 are performed at the monitoring station, at start up time. Their
predominant factor is the cloning time, CLONtime. In contrast, steps 3-8 may be
repeated at subsequent levels of the routing distribution tree (rooted at the monitoring
station). They will be repeated at most R(u) times, whereby R(u) is the network radius.
Agents running at the same level of the distribution tree, execute independently from
each other, in separate physical locations. Hence the computational complexity of the
location algorithm can be determined by considering the part that is inherently
sequential. Therefore, the complexity is R(u) times the complexity of steps 3-8.

Upon arriving at a node, an agent needs to be de-serialized and instantiated, before
executing from step 3. This operation takes a constant time, DESERILtime. Steps 3-4
require a number of iterations equal, at most, to the total number of monitored nodes.
The dominant cost for each iteration is given by the look-up operation to the routing
table to extract the next_hop and the cost values. Thus, the total contribution of steps 3-
4 is c*O(N), where c accounts for one look-up time. Step 5 involves a number of
iterations which, in the worst case, is equal to the maximum node degree, δmax that in
typical networks is significantly smaller than the number of nodes and, typically, does
not increase with N. The iterations of steps 6-8 are actually performed as part of steps 5
and in the worst case involve the process of cloning and configuring δmax new agents.
Cloning will take a constant time, CLONtime; the reassignment of the monitored nodes
takes a constant time too because it reuses information initially processed during Steps
3-4. Finally, each new agent will require a serialization time, SERIALtime before being
sent to its destination. The latter will add a forwarding delay, FORWtime and a
transmission time, TRANSMtime.

Therefore the agent deployment time, DEPLtime that actually coincides with the time
to compute the agent location algorithm, can be expressed as: DEPLtime = {DESERILtime

+ c*O(N) + δmax * [CLONtime + SERIALtime] + TRANSMtime + FORWtime}*O(R(u)) = c1
*O(N * R(u)) + c2 * O(R(u)) ∝ O(N*R(u)).

In practice, c1 is of the order of at most 10E-6 seconds, since the current technology
allows for a number of look-up operations of at least 10E6 per second. c2 is in the order
of seconds since with current mobile agent platforms [TRANSMtime + FORWtime] is
typically in the order of 10E-3 to 10E-1 seconds and [DESERILtime+ CLONtime+
SERIALtime] is in the order of seconds or fraction of seconds [5]. Therefore, if N <<
10E6 then [c*O(N)] << {DESERILtime +δmax *[CLONtime + SERIALtime] + TRANSMtime +

FORWtime} and, consequently, DEPLtime ≈ c2 * O(R(u)). In this case the deployment
term will predominate over the computational one and DEPLtime will be in the order of
seconds times O(R(u)).

4.2 Distance from Optimality

The distance from optimality of the proposed location algorithm can be evaluated by
observing the plots of Fig. 5. The total hop-distance is directly related to the total
steady-state monitoring traffic. It can be observed that the proposed location algorithm
leads to traffic values that are always smaller than those that would be achieved with
the lagrangian algorithm, which is provably near-optimal. Hence, our agent-based
algorithm is near-optimal too. In particular, a percentage improvement in the range of
0-3% was measured. It should be stressed once again that the lagrangian algorithm
cannot be used to solve the agent location algorithm for the reasons already mentioned
in the introduction.

0.0 0.1 0.2 0.3 0.4
10

20

30

40

50

60

70

80

90

100

0.0 0.1 0.2 0.3 0.4

20

40

60

80

100

120

M
ax

im
um

 W
ei

gh
te

d
D

is
ta

nc
e

MAs to MOs ratio [p/N] MAs to MOs ratio [p/N]

 T
ot

al
 H

op
 D

is
ta

nc
e

 Random Agent Location Proposed Agent Location
 Near-optimal Lagrangian Location Algorithms

Fig. 5. Distance from near-optimality.

It should be noted that, for the sake of completeness, we simulated situations
characterized by up to a large number of agents (p/N=0.4). However for a more
efficient resource utilization, typical “agents to nodes” ratios are envisioned to be much
smaller (p/N≈0.1). The fact that the total hop-distance achieved by placing the agents in
a random fashion is very far from our near-optimal solution (38-48% difference for
p/N<0.1) provides another good justification for the adoption of the agent-based
approach. The percentage reduction in traffic with respect to centralized polling
(p/N=0) is also significant. For instance, for p/N=0.1 the reduction in traffic will be
greater than 30% and will increase monotonically with p/N.

Finally, the fact that the three curves tend to converge for large values of p/N is not
unexpected since when p/N=1 the number of agents equals the number of nodes.
Hence, each of the three location algorithm will equally succeed in placing the agent
evenly. The plot which reports the maximum weighted distance (directly related to

response time) for the three location algorithms is qualitatively analogous to the
previous one. However, in this case the agent location curve, though very close to the
near-optimal one, does not exhibit any inferior value. In particular, the distance from
near-optimality is 0-5% for p/N<0.1. This result was expected since the simulated agent
location algorithm was optimized to minimize traffic, not response time. Further
simulations, not reported here for brevity, proved that near-optimality with respect to
response time can be achieved with appropriate alterations to the agent algorithm.

4.3 Scalability

This section evaluates the scalability of the proposed monitoring system from a
different viewpoint than the one of Section 4.2. We previously assessed how well the
agent deployment algorithm scaled to draw conclusions on its viability. Herein, we
evaluate scalability at steady-state by comparing the agent monitoring system with a
conventional centralized system. Expectedly, an improvement in performance is
achieved with the former approach due to its intrinsic distributed nature. However, the
results of our simulations provide a quantitative evaluation.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 1 2 3 4 5 6

0
1x105
2x105
3x105
4x105
5x105
6x105
7x105
8x105

 Median of measured response time
 Exponential best fit (MA)

 Exponential best fit (Centralised Polling)
Exponential regression model: Y = y

0
 + A * exp(R

0
*x)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

Polling Rate [poll/sec]

 Mean of measured traffic
 Linear best fit (MA)

 Linear best fit (Centralised Polling)
Linear Regression Model: Y = B * X

T
ot

al
 T

ra
ffi

c
[b

it/
se

c]

Polling Rate [poll/sec]

Fig. 6. Scalability.

Fig. 6 shows traffic and response time measurements achieved with centralized and
distributed polling-based monitoring, respectively. Increasing values of polling rate are
required for larger accuracy and timeliness, but incur increasing volume of traffic. In
our scenario p/N=0.1, whilst network diameter and average node degree are kept
constant, hence the linear behavior. It can be observed that the agent solution leads to
an approximate 50% reduction in traffic and 28% reduction in response time. Another
aspect of scalability is the maximum polling rate that can be sustained by the network.
Our simulations showed that the agent solution could sustain polling rates of the order
of 200% larger than its centralized counterpart. We then assessed the sensitivity to p/N,

keeping all the other parameter unchanged. This time the curves, not shown for brevity,
exhibited a non linear behavior. Both traffic and response time decreased significantly
for agent configuration having 0<p/N<0.15. However, for larger values of p/N the
improvement was negligible. We concluded that a larger portion of agents is neither
convenient nor useful. In fact, the larger is the number of agents, the larger the agent
deployment overheads.

5 Adaptation through migration

In this section we present some of our simulation results aimed at evaluating the
adaptability of the agent system in face of changing conditions. Agent migration
overheads are a major limiting factor but are typically followed by significant
improvement in terms of reduced monitoring traffic and responsiveness.

5.1 Migration Overheads

Agent migration overheads are predominated by agent migration time and traffic. In
typical general-purpose MA platforms migration time varies in the range between
hundreds of milliseconds to seconds [5, 13]. This means that the agent system needs to
manage a transient time associated to agent migration in the order of seconds. To
improve the persistency of the monitoring system a possible solution would be to
implement agent migration through cloning. Instead of migrating, an agent clones
another agent and dispatches it to its intended destination. Upon arrival to the target
node, the child agent will terminate its parent. This is not a feasible solution for every
kind of monitoring task but could often lead to significant improvements.

Another migration overhead is associated with migration traffic. This depends on the
agent size which is in turn a function of the complexity of agent logic and of the
amount of data transported with the agent. Our agents do not support strong mobility;
hence, they do not have to carry the burden of the execution state. In addition, they are
designed following the principle of simplicity; then they are relatively small in size.

27%

29%

31%

33%

35%

37%

39%

41%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

MA to MO ratio [p/N]

P
er

ce
nt

ag
e

of
 M

A
s

w
hi

ch
 m

ig
ra

te
s

Fig. 7. Impact of total number of agents on percentage of agent migration occurrences.

An important design choice is the number of agents initially deployed. In fact the more
agents we deploy, the higher the deployment (and re-deployment) overheads will be. A
large number of agents also means a larger consumption of computational and memory
resources in the hosting nodes. The benefit of a large number of agents is related to a
higher level of distribution, followed by generally better steady-state performance of
the monitoring system. Another advantage is that, as the number of agent increases, the
percentage of agents that need to migrate in face of changing network conditions tends
to decrease more than linearly, as demonstrated by our simulation results reported in
Fig. 7.

5.2 Migration Benefits

We have simulated a simple scenario in which 2 links located in the vicinity of the
central monitoring station fail. Traffic and response time were measured before the
failure. After the failure, the routing protocol readjusted the routing tables and full
connectivity was achieved. In addition, the agent system reconfigured itself by
relocating some of the agents. Steady-state traffic and response time were measured
again. Simulations were subsequently repeated for 10 different randomly generated
topologies characterized by comparable topological features. Each time a couple of
faults was generated randomly and results were averaged.

Fig. 8 shows the snapshot of those two performance indicators (traffic and response
time) taken before and after the link failure, respectively. With the centralized polling
solution (p = 0), both request and response packets get re-routed through longer paths.
Consequently, both traffic and response time increase significantly –they almost
doubled in our scenario. On the contrary, with the agent system the performance
degradation at steady state is in the order of 5-10%.

0

100000

200000

300000

400000

500000

600000

700000

0 0,2 0,4 0,6 0,8 1

MAs to MOs ratio

S
te

ad
y

Tr
af

fic
 [b

it/
se

c]

No Faults 2 Link Failures

p = 0

p = 5

p = 15 p = 34

0

1

2

3

4

5

6

0 0,2 0,4 0,6 0,8 1

MAs to MOs ratio

S
te

a
d

y
R

e
sp

o
n

se
 T

im
e

[
se

c
]

No Faults 2 Link Failures

p = 0

p = 5

p = 15 p = 34

Fig. 8. Self-adaptation through agent migration.

It should be noticed that, though more extensive simulation will be needed before more
generalized conclusions can be drawn, the results achieved so far are very promising.
We shall investigate what happens when the number of faults increases to assess the
robustness of our system. We have not simulated scenarios in which a fault leads to a

temporary loss of connectivity. Moreover, it will be interesting to conduct more
thorough simulations to assess the stability of the agent system.

6 Concluding remarks

In this paper we have presented our progress towards the design of a self-regulating,
distributed monitoring system based on mobile agents. While a lot of work has
addressed the problem of building scalable, distributed monitoring systems based on
the Management by Delegation principles, not much has been done to pursue
adaptability in the context of large-scale, dynamic networked systems. We believe that
adaptable information gathering is a crucial feature, in view of the pervasiveness of
network-centric applications. The interest created by architectures such as SUN’s Jini
[14] shows that the scenario in which a relatively large number of simple devices will
be accessible across the net is becoming realistic. This introduces a new dimension to
networked systems which will become more and more dynamic as we also observe a
shift towards all-IP, integrated fixed and mobile network infrastructures.

Of additional relevance to this article is the fact that Jini devices can host mobile
code, a feature which would have been unthinkable just a few years ago. However,
code mobility represents a serious paradigm shift in the management arena which has
not yet found widespread acceptance in the community. It is often claimed that this is
due to persistent security and safety concerns which are particularly critical in network
and system management.

On the other hand, the benefits of code mobility tend to be undermined by the
scarcity of established design methodologies which suit management applications.
Code mobility adds a degree of freedom which is hardly conceivable if compared to the
well standardized architectures and methodologies refined over the years. The work
described herein aims at exploiting this extra degree of freedom. Our initial results are
very promising in terms of improved scalability and flexibility achievable with the MA
capabilities. We have discussed how agent weak migration, autonomy, reactiveness,
and cloning can be employed to design a self-regulating monitoring system targeted to
large-scale, highly dynamic networked systems. Another interesting property that
might be worth investigating is agent pro-activeness to anticipate problems rather than
just reacting to them.

Another comment concerns the comparison of the proposed algorithm with
approaches based on static distributed object technologies such as CORBA and Java-
RMI. If it was possible to accurately estimate the location of the area managers at
system design time it would be significantly more efficient to realize area managers
with static object technologies rather than MAs. Migration and cloning overheads
would be avoided in such case. However, the static approach would not cater for the
adaptability offered by the agent solution.

The relatively high costs associated to agent migration supported by general-purpose
MA platforms give also an indication of the timescales over which adaptation might be
effective. When agent migration times are in the order of a second, the agent system is
able to compensate to changes within timescales larger than a second. On the other
hand, steady-state performance and scalability will be comparable to those typical of
systems based on static object technologies provided that effective methods are adopted
to place those objects.

Acknowledgments

The work reported in this paper has formed part of the Software Dependent Systems
Work Area of the Core II Research Programme of the Virtual Centre of Excellence in
Mobile & Personal Communications, Mobile VCE, www.mobilevce.co.uk, whose
funding support, including that of EPSRC, is gratefully acknowledged. More detailed
technical reports on this research are available to Industrial Members of Mobile VCE.

References

1. Y. I. Wijata, D. Niehaus, V. S. Frost, “A Scalable Agent-based Network Measurement
Infrastructure”, IEEE Communications Magazine, (September 2000).

2. A. Bieszczad, B. Pagurek, T. White, “Mobile Agents for Network Management”, IEEE
Communications Survey, Vol.1, N.1, (Fourth Quarter 1998).

3. G. Goldszmidt, Y. Yemini, “Delegated Agents for Network Management”. IEEE
Communications Magazine, Vol.36 No.3, (March 1998).

4. C. Bohoris, A. Liotta, G. Pavlou, “Software Agent Constrained Mobility for Network
Performance Monitoring”, Proc. of the 6th IFIP Conference on Intelligence in Networks
(SmartNet 2000), Vienna, Austria, ed. H.R. van As, pp. 367-387, Kluwer, (September 2000).

5. C. Bohoris. A. Liotta, G. Pavlou, “Evaluation of Constrained Mobility for Programmability in
Network Management”, Proc. of DSOM 2000, pp. 243-257 (December, 2000).

6. M. Baldi, G. P. Picco, “Evaluating the Tradeoffs of Mobile Code Paradigms in Network
Management Applications”, ACM Transactions on Software Engineering and Methodology,
20th International Conference on Software Engineering (ICSE '98), Kyoto, Japan, (April
1998).

7. B. C. Tansel, R. L. Francis, T. J. Lowe, “Location on Networks: a Survey”, Management
Science, Vol.29(4), pp.482-511, (April, 1983).

8. M. S. Daskin, “Network and Discrete Location”, Wiley, (1995).
9. E.W. Zegura, K.L. Calvert, M.J. Donahoo, “A Quantitative Comparison of Graph-based

Models for Internet Topology”, IEEE/ACM Transactions on Networking, (1997).
10. E.W. Zegura, K.L. Calvert, S. Bhattacharjee, “How to Model an Internetwork”, IEEE

INFOCOM 96, San Francisco, CA, USA, (1996).
11. K.L. Calvert, M.B. Doar, E.W. Zegura, “Modeling Internet Topology”, IEEE

Communications Magazine, (June, 1997).
12. K. Fall, K. Varadhan, “NS Notes and Documents”, UC Berkeley, (http:// www.isi.edu/

~salehi/ ns_doc/) (October 1999).
13. G. Knight, R. Hazemi, “Mobile Agent based management in the INSERT project”, Journal of

Network and System Management (Mobile Agent-based Network and Service Management),
Vol. 7 (3), (September, 1999).

14. J. Waldo, “The Jini Architecture for Network-centric Computing”, Communications of the
ACM, Vol. 42(7), pp. 76-82, (July, 1999).

