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Abstract. As networks become all-pervasive the importance of efficient 
information gathering for purposes such as monitoring, fault diagnosis, and 
performance evaluation can only increase. Extracting information out of large-
scale, dynamic networked systems is becoming increasingly difficult. Distributed 
monitoring systems based on static object technologies such as CORBA and 
Java-RMI can cope with scalability problems only to a limited extent. They are 
not well suited to monitoring systems that are both very large and highly dynamic 
because the monitoring logic, although distributed, is statically pre-determined at 
design time. The paper presents an active distributed monitoring system based on 
mobile agents. Agents act as area managers which are not bound to any particular 
network node and can sense the network, estimate better locations, and migrate in 
order to pursue location optimality. Simulations demonstrate the capability of this 
approach to cope with large-scale systems and changing network conditions. The 
limitations of our approach are also discussed in comparison to more 
conventional monitoring systems. Keywords. Self-adaptable monitoring; 
Scalable Information Gathering; Adaptable Information Gathering; Mobile 
Agents. 

1  Introduction 

While the size of networked systems grows at an incredible pace, it becomes 
increasingly difficult to extract information out of those systems. Networked systems 
and even the networks themselves need constant monitoring and probing for the 
purposes of management, particularly for fault diagnosis and performance evaluation. 
For instance, network monitoring entails the collection of traffic information used for a 
variety of performance management activities such as capacity planning and traffic 
flow predictions, bottleneck and congestion identification, quality of service 
monitoring for services based on service level agreements, etc. In this case, a key 
aspect is that collection of traffic information should be supported in a timely manner, 
so that reaction to performance problems is possible, and without incurring excessive 
additional traffic on the managed network. In this article, we highlight the limitations 
of existing solutions and propose an approach that uses the emerging paradigm of 
mobile software agents. 

Conventionally, information is gathered following a centralized paradigm, where 
most of the intelligence is concentrated in a single management station which is in 



charge of collecting and processing information. This approach has been widely 
criticized for its limited responsiveness, accuracy and scalability. Typically, the system 
is partitioned into smaller areas, each of which is monitored by a separate ‘area’ 
manager. More generally, static decentralized monitoring is realized with an n-level 
hierarchy of area managers. This is a static approach because the locations of the area 
managers are computed off-line and do not change after deployment. It scales better 
than its centralized counterpart but still lacks the adaptability necessary to cope with 
the frequently changing conditions of large-scale, dynamic networked systems.  

To support such adaptation, the information gathering system needs to be able to 
sense the network state, which is generally dynamic and transient, and react 
appropriately. Numerous efforts have been devoted to monitoring and probing 
networks according to a static decentralized approach. Very few, however, have 
pursued a more dynamic approach to distributed monitoring where the area managers 
can actually re-locate themselves at run time to adapt to changing conditions in the 
underlying monitored system. We term this approach active distributed monitoring and 
present our views on how it can be realized with Mobile Agents (MAs). 

Analogous requirements to those assumed herein have been addressed using an 
approach based on static co-operating agents to build a scalable network measurement 
infrastructure [1]. The possible advantages of using agent mobility for network 
management have been discussed extensively in the agent community and are detailed 
in [2]. Some of these advantages are reduction in network traffic, increased 
responsiveness, and support for disconnected computing. Furthermore, the authors 
elaborate on possible applications of MAs to fault management, remote diagnostics, 
configuration management and performance management.  

However, most commonly, in the context of management, MAs are not exploited to 
the full extent of their capabilities. In fact, the majority of examples presented in the 
literature use MAs more simply as a mechanism to realize dynamic programmability of 
remote elements according to the Management by Delegation (MbD) concept, 
discussed in [3]. We have carried out some work in that direction, identifying key 
performance issues and studying a possible implementation of MbD based on MAs 
which we have termed constrained agent mobility [4]. We have then shown the 
benefits (in terms of added flexibility and dynamic re-programmability) of constrained 
mobility in the particular context of network performance monitoring by comparing it 
with conventional approaches based on static distributed object technologies [5] such 
as CORBA and Java-RMI.  

MbD and constrained mobility may be realized with agents bound to single-hop 
mobility, from manager to remote elements. What is not commonly exploited in 
management is the agent multiple-hop capability. In the work presented herein we 
elaborate on the benefits of agent weak mobility [6] –the ability of an agent of carrying 
code and data when traveling from node to node– for adaptable distributed monitoring. 
Conversely, agent strong mobility is the ability of carrying also execution state, a 
property which is not believed to be suited to management applications. 

Given our proposal to use MAs as area monitoring stations, a distributed algorithm 
is required to compute the agent locations both initially and at run time. During the 
execution of the monitoring task agents will need to sense their environment and take 
actions in order to adapt to changing conditions and, by doing so, maintain location 
optimality. Optimality in this case concerns the minimization of the network traffic 



incurred by the agent-based monitoring system and of the latency in collecting the 
necessary information.  

A similar problem regarding the optimal placement of p servers in a large network 
has been studied since the early seventies. This belongs to the class of p-center and p-
median problems, both NP-complete when striving for optimality [7, 8]. Approximate 
polynomial algorithms, such as the lagrangian algorithm [8], have been proposed but 
none of them suites the requirement of our agent system. Proposed algorithms are 
centralized, requiring the network distance matrix at the main monitoring distance. 
While this is less of a problem in off-line calculations for medium to long-term optimal 
locations, it becomes an important problem for active distributed solutions in which 
optimal locations need to be (re)-calculated by the agents themselves. In this case the 
monitoring station should retain an up-to-date version of whole network topology, 
which obviously is an unrealistic requirement for large-scale, dynamic networked 
systems. 

In this article we describe our solution to the agent location problem, evaluate its 
computational characteristics, and demonstrate by computer simulation some of the 
important features of the proposed agent-based distributed monitoring system. Our 
algorithm relies on agents learning about the network topology through node routing-
table information which is accessed through standard management interfaces. The 
monitoring system is initially deployed through a “clone and send” process starting at 
the centralized network-wide station. The same algorithm is also used by the agents to 
adapt to network changes through migration. Key features of this algorithm are its 
distributed nature, i.e. each agent carries and runs the algorithm, and its low 
computational complexity and typical computational time. We discuss the scalability of 
our approach and its ability to adapt to network congestion and faults.  

2  Real-time computation of the agent locations 

The agent location problem consists of two phases. Initially, we need to determine what 
is the appropriate number of agents for a given monitoring problem and compute the 
location of each of those agents. Subsequently, upon agent deployment the agent 
system needs to be able to self-regulate in order to adapt to changing conditions. This is 
achieved by triggering agent migration in a controlled fashion to avoid instability due 
to continuous agent migration.  

In the proposed solution, the location of area managers is neither fixed nor pre-
determined at design time. Area managers are realized with mobile agents, simple 
autonomous software entities that, having access to network routing information, can 
adapt and roam through the network. The distributed monitoring system is deployed by 
progressively partitioning the network and by populating each partition with 
monitoring agents. We assume the existence of an agent system supporting weak 
mobility and agent cloning –i.e. the ability of agents to create and dispatch copies, or 
‘clones’, of themselves. Agents are assumed to have access to routing information 
obtainable from network routers through standard network management interfaces. 

2.1  Agent Deployment 

The agent deployment process is illustrated Fig. 1.  



The number and location of mobile agents is computed by subsequently comparing the 
monitoring task parameters with routing information extracted from network routers. 
Starting from the monitoring station, the list of monitored objects (MOs) is matched 
against next-hop addresses and  routing costs to reach those MOs from the current 
location. This simple matching operation is sufficient for the agent to create a first 
partitioning of the network. A number of agents equal to the number of partitions is 
cloned. Each agent is assigned to a different partition and is configured to monitor the 
subset of the MOs belonging to that partition. Then, each agent autonomously resumes 
the “partitioning & cloning” process that ends when the number of MOs per partition 
falls below a given heuristic threshold. 

1 Get monitoring task specs (at the monitoring station) 
2 Generate 1 MA implementing the task (set MA parameters to the values 
extracted from task spec) 
3 Extract list of MOs from current MA 
4 For each MO extract routing info from local router 
  * get next-hop node id from current MA location to MO 
  * get cost to reach MO from current MA location 
5 Estimate cost for current MA to monitor its MOs 
6 Use cost to compute number of MAs to be cloned by MA and clone them 
7 Decompose task of current MA into a suitable number of sub-tasks 
8 For each current MA 
  * set its task to one of the above sub-tasks 
  * set its list of MOs to a disjoint subset of the total current MOs 
  * estimate cost to start monitoring from current location 
  * estimate cost to monitor from one neighbor location 
  * IF (lowest cost is from current location) 
            THEN start MA 
  * ELSE { 
            migrate to the cheapest location 
            GOTO 3 
          } 

Fig. 1. Proposed agent location algorithm. 

The algorithm can be further illustrated by showing the basic steps performed in the 
case of the simple network depicted in Fig. 2i. Those steps are depicted in Fig 3. 
Initially, the manager delegates a given task to one agent and starts it at the monitoring 
station (a). By extracting routing information from the local router and matching them 
with the list of MOs, this agent estimates the need for an extra agent. An agent is thus 
cloned, and the original task is decomposed into two sub-tasks, including the 
redistribution of the MOs between the two agents (b). Then each agent autonomously 
searches its best location and migrates to it (c). The agent in location 1 is now ready to 
start since it has estimated that its current location is the one with minimum cost. In 
contrast, the agent in location 2 decides to share its task with another agent and clones 
it (d). The decomposition/migration process starts again leading to one agent running in 
node 2 and the other migrating to node 8 (e). Eventually, the agent in location 8 has 
found its cheapest location and start executing (f). 

It should be noted that the use of cloning results in minimal traffic around the 
monitoring station. In fact, only two agents leave the station, although the resulting 
number of agents is three. The cloning algorithm is executed in a distributed fashion 
(on nodes 1, 2, and 8). Finally, the processing is performed in parallel among nodes at 
the same level (1 and 2). This algorithm is computed dynamically in the sense that the 
final agent location depends critically on the network status detected at deployment 
time. 
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Fig. 2. i) Sample network topology. ii) Example adaptation through agent migration following a 
link failure. 

2.2  Run time Agent Self-regulation  

The ability of a monitoring system to adapt to network changes is a very attractive 
property, especially in view of the dynamic behavior of current and future networks. 
Network congestion and failures, along with mobile computing result in rapidly 
changing network logical topologies. 

The conventional approach is to achieve adaptability by dynamically changing the 
routing tree rooted at the monitoring station. This is performed by the routing 
protocols. Consequently, as a result of congestion or failures, monitoring packets get 
re-routed through generally longer paths and both traffic and response times tend to 
deteriorate. 
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Fig. 3. Example agent deployment process. 



In active monitoring, agents keep sensing the network during their operation and can 
periodically estimate the cost of alternative locations. Agent migration is triggered 
when the cost reduction justifies the migration overheads. In our implementation, 
agents adopt the same logic used during deployment time to sense the network and 
estimate costs associated to candidate neighbor nodes.  

A simple example illustrating agent self-regulation in response to a link failure is 
depicted in Fig. 2ii. In this case, following a loss of connectivity between node 8 and 
13, a new (longer) monitoring path is established between node 8 and node 13. As a 
result, the central node for the system partition comprising nodes {8, 11, 12, 13, and 
14} becomes node 14. Hence, the agent originally located in node 8 will relocate to 
node 14, bringing the system back to optimality. 

This adaptation strategy is based solely on local decisions. An agent knows which 
nodes belong to its partition and builds cost functions based on the information 
concerning those nodes, available at the local router. One can argue that the self-
reconfiguration mechanism considered as a whole might suffer as a result of this 
myopic approach. On the other hand, agent myopia has the advantage of simplicity and 
reduced processing overheads. What the system cannot do is to apply global 
optimization strategies at run time.  

Consequently, the agent system may gradually shift away from optimality if the 
monitoring task is relatively long and for extreme modifications of the network state. 
To provide adaptation to those situations we followed the simple approach of re-
initiating the whole deployment process. This is more expensive than just migrating a 
subset of the agents because involves terminating all the agents and starting all over 
again. Agent re-deployment may be triggered periodically with a period which depends 
on the system dynamics. Alternatively, it could be triggered automatically by alarms or 
directly by a human operator. 

In practice, our simulations with realistic network topologies (see sections below) 
has shown that agent re-deployment is not typically necessary because agents tends to 
end up precisely in the same locations in most cases.  
Therefore, trade-off design choices between agent migration and periodic re-
deployment are necessary for an efficient self-regulating system. In addition, other 
simple control mechanisms will contribute to the stability of the system. For instance, 
agents need to incorporate some inertial mechanism to prevent a situation in which 
minor, high-frequency fluctuations in the network trigger inconsiderate agent 
migration. Finally, more sophisticated control mechanisms may be considered such as 
run-time cloning or new agents to respond to rapid increase in system scale. These are 
not been included in the current prototype because we first tried to approach the 
location problem in a simple way. Run-time cloning will require mechanisms such as 
orphan control, containment of agent proliferations etc, which are out of the scope of 
this paper. 

3  Evaluation Methodology 

The proposed agent-based monitoring system has been evaluated from different points 
of view. First, the feasibility of the system depends critically on the agent deployment 
(or re-deployment) time. We assessed this aspect mathematically to be able to draw 



conclusions not only on the asymptotic computational complexity of the deployment 
algorithm but also on typical deployment times under realistic conditions. 

Having proved the feasibility of our algorithm we assesses its goodness through 
simulations. A crucial point was to run the algorithm for a set of realistic network 
topologies, composed of routers, links, and hosts. These have been generated using the 
GT-ITM topology generator [9, 10, 11]. In particular, transit-stub topologies 
resembling the Internet topology and having 16, 25, 32, 50, 64, 75, and 100 nodes 
respectively, have been generated in order to assess the sensitivity of the location 
algorithm to network size. For each network size, simulations have been repeated at 
least 10 times over randomly generated networks characterized by identical topological 
features. This was done to guarantee statistical significance of the results. Example 50-
node topologies are reported in Fig. 4. You can notice that the actual topologies are 
significantly different despite other topological features such as average node degree 
and network diameter are comparable. 

   

Fig. 4. Example 50-node randomly generated network topologies. 

In order to simulate IP network and protocol behavior we have adopted the NS-2 
simulator from U.C. Berkeley/LBNL [12] and extended it with Mobile Agent 
capabilities. Agent migration and cloning have been implemented along with the actual 
agent location algorithm, which is incorporated in each agent. This algorithm has been 
optimized to minimize the total incurred monitoring traffic. Total hop-distance and 
maximum weighted distances have been measured for increasing “agents to number of 
monitored objects” ratios. Those metrics are directly related to the total traffic incurred 
by the monitoring system and to its response time. 

An important parameter we measured was the distance from optimality. To assess 
how far from optimality our agents ended up we computed the agent locations using 
three different algorithms: 1) the proposed algorithm; 2) the lagrangian algorithm [8]; 
and 3) a random location. The lagrangian algorithm is provably near-optimal; hence, by 
achieving smaller traffic and response time than the ones obtained with it we proved 
near-optimality of our algorithm. The lagrangian algorithm was computed using the 
software package SITATION [8]. We also generated the agent location randomly to 
emulate the worse possible agent distribution. 

An important feature of distributed monitoring systems is their ability to scale better 
than their centralized counterparts. To quantify the potential benefits we have measured 
traffic and response time for increasing values of polling rate, number of monitored 
nodes, network diameter, and number of agents. Due to lack of space though we report 
only the first case. 



Finally, we started studying the self-reconfigurability of our agent system by 
simulating various conditions in which link failures led to increased traffic and 
response time. We deployed the agent system before the failures; then generated link 
failures at random locations; assessed the costs associated to agent migration; and 
finally measured traffic and response time after re-configuration. We repeated the same 
experiment several times for statistical significance.  

4  Adaptation through re-deployment 

4.1  Agent Deployment Timescale 

The agent location is actually computed during agent deployment. Hence, the 
algorithmic asymptotic complexity can be estimated by looking at the predominant 
factors involved from start up until all agents are deployed.  

Steps 1-2 of Fig. 1 are performed at the monitoring station, at start up time. Their 
predominant factor is the cloning time, CLONtime. In contrast, steps 3-8 may be 
repeated at subsequent levels of the routing distribution tree (rooted at the monitoring 
station). They will be repeated at most R(u) times, whereby R(u) is the network radius. 
Agents running at the same level of the distribution tree, execute independently from 
each other, in separate physical locations. Hence the computational complexity of the 
location algorithm can be determined by considering the part that is inherently 
sequential. Therefore, the complexity is R(u) times the complexity of steps 3-8. 

Upon arriving at a node, an agent needs to be de-serialized and instantiated, before 
executing from step 3. This operation takes a constant time, DESERILtime. Steps 3-4 
require a number of iterations equal, at most, to the total number of monitored nodes. 
The dominant cost for each iteration is given by the look-up operation to the routing 
table to extract the next_hop and the cost values. Thus, the total contribution of steps 3-
4 is c*O(N), where c accounts for one look-up time. Step 5 involves a number of 
iterations which, in the worst case, is equal to the maximum node degree, δmax that in 
typical networks is significantly smaller than the number of nodes and, typically, does 
not increase with N. The iterations of steps 6-8 are actually performed as part of steps 5 
and in the worst case involve the process of cloning and configuring δmax new agents. 
Cloning will take a constant time, CLONtime; the reassignment of the monitored nodes 
takes a constant time too because it reuses information initially processed during Steps 
3-4. Finally, each new agent will require a serialization time, SERIALtime before being 
sent to its destination. The latter will add a forwarding delay, FORWtime and a 
transmission time, TRANSMtime. 

Therefore the agent deployment time, DEPLtime that actually coincides with the time 
to compute the agent location algorithm, can be expressed as: DEPLtime = {DESERILtime 

+ c*O(N) + δmax * [CLONtime + SERIALtime ] + TRANSMtime + FORWtime}*O(R(u)) = c1 
*O(N * R(u)) + c2 * O(R(u)) ∝ O(N*R(u)). 

In practice, c1 is of the order of at most 10E-6 seconds, since the current technology 
allows for a number of look-up operations of at least 10E6 per second. c2 is in the order 
of seconds since with current mobile agent platforms [TRANSMtime + FORWtime] is 
typically in the order of 10E-3 to 10E-1 seconds and [DESERILtime+ CLONtime+ 
SERIALtime] is in the order of seconds or fraction of seconds [5]. Therefore, if N << 
10E6 then [c*O(N)] << {DESERILtime +δmax *[CLONtime + SERIALtime] + TRANSMtime + 



FORWtime} and, consequently, DEPLtime ≈ c2 * O(R(u)). In this case the deployment 
term will predominate over the computational one and DEPLtime will be in the order of 
seconds times O(R(u)). 

4.2  Distance from Optimality 

The distance from optimality of the proposed location algorithm can be evaluated by 
observing the plots of Fig. 5. The total hop-distance is directly related to the total 
steady-state monitoring traffic. It can be observed that the proposed location algorithm 
leads to traffic values that are always smaller than those that would be achieved with 
the lagrangian algorithm, which is provably near-optimal. Hence, our agent-based 
algorithm is near-optimal too. In particular, a percentage improvement in the range of 
0-3% was measured. It should be stressed once again that the lagrangian algorithm 
cannot be used to solve the agent location algorithm for the reasons already mentioned 
in the introduction. 
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Fig. 5. Distance from near-optimality. 

It should be noted that, for the sake of completeness, we simulated situations 
characterized by up to a large number of agents (p/N=0.4). However for a more 
efficient resource utilization, typical “agents to nodes” ratios are envisioned to be much 
smaller (p/N≈0.1). The fact that the total hop-distance achieved by placing the agents in 
a random fashion is very far from our near-optimal solution (38-48% difference for 
p/N<0.1) provides another good justification for the adoption of the agent-based 
approach. The percentage reduction in traffic with respect to centralized polling 
(p/N=0) is also significant. For instance, for p/N=0.1 the reduction in traffic will be 
greater than 30% and will increase monotonically with p/N. 

Finally, the fact that the three curves tend to converge for large values of p/N is not 
unexpected since when p/N=1 the number of agents equals the number of nodes. 
Hence, each of the three location algorithm will equally succeed in placing the agent 
evenly. The plot which reports the maximum weighted distance (directly related to 



response time) for the three location algorithms is qualitatively analogous to the 
previous one. However, in this case the agent location curve, though very close to the 
near-optimal one, does not exhibit any inferior value. In particular, the distance from 
near-optimality is 0-5% for p/N<0.1. This result was expected since the simulated agent 
location algorithm was optimized to minimize traffic, not response time. Further 
simulations, not reported here for brevity, proved that near-optimality with respect to 
response time can be achieved with appropriate alterations to the agent algorithm. 

4.3  Scalability 

This section evaluates the scalability of the proposed monitoring system from a 
different viewpoint than the one of Section 4.2. We previously assessed how well the 
agent deployment algorithm scaled to draw conclusions on its viability. Herein, we 
evaluate scalability at steady-state by comparing the agent monitoring system with a 
conventional centralized system. Expectedly, an improvement in performance is 
achieved with the former approach due to its intrinsic distributed nature. However, the 
results of our simulations provide a quantitative evaluation. 
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Fig. 6. Scalability. 

Fig. 6 shows traffic and response time measurements achieved with centralized and 
distributed polling-based monitoring, respectively. Increasing values of polling rate are 
required for larger accuracy and timeliness, but incur increasing volume of traffic. In 
our scenario p/N=0.1, whilst network diameter and average node degree are kept 
constant, hence the linear behavior. It can be observed that the agent solution leads to 
an approximate 50% reduction in traffic and 28% reduction in response time. Another 
aspect of scalability is the maximum polling rate that can be sustained by the network. 
Our simulations showed that the agent solution could sustain polling rates of the order 
of 200% larger than its centralized counterpart. We then assessed the sensitivity to p/N, 



keeping all the other parameter unchanged. This time the curves, not shown for brevity, 
exhibited a non linear behavior. Both traffic and response time decreased significantly 
for agent configuration having 0<p/N<0.15. However, for larger values of p/N the 
improvement was negligible. We concluded that a larger portion of agents is neither 
convenient nor useful. In fact, the larger is the number of agents, the larger the agent 
deployment overheads. 

5  Adaptation through migration 

In this section we present some of our simulation results aimed at evaluating the 
adaptability of the agent system in face of changing conditions. Agent migration 
overheads are a major limiting factor but are typically followed by significant 
improvement in terms of reduced monitoring traffic and responsiveness. 

5.1  Migration Overheads 

Agent migration overheads are predominated by agent migration time and traffic. In 
typical general-purpose MA platforms migration time varies in the range between 
hundreds of milliseconds to seconds [5, 13]. This means that the agent system needs to 
manage a transient time associated to agent migration in the order of seconds. To 
improve the persistency of the monitoring system a possible solution would be to 
implement agent migration through cloning. Instead of migrating, an agent clones 
another agent and dispatches it to its intended destination. Upon arrival to the target 
node, the child agent will terminate its parent. This is not a feasible solution for every 
kind of monitoring task but could often lead to significant improvements. 

Another migration overhead is associated with migration traffic. This depends on the 
agent size which is in turn a function of the complexity of agent logic and of the 
amount of data transported with the agent. Our agents do not support strong mobility; 
hence, they do not have to carry the burden of the execution state. In addition, they are 
designed following the principle of simplicity; then they are relatively small in size.  
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Fig. 7. Impact of total number of agents on percentage of agent migration occurrences. 



An important design choice is the number of agents initially deployed. In fact the more 
agents we deploy, the higher the deployment (and re-deployment) overheads will be. A 
large number of agents also means a larger consumption of computational and memory 
resources in the hosting nodes. The benefit of a large number of agents is related to a 
higher level of distribution, followed by generally better steady-state performance of 
the monitoring system. Another advantage is that, as the number of agent increases, the 
percentage of agents that need to migrate in face of changing network conditions tends 
to decrease more than linearly, as demonstrated by our simulation results reported in 
Fig. 7. 

5.2  Migration Benefits 

We have simulated a simple scenario in which 2 links located in the vicinity of the 
central monitoring station fail. Traffic and response time were measured before the 
failure. After the failure, the routing protocol readjusted the routing tables and full 
connectivity was achieved. In addition, the agent system reconfigured itself by 
relocating some of the agents. Steady-state traffic and response time were measured 
again. Simulations were subsequently repeated for 10 different randomly generated 
topologies characterized by comparable topological features. Each time a couple of 
faults was generated randomly and results were averaged. 

Fig. 8 shows the snapshot of those two performance indicators (traffic and response 
time) taken before and after the link failure, respectively. With the centralized polling 
solution (p = 0), both request and response packets get re-routed through longer paths. 
Consequently, both traffic and response time increase significantly –they almost 
doubled in our scenario. On the contrary, with the agent system the performance 
degradation at steady state is in the order of 5-10%. 

0

100000

200000

300000

400000

500000

600000

700000

0 0,2 0,4 0,6 0,8 1

MAs to MOs ratio

S
te

ad
y 

Tr
af

fic
 [b

it/
se

c]

No Faults 2 Link Failures

p  = 0

p = 5

p  = 15 p  = 34

0

1

2

3

4

5

6

0 0,2 0,4 0,6 0,8 1

MAs to MOs ratio

S
te

a
d

y 
R

e
sp

o
n

se
 T

im
e

[ 
se

c 
]

No Faults 2 Link Failures

p  = 0

p  = 5

p  = 15 p  = 34

 

Fig. 8. Self-adaptation through agent migration. 

It should be noticed that, though more extensive simulation will be needed before more 
generalized conclusions can be drawn, the results achieved so far are very promising. 
We shall investigate what happens when the number of faults increases to assess the 
robustness of our system. We have not simulated scenarios in which a fault leads to a 



temporary loss of connectivity. Moreover, it will be interesting to conduct more 
thorough simulations to assess the stability of the agent system. 

6  Concluding remarks 

In this paper we have presented our progress towards the design of a self-regulating, 
distributed monitoring system based on mobile agents. While a lot of work has 
addressed the problem of building scalable, distributed monitoring systems based on 
the Management by Delegation principles, not much has been done to pursue 
adaptability in the context of large-scale, dynamic networked systems. We believe that 
adaptable information gathering is a crucial feature, in view of the pervasiveness of 
network-centric applications. The interest created by architectures such as SUN’s Jini 
[14] shows that the scenario in which a relatively large number of simple devices will 
be accessible across the net is becoming realistic. This introduces a new dimension to 
networked systems which will become more and more dynamic as we also observe a 
shift towards all-IP, integrated fixed and mobile network infrastructures.  

Of additional relevance to this article is the fact that Jini devices can host mobile 
code, a feature which would have been unthinkable just a few years ago. However, 
code mobility represents a serious paradigm shift in the management arena which has 
not yet found widespread acceptance in the community. It is often claimed that this is 
due to persistent security and safety concerns which are particularly critical in network 
and system management.  

On the other hand, the benefits of code mobility tend to be undermined by the 
scarcity of established design methodologies which suit management applications. 
Code mobility adds a degree of freedom which is hardly conceivable if compared to the 
well standardized architectures and methodologies refined over the years. The work 
described herein aims at exploiting this extra degree of freedom. Our initial results are 
very promising in terms of improved scalability and flexibility achievable with the MA 
capabilities. We have discussed how agent weak migration, autonomy, reactiveness, 
and cloning can be employed to design a self-regulating monitoring system targeted to 
large-scale, highly dynamic networked systems. Another interesting property that 
might be worth investigating is agent pro-activeness to anticipate problems rather than 
just reacting to them.  

Another comment concerns the comparison of the proposed algorithm with 
approaches based on static distributed object technologies such as CORBA and Java-
RMI. If it was possible to accurately estimate the location of the area managers at 
system design time it would be significantly more efficient to realize area managers 
with static object technologies rather than MAs. Migration and cloning overheads 
would be avoided in such case. However, the static approach would not cater for the 
adaptability offered by the agent solution. 

The relatively high costs associated to agent migration supported by general-purpose 
MA platforms give also an indication of the timescales over which adaptation might be 
effective. When agent migration times are in the order of a second, the agent system is 
able to compensate to changes within timescales larger than a second. On the other 
hand, steady-state performance and scalability will be comparable to those typical of 
systems based on static object technologies provided that effective methods are adopted 
to place those objects. 
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