
Running Mobile Agent Code over Simulated Inter-networks:
an Extra Gear towards Distributed System Evaluation*

ANTONIO LIOTTA, CARMELO RAGUSA, GEORGE PAVLOU

Center for Communication Systems Research, School of Electronics, Computing and Mathematics
University of Surrey

Guildford, Surrey, GU2 7XH, UK
UNITED KINGDOM

{A.Liotta, C.Ragusa, G.Pavlou}@eim.surrey.ac.uk http://www.ee.surrey.ac.uk/CCSR/Networks/

Abstract: - Mobile Agent (MA) systems are complex software entities whose behavior, performance and
effectiveness cannot always be anticipated by the designer. Their evaluation often presents various aspects that
require a careful, methodological approach as well as the adoption of suitable tools, needed to identify critical
overheads that may impact the overall system performance, stability, validity and scalability. In this paper, we
propose a novel approach to evaluating complex mobile agent systems based on a hybrid framework which
allows the execution of prototype agent code over simulated internet-works. In this way it is possible to realize
arbitrarily complex MA systems and evaluate them over arbitrarily complex inter-networks, relying on full
support to physical, link, network and transport layers for fixed and mobile networks. We illustrate the
potential of our approach through an example agent system which we have prototyped and assessed over
large-scale IP networks.

Key-Words: - Mobile Agent Systems evaluation; mobile agents simulation; large-scale systems; verification
and validation of distributed systems; network partitioning algorithm.

* The work reported in this paper has formed part of the Software Based System work area of the Core 2 Research Program of the
Virtual Centre of Excellence in Mobile & Personal Communications, Mobile VCE, www.mobilevce.co.uk.

1 Introduction
Mobile Agents (MAs) are computational entities
that act on behalf of some other software entity,
exhibit some degree of autonomy and are
particularly featured with migration capability – i.e.
they can roam the network and execute in those
nodes that can host them. Other properties of an MA
include re-activeness, pro-activeness, adaptability
and cloning capability. In particular, cloning is the
ability of an agent to create and dispatch copies, or
‘clones’, of itself.
 Because of these properties, MA systems are
complex distributed software entities whose
behavior, performance and effectiveness cannot
always be anticipated by the designer. Their
evaluation often presents various aspects that require
a careful, methodological approach as well as the
adoption of suitable tools. A first important question
facing the designer is whether or not the MA
approach is suitable to address the given system
requirements. This can be assessed by looking at
architectural aspects but also requires the
identification of critical overheads that may impact
the overall system performance, stability and
validity. Once the MA approach has been found to
suit the system, three alternative roads may be

pursued towards system realization and evaluation:
prototyping, simulation, or a mix of them.
 Each of these approaches contributes to unveil
different, often complementary, aspects of the MA
system. Prototyping has the main advantage of
demonstrating the feasibility of the proposed
approach as well as providing useful hints for
improving the final design/implementation.
Measurements of overheads such as delays, code
migration time, load incurred by MAs and so forth
may be vital to fine tuning the system design and to
anticipate the performance of the agent system that
is later to be deployed in the large scale. The extent
to which this evaluation can be carried out is
however limited by the scale of the experimental
test-bed.
 On the other hand, simulations do provide a
better means to assess performance and scalability
and have the additional advantage of allowing the
assessment of other important aspects such as the
correctness, validity, robustness, and stability of the
MA system under consideration. Simulations alone,
however, often fail to capture important aspects of
the real MA system since they must rely on
simplified modeling aimed at containing simulation
time and trace data.

 A more effective MA evaluation method will,
thus, rely on a mixed experimental and simulation-
based approach which inherits the intrinsic benefits
of both providing the necessary insight into the MA
system. Such an approach requires the adoption of a
suitable ‘hybrid’ framework which supports the
prototyping of agent code through specified
Application Programming Interfaces (APIs), as well
as facilitating the agent system evaluation via
computer simulation.
 The current approach to MA systems simulation
is to create a simplified model of the system and
realize software which simulates its behavior. In
contrast, what we have done is to design a hybrid
simulation framework which is generic – i.e.
decoupled from any specific MA system – and
addresses the requirements of complex, dynamic,
large-scale MA systems. Our system is build on top
of the NS network simulator [1] which supports the
most common physical, link, network, transport and
application layer protocols for fixed and mobile
communication networks. Having extended NS with
support for MAs – including agent execution over
‘simulated’ network nodes, agent migration, agent
cloning, agent destruction and so forth – we have
created an environment in which an arbitrarily
complex MA system can be run over arbitrarily
complex inter-networks. This can be used to
evaluate the various aspects of agent systems under
a variety of conditions such as network topology,
size, communication protocols, etc.
 After describing the NS network simulator and its
features, we provide the details of the MA
extensions and APIs designed to support the
evaluation of agent systems. We illustrate the
proposed methodology for MA system evaluation
through a simple case study which we have
prototyped and assessed over large-scale IP inter-
networks. We finally draw the lessons learned from
experimenting with our framework in order to
provide hints to those who would like to apply it for
the evaluation of other MA-based distributed
systems.

2 Background: the NS Network
 Simulator
NS is a network, discrete event simulator that runs in
a non-real-time fashion and supports the most
common physical, link, network, transport and
application layer protocols for fixed and mobile
communication networks. Over the last few years,
its extensive use in the networking research
community has contributed to make it a valuable

tool for studying, improving, and introducing new
protocols.
 In addition to fixed networking, NS supports
wireless and satellite networking, unicast and
multicast routing, centralized and hierarchical
routing, static and dynamic routing. Extensions to
the core NS have been provided by researchers
worldwide, including support to GPRS, Mobile
IPv6, BlueTooth, RSVP, Differentiated Services,
MPLS, active networking, IEEE 802.11 for WLAN,
multi-hop wireless ad-hoc networking, and Cellular
IP (the interested reader may refer to [1] for
software and documentation).
 NS allows characterizing point-to-point bi-
directional links through bandwidth, delay, and
queue type. It also allows modeling packet
scheduling (i.e. the decision process used to choose
which packet should be serviced or dropped) and
buffer management (i.e. any particular discipline
used to regulate the occupancy of a particular
queue). NS includes support for several algorithms
such as drop-tail (FIFO) queuing, RED buffer
management, and different variants of fair queuing.
There is also literature on the experimentation of
various queuing disciplines for Quality of Service
management, active queue management, and
stochastic queue management (refer to [1] for
documentation).
 In addition to the extensive networking support,
as summarized above, NS enjoys the advantages of
an open software tool (the source code is freely
available for experimentation) and of an architecture
that can be easily extended (Fig.1). The user
specifies the simulation scenarios in OTcl, an object
oriented extension to Tcl. These are interpreted in
the NS Kernel that includes the abovementioned
networking functionality. For increased efficiency
the NS core functionality is implemented and
executed in C++. In order to ease the use of the
simulator, however, most C++ classes are mirrored
into OTcl and can be directly invoked by OTcl
scripts. The simulator functionality may be simply
enhanced by creating new C++ classes, adding new
functions to the NS library, and mirroring the new
code into OTcl classes.
 Two important tools come with NS, the Network
Animator (NAM) [2] and the GT-ITM topology
generator [3]. NAM generates graphical animations
of trace files generated by NS simulations including
the relevant network events. The tool is extremely
useful for verifying the correctness of the
simulations.
 Finally, the topology generator is used to
automate the process of generating networks for the
purpose of assessing the protocols and systems

under scrutiny. GT-ITM generates realistic Internet-
like topologies as well as random topologies
following a well established methodology [4, 5].

Otcl script

Otcl / Tcl Interpreter

NS Library
• Network components objects

• …

• …

USER LEVEL - NS OTcl Objects

NS Kernel

C++/OTcl objects

Otcl script

C++/OTcl objects

Figure 1. NS functional architecture.

 Although it provides such extensive support to
layers 1 to 3 networking, NS is limited in its
capability to support application-level simulations. It
provides simple traffic generators which model the
behavior of applications such as http, ftp, telnet and
web applications. However, there is no support to
generic applications and particularly to distributed
applications and systems. We focus below on our
approach to extending NS with a virtual execution
environment which allows the execution of arbitrary
distributed applications based on MAs over
simulated networks.

3 MA Extensions for NS
The extended NS functional architecture with
support to MA systems and applications is depicted
in Fig.2 in which the MA extensions are highlighted
in bold. At NS kernel level, we have added a new
MAgent class as a subclass of the NS Agent class
and mirrored it into an equivalent OTcl class.
MAgent has all the necessary methods to create,
run, stop, clone, migrate and destroy an MA.
 These methods are exposed at user level as an
Application Programming Interface (API) which is
used to write the necessary MA code using the OTcl
scripting language. In this way, one can easily write
a script which creates one or more agents, each of
which incorporates a specific task, building an MA
distributed system. Agent creation involves the
instantiation and initialization of an MA object and
its association to a network node.
 The agent code is executed in the MA virtual
execution environment that is intertwined with the
network simulation environment through the
following stratagem, as shown in Fig.3. Agents are
allowed to execute their code in real time as far as

they do not involve any communication with other
distributed entities or agents.

Otcl script

USER LEVEL - NS OTcl Objects

NS Kernel

C++/OTcl objects

Agent/MAgent

Otcl / Tcl Interpreter

NS Library
• Network components objects

• …

• Agent/MAgent
classextension

Otcl / Tcl Interpreter

NS Library
• Network components objects

• …

• Agent/MAgent
classextension

MA Virtual Execution
Environment

MA code (Otcl script)

MAs APIs: Create, Run, Stop,
Clone, Migrate, Destroy

MA Virtual Execution
Environment

MA code (Otcl script)

MAs APIs: Create, Run, Stop,
Clone, Migrate, Destroy

Figure 2. Functional Architecture of
NS with MA extensions.

 In other words agents can process data that is
available locally and take decisions that do not incur
any network load. However, as soon as agent
processing involves network resources – e.g. the
agent needs to send or receive packets or wishes to
migrate to a different node – the relevant network
events are triggered into the network simulator that
handles them accordingly.

A
C

B

F

D E

MA1

MA1

- NodeID=A.
- Access to local resources by
MA links to node A.
- network traffic incurred by
MA originates at node A
- MA execution loads node A

Simulated network by NS

MA Virtual Execution Environment

Before Before MA MA migrationmigration

MA1

- NodeID=F.
- Access to local resources by
MA links to node F.
- network traffic incurred by
MA originates at node F
- MA execution loads node F

AfterAfter MA MA migrationmigration

Migration
triggers the
transmission of
the MA code
from A to F in the
simulated
network

MA1

Figure 3. MA execution over a
simulated network.

 Fig.3 depicts an example of how agent migration
is handled by our hybrid simulation environment. As
the agent resides at node A, the local resources
accessible by the agent are those of node A. For
instance, if the agent task involves processing of the
local routing tables, the agent will read and process
the routing tables stored at A. If the agent wishes to
migrate to node F, agent execution is suspended and
the agent code is serialized for transmission. At this
point a packet having size equal to the serialized

agent is scheduled for transmission from A to F –
i.e. a network event is added to the event queue of
the simulator. This event is handled by the simulator
according to the networking protocols set up by the
OTcl script – i.e. layers 1 to 3 protocols.
 Finally, as soon as the packet is received by node
F an appropriate packet_received event is
generated by the simulator. This event triggers the
MA de-serialization, instantiates the MA in the
virtual execution environment, setting up the
NodeID parameter to F. This means that when the
agent execution is resumed, its local resources will
be those of node F. Further details of the proposed
MA simulation environment are given in the section
below through a case study which we have
prototyped and assessed by simulation.

4 Case Study: Near-optimal Network
 Partitioning based on MAs
The network-partitioning problem can be formulated
as follows. Given a distributed application, we need
to determine the number of partitions, the nodes
forming those partitions, and the center of each
partition that minimize the overall traffic and/or
response time of the distributed application.
 This problem is fundamental to a number of
applications, including not only networking
problems such as the one of optimally placing p
servers in a network of N nodes but also in the area
of transportation theory. The former, studies the
optimal location of emergency facilities such as fire
stations which results in minimal intervention time.
It also deals with the optimal planning of transport
infrastructures such as railways, roads and so on.
 Because of its importance, network partitioning
has been extensively studied since the early ‘70s
under the banners of p-center and p-median
problems, which have both been proved NP-
complete when striving for optimality [6].
Approximate polynomial algorithms have been
proposed but none of them suites the combined
requirement of scalability, optimality, and
efficiency. Those algorithms are centralized,
requiring the network distance matrix – i.e.
knowledge of the whole network topology – at a
single computational point where the partitioning
algorithm is executed. This constraint represents a
major impediment at these days in which networks
have assumed a worldwide scale, are not under the
control of a single operator, and have a highly
dynamic nature.
 We proposed herein a distributed algorithm
which makes use of MAs to find a provably near-

optimal solution to the network partitioning problem
in linear time. In addition, our approach does not
require any knowledge of the network topology and
does not rely on the network distance matrix. It
assumes, instead, that MAs have a ‘read-only’
access to the routing tables of the local router.

STARTSTART

Root Node ID, v
List of Network Nodes IDs, N
Partitioning threshold, Th

Root Node ID, v
List of Network Nodes IDs, N
Partitioning threshold, Th

From local routing table:
- compute total cost, Ctot

Select new neighbour, i. From local routing
table, compute sub-partition rooted at i:
partial cost, Ci and nodes in sub-partition, Ni

Pi = (| Ni |* Ci) / (|N|* Ctot)

Pi > ThPi > Th

have all neighbours
been visited?

have all neighbours
been visited?

Y

Y

N

N

Terminate
current thread

Terminate
current thread

Remove Ni list from N

Clone new MA and
send it to node i.

v = i; N≡ Ni

Start parallel thread
with new MA

OUTPUT partition
N (if not empty)
centred in current

root node

OUTPUT partition
N (if not empty)
centred in current

root node

Figure 4. Flow-chart diagram of
network partitioning algorithm.

 Our algorithm is depicted in the flow-chart
diagram of Fig.4. Because the focus of this paper is
on the simulation environment rather than on the
actual algorithm and due to space restrictions we do
not describe the internals of the algorithm in greater
detail. However, the interested reader may refer to
[7] for a thorough explanation and a comprehensive
analysis.

17

9

8

7

6

5

4

3

2
16 15

14

13

12

11

19

18

0

1

10

1717

99

88

77

66

55

44

33

22
1616 1515

1414

1313

1212

1111

1919

1818

00

11

1010

Figure 5. Example network topology.

 The algorithm can be illustrated through the
example topology depicted in Fig.5. Assuming node
0 as the initial root node, the algorithm starts off by
creating an MA at this node (initially, the list of
nodes includes all the nodes). The agent computes
the total cost, Ctot required to reach all the nodes
from the local routing table (i.e. the one stored at
node 0). Similarly, it computes the partial costs
associated to each of the neighbor nodes (nodes 1, 2,
and 11) and compiles the lists of nodes reachable
through each of the neighbors (N1, N2 ,N11).

 In other words the agent starts building the
distribution tree shown in Fig. 6, with associated
partial costs. The agent computes then a probability
function, Pi for each neighbor to make a decision as
to how to build an initial sub-partition. This process
results in establishing two partitions, {1, 5, 6, 9, 10,
11, 12} and {2, 3, 4, 7, 8, 13, 14, 15, 16, 17, 18, 19},
and in cloning a new agent for the former one. The
new MA is rooted at node 2 and starts a parallel
thread which repeats the whole process and ends up
further sub-partitioning the network as in Fig.6.

1717

9988

7766

55 4433

22

1616

15151414

1313

1212

1111

1919

1818

00

11

1010

MA

MA

MA

Figure 6. Network distribution tree
and final partitions.

 The above algorithm has been evaluated through
simulation using our hybrid environment. Each
agent incorporates the same partitioning algorithm
and executes in the virtual execution environment
with links to the node where the agent actually sits.
The agent code is parametric with respect to the
routing tables – i.e. it can only access the local
routing table – and list of nodes in its sub-partition.
The output of the algorithm is incorporated in the
final agents. Each agent contains a disjoint list of
nodes (the sub-partition) while the agent node
represents the center of the sub-partition.
 Having implemented the MA-based network-
partitioning algorithm it was possible to run it under
a variety of network conditions for the purposes of
validation and assessment. A comprehensive
evaluation of the algorithm’s scalability with respect
to number of network nodes and network diameter is
reported in [7] which applies the algorithm to

configure a distributed monitoring system.
Performance parameters include the traffic incurred
by the monitoring system and its response time.
Both of them have been found to increase linearly
with network size, an interesting result that confirms
the scalability of the proposed algorithm.
 Simulations were also essential to study the
optimality of our algorithm. The algorithm is
optimal if it computes a set of centers (i.e. the p-
centers) that minimizes the total distance between
each center and the nodes in its respective partition.
Optimality has been studied by measuring two
important distance metrics, “total hop distance” and
“maximum weighted distance” under different
network conditions (topology, size, average node
degree, etc) and by comparing the results with those
achieved with a provable near-optimal algorithm –
i.e. the Lagrangian algorithm [6]. It should be
mentioned that the former algorithm, despite
providing near-optimal partitions, is not scalable
because it is centralized and relies on the network
distance matrix.

0.0 0.1 0.2 0.3 0.4
10

20

30

40

50

60

70

M
ax

im
um

 W
ei

gh
te

d
D

ist
an

ce

Number of Partitions to total nodes ratio [p/N]

0.0 0.1 0.2 0.3 0.4
10
20
30
40
50
60
70
80
90

To
ta

l H
op

 D
ist

an
ce

 Near-Optimal
 Lagrangian algorithm

 Proposed
 MA-based algorithm

Number of Partitions to total nodes ratio [p/N]

Figure 7. Simulation results.

 Simulation results are depicted in Fig.7 which
proves the near-optimality of our algorithm with
regard to total hop distance (the MA curve is under
the Lagrangian curve which is near-optimal).
Maximum weighted distance is not provably near-
optimal but is, however, relatively close to it.

5 Applicability of MA Simulator
Sections 3 and 4 suggest an evaluation methodology
which does not significantly differ from the typical
simulation-based system performance evaluation

described, for instance, in [8] (part V, p.391-504).
Simulations design involves the appropriate choice
of metrics, parameters, factors, and workload. It
entails: the validation of the simulation model
against the real system; the repetition of simulations
over randomly generated network topologies having
similar topological features; the performance of
continuity, degeneracy, and consistency tests; and
the statistical analysis of simulation traces.
 Our simulation environment poses, however, a
peculiar issue arising from its hybrid nature. In fact,
it allows running the agent system in real time while
network events are simulated. This generates the
paradox of a system where data processing happens
virtually instantaneously – i.e. the real-time clock –
whereas network-bound events progress at the pace
of the simulator – i.e. the simulator clock. Our MA
virtual execution environment provides a loose
synchronization between MA processing and
network events by pausing MA execution during the
generation of network events (Fig.3).
 This approach suits those MA distributed systems
whose processing is not tightly bound to networking
events, such as the case study presented above. Each
MA bases its cloning/partitioning decision based on
the local routing table which is not assumed to
change during MA processing. This assumption is
reasonable because MA processing time is orders of
magnitude smaller than that of networking events.
 More generally, the MA simulator successfully
captures the behavior of MA systems in which MA
processing is relatively fast with respect to network
events or is loosely coupled with them. We are
currently working towards releasing this constraint
in order to extend the applicability of the MA
simulator to systems that are tightly coupled with
networking events.

6 Conclusions
As MA distributed systems assume an increasingly
important role in diverse areas of communications,
management and service provisioning, tools for their
evaluation become important. Simulation-based
assessment has traditionally been limited to ad hoc
implementations, often aimed at capturing particular
aspects of the system. In this article, we have
described a general-purpose MA simulation
environment which allows the realization of MA
code that can run over simulated networks. Our
main design requirement was the ability to assess
performance and scalability of complex MA systems
over realistic networking environments. For this
reason we have based our system on the NS network

simulator, a well established environment which can
handle networks of the order of thousand of nodes
and supports the most common networking
protocols.
 We have realized, however, a prototype that can
be used to validate new MA systems, study their
behavior under a variety of conditions, and facilitate
software re-use. We have illustrated our hybrid
approach via a case study in which the MA code is
only loosely coupled with the network simulator and
can be easily ported to a real MA system.
 Clearly, more work is needed to refine the MA
models, add new MA functionality, and improve the
synchronization between real-time and simulator
clocks. It is through the lessons learned from new,
additional cases studies that the limits of the
simulator will be identified and stretched even
further.

Acknowledgments:
The work reported in this paper has formed part of
the WA1 area of the Core 2 Research Programme of
the Virtual Centre of Excellence in Mobile &
Personal Communications, Mobile VCE,
www.mobilevce.com, whose funding support,
including that of EPSRC, is gratefully
acknowledged. More detailed technical reports on
this research are available to Industrial Members of
Mobile VCE.

References:
[1] K. Fall, K. Varadhan, The NS Manual, UC

Berkeley/LBNL, (www.isi.edu/nsnam/ns/).
[2] J. Mehringer, The Network Animator (NAM),

University of Southern California, Information
Sciences Institute (www.isi.edu/nsnam/nam/).

[3] Ellen Zegura, The GT-ITM Topology Generator,
(www.cc.gatech.edu/fac/Ellen.Zegura/graphs.ht
ml).

[4] E.W. Zegura, K.L. Calvert, M.J. Donahoo, A
Quantitative Comparison of Graph-based Models
for Internet Topology, IEEE/ACM Transactions
on Networking, 1997.

[5] K.L. Calvert, M.B. Doar, E.W. Zegura,
Modeling Internet Topology, IEEE Comm. Mag.,
June, 1997.

[6] M.S. Daskin, Network and Discrete Location,
Wiley, 1995.

[7] A. Liotta, Towards Flexible and Scalable
Distributed Monitoring with Mobile Agents, PhD
Thesis, Dept. of Computer Science, University
College London, London, UK, 2001.

[8] R. Jain, The Art of Computer Systems
Performance Analysis, Wiley, 1991.

