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Abstract: - Mobile Agent (MA) systems are complex software entities whose behavior, performance and 
effectiveness cannot always be anticipated by the designer. Their evaluation often presents various aspects that 
require a careful, methodological approach as well as the adoption of suitable tools, needed to identify critical 
overheads that may impact the overall system performance, stability, validity and scalability. In this paper, we 
propose a novel approach to evaluating complex mobile agent systems based on a hybrid framework which 
allows the execution of prototype agent code over simulated internet-works. In this way it is possible to realize 
arbitrarily complex MA systems and evaluate them over arbitrarily complex inter-networks, relying on full 
support to physical, link, network and transport layers for fixed and mobile networks. We illustrate the 
potential of our approach through an example agent system which we have prototyped and assessed over 
large-scale IP networks. 
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1   Introduction 
Mobile Agents (MAs) are computational entities 
that act on behalf of some other software entity, 
exhibit some degree of autonomy and are 
particularly featured with migration capability – i.e. 
they can roam the network and execute in those 
nodes that can host them. Other properties of an MA 
include re-activeness, pro-activeness, adaptability 
and cloning capability. In particular, cloning is the 
ability of an agent to create and dispatch copies, or 
‘clones’, of itself. 
     Because of these properties, MA systems are 
complex distributed software entities whose 
behavior, performance and effectiveness cannot 
always be anticipated by the designer. Their 
evaluation often presents various aspects that require 
a careful, methodological approach as well as the 
adoption of suitable tools. A first important question 
facing the designer is whether or not the MA 
approach is suitable to address the given system 
requirements. This can be assessed by looking at 
architectural aspects but also requires the 
identification of critical overheads that may impact 
the overall system performance, stability and 
validity. Once the MA approach has been found to 
suit the system, three alternative roads may be 

pursued towards system realization and evaluation: 
prototyping, simulation, or a mix of them. 
     Each of these approaches contributes to unveil 
different, often complementary, aspects of the MA 
system. Prototyping has the main advantage of 
demonstrating the feasibility of the proposed 
approach as well as providing useful hints for 
improving the final design/implementation. 
Measurements of overheads such as delays, code 
migration time, load incurred by MAs and so forth 
may be vital to fine tuning the system design and to 
anticipate the performance of the agent system that 
is later to be deployed in the large scale. The extent 
to which this evaluation can be carried out is 
however limited by the scale of the experimental 
test-bed. 
     On the other hand, simulations do provide a 
better means to assess performance and scalability 
and have the additional advantage of allowing the 
assessment of other important aspects such as the 
correctness, validity, robustness, and stability of the 
MA system under consideration. Simulations alone, 
however, often fail to capture important aspects of 
the real MA system since they must rely on 
simplified modeling aimed at containing simulation 
time and trace data. 



     A more effective MA evaluation method will, 
thus, rely on a mixed experimental and simulation-
based approach which inherits the intrinsic benefits 
of both providing the necessary insight into the MA 
system. Such an approach requires the adoption of a 
suitable ‘hybrid’ framework which supports the 
prototyping of agent code through specified 
Application Programming Interfaces (APIs), as well 
as facilitating the agent system evaluation via 
computer simulation.  
     The current approach to MA systems simulation 
is to create a simplified model of the system and 
realize software which simulates its behavior. In 
contrast, what we have done is to design a hybrid 
simulation framework which is generic – i.e. 
decoupled from any specific MA system – and 
addresses the requirements of complex, dynamic, 
large-scale MA systems. Our system is build on top 
of the NS network simulator [1] which supports the 
most common physical, link, network, transport and 
application layer protocols for fixed and mobile 
communication networks. Having extended NS with 
support for MAs – including agent execution over 
‘simulated’ network nodes, agent migration, agent 
cloning, agent destruction and so forth – we have 
created an environment in which an arbitrarily 
complex MA system can be run over arbitrarily 
complex inter-networks. This can be used to 
evaluate the various aspects of agent systems under 
a variety of conditions such as network topology, 
size, communication protocols, etc. 
     After describing the NS network simulator and its 
features, we provide the details of the MA 
extensions and APIs designed to support the 
evaluation of agent systems. We illustrate the 
proposed methodology for MA system evaluation 
through a simple case study which we have 
prototyped and assessed over large-scale IP inter-
networks. We finally draw the lessons learned from 
experimenting with our framework in order to 
provide hints to those who would like to apply it for 
the evaluation of other MA-based distributed 
systems. 
 
 
2   Background: the NS Network 
     Simulator 
NS is a network, discrete event simulator that runs in 
a non-real-time fashion and supports the most 
common physical, link, network, transport and 
application layer protocols for fixed and mobile 
communication networks. Over the last few years, 
its extensive use in the networking research 
community has contributed to make it a valuable 

tool for studying, improving, and introducing new 
protocols.  
     In addition to fixed networking, NS supports 
wireless and satellite networking, unicast and 
multicast routing, centralized and hierarchical 
routing, static and dynamic routing. Extensions to 
the core NS have been provided by researchers 
worldwide, including support to GPRS, Mobile 
IPv6, BlueTooth, RSVP, Differentiated Services, 
MPLS, active networking, IEEE 802.11 for WLAN, 
multi-hop wireless ad-hoc networking, and Cellular 
IP (the interested reader may refer to [1] for 
software and documentation). 
     NS allows characterizing point-to-point bi-
directional links through bandwidth, delay, and 
queue type. It also allows modeling packet 
scheduling (i.e. the decision process used to choose 
which packet should be serviced or dropped) and 
buffer management (i.e. any particular discipline 
used to regulate the occupancy of a particular 
queue). NS includes support for several algorithms 
such as drop-tail (FIFO) queuing, RED buffer 
management, and different variants of fair queuing. 
There is also literature on the experimentation of 
various queuing disciplines for Quality of Service 
management, active queue management, and 
stochastic queue management (refer to [1] for 
documentation). 
     In addition to the extensive networking support, 
as summarized above, NS enjoys the advantages of 
an open software tool (the source code is freely 
available for experimentation) and of an architecture 
that can be easily extended (Fig.1). The user 
specifies the simulation scenarios in OTcl, an object 
oriented extension to Tcl. These are interpreted in 
the NS Kernel that includes the abovementioned 
networking functionality. For increased efficiency 
the NS core functionality is implemented and 
executed in C++. In order to ease the use of the 
simulator, however, most C++ classes are mirrored 
into OTcl and can be directly invoked by OTcl 
scripts. The simulator functionality may be simply 
enhanced by creating new C++ classes, adding new 
functions to the NS library, and mirroring the new 
code into OTcl classes. 
     Two important tools come with NS, the Network 
Animator (NAM) [2] and the GT-ITM topology 
generator [3]. NAM generates graphical animations 
of trace files generated by NS simulations including 
the relevant network events. The tool is extremely 
useful for verifying the correctness of the 
simulations. 
     Finally, the topology generator is used to 
automate the process of generating networks for the 
purpose of assessing the protocols and systems 



under scrutiny. GT-ITM generates realistic Internet-
like topologies as well as random topologies 
following a well established methodology [4, 5]. 
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Figure 1. NS functional architecture. 

     Although it provides such extensive support to 
layers 1 to 3 networking, NS is limited in its 
capability to support application-level simulations. It 
provides simple traffic generators which model the 
behavior of applications such as http, ftp, telnet and 
web applications. However, there is no support to 
generic applications and particularly to distributed 
applications and systems. We focus below on our 
approach to extending NS with a virtual execution 
environment which allows the execution of arbitrary 
distributed applications based on MAs over 
simulated networks. 
 
 
3   MA Extensions for NS 
The extended NS functional architecture with 
support to MA systems and applications is depicted 
in Fig.2 in which the MA extensions are highlighted 
in bold. At NS kernel level, we have added a new 
MAgent class as a subclass of the NS Agent class 
and mirrored it into an equivalent OTcl class. 
MAgent has all the necessary methods to create, 
run, stop, clone, migrate and destroy an MA. 
     These methods are exposed at user level as an 
Application Programming Interface (API) which is 
used to write the necessary MA code using the OTcl 
scripting language. In this way, one can easily write 
a script which creates one or more agents, each of 
which incorporates a specific task, building an MA 
distributed system. Agent creation involves the 
instantiation and initialization of an MA object and 
its association to a network node. 
     The agent code is executed in the MA virtual 
execution environment that is intertwined with the 
network simulation environment through the 
following stratagem, as shown in Fig.3. Agents are 
allowed to execute their code in real time as far as 

they do not involve any communication with other 
distributed entities or agents. 
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Figure 2. Functional Architecture of 
NS with MA extensions. 

     In other words agents can process data that is 
available locally and take decisions that do not incur 
any network load. However, as soon as agent 
processing involves network resources – e.g. the 
agent needs to send or receive packets or wishes to 
migrate to a different node – the relevant network 
events are triggered into the network simulator that 
handles them accordingly. 
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Figure 3. MA execution over a 
simulated network. 

     Fig.3 depicts an example of how agent migration 
is handled by our hybrid simulation environment. As 
the agent resides at node A, the local resources 
accessible by the agent are those of node A. For 
instance, if the agent task involves processing of the 
local routing tables, the agent will read and process 
the routing tables stored at A. If the agent wishes to 
migrate to node F, agent execution is suspended and 
the agent code is serialized for transmission. At this 
point a packet having size equal to the serialized 



agent is scheduled for transmission from A to F – 
i.e. a network event is added to the event queue of 
the simulator. This event is handled by the simulator 
according to the networking protocols set up by the 
OTcl script – i.e. layers 1 to 3 protocols.  
     Finally, as soon as the packet is received by node 
F an appropriate packet_received event is 
generated by the simulator. This event triggers the 
MA de-serialization, instantiates the MA in the 
virtual execution environment, setting up the 
NodeID parameter to F. This means that when the 
agent execution is resumed, its local resources will 
be those of node F. Further details of the proposed 
MA simulation environment are given in the section 
below through a case study which we have 
prototyped and assessed by simulation. 
 
 
4   Case Study: Near-optimal Network  
     Partitioning based on MAs 
The network-partitioning problem can be formulated 
as follows. Given a distributed application, we need 
to determine the number of partitions, the nodes 
forming those partitions, and the center of each 
partition that minimize the overall traffic and/or 
response time of the distributed application.  
     This problem is fundamental to a number of 
applications, including not only networking 
problems such as the one of optimally placing p 
servers in a network of N nodes but also in the area 
of transportation theory. The former, studies the 
optimal location of emergency facilities such as fire 
stations which results in minimal intervention time. 
It also deals with the optimal planning of transport 
infrastructures such as railways, roads and so on. 
     Because of its importance, network partitioning 
has been extensively studied since the early ‘70s 
under the banners of p-center and p-median 
problems, which have both been proved NP-
complete when striving for optimality [6]. 
Approximate polynomial algorithms have been 
proposed but none of them suites the combined 
requirement of scalability, optimality, and 
efficiency. Those algorithms are centralized, 
requiring the network distance matrix – i.e. 
knowledge of the whole network topology – at a 
single computational point where the partitioning 
algorithm is executed. This constraint represents a 
major impediment at these days in which networks 
have assumed a worldwide scale, are not under the 
control of a single operator, and have a highly 
dynamic nature. 
     We proposed herein a distributed algorithm 
which makes use of MAs to find a provably near-

optimal solution to the network partitioning problem 
in linear time. In addition, our approach does not 
require any knowledge of the network topology and 
does not rely on the network distance matrix. It 
assumes, instead, that MAs have a ‘read-only’ 
access to the routing tables of the local router. 
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Figure 4. Flow-chart diagram of 
network partitioning algorithm. 

     Our algorithm is depicted in the flow-chart 
diagram of Fig.4. Because the focus of this paper is 
on the simulation environment rather than on the 
actual algorithm and due to space restrictions we do 
not describe the internals of the algorithm in greater 
detail. However, the interested reader may refer to 
[7] for a thorough explanation and a comprehensive 
analysis. 
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Figure 5. Example network topology. 



     The algorithm can be illustrated through the 
example topology depicted in Fig.5. Assuming node 
0 as the initial root node, the algorithm starts off by 
creating an MA at this node (initially, the list of 
nodes includes all the nodes). The agent computes 
the total cost, Ctot required to reach all the nodes 
from the local routing table (i.e. the one stored at 
node 0). Similarly, it computes the partial costs 
associated to each of the neighbor nodes (nodes 1, 2, 
and 11) and compiles the lists of nodes reachable 
through each of the neighbors (N1, N2 ,N11). 
 
     In other words the agent starts building the 
distribution tree shown in Fig. 6, with associated 
partial costs. The agent computes then a probability 
function, Pi for each neighbor to make a decision as 
to how to build an initial sub-partition. This process 
results in establishing two partitions, {1, 5, 6, 9, 10, 
11, 12} and {2, 3, 4, 7, 8, 13, 14, 15, 16, 17, 18, 19}, 
and in cloning a new agent for the former one. The 
new MA is rooted at node 2 and starts a parallel 
thread which repeats the whole process and ends up 
further sub-partitioning the network as in Fig.6. 
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Figure 6. Network distribution tree 
and final partitions. 

     The above algorithm has been evaluated through 
simulation using our hybrid environment. Each 
agent incorporates the same partitioning algorithm 
and executes in the virtual execution environment 
with links to the node where the agent actually sits. 
The agent code is parametric with respect to the 
routing tables – i.e. it can only access the local 
routing table – and list of nodes in its sub-partition. 
The output of the algorithm is incorporated in the 
final agents. Each agent contains a disjoint list of 
nodes (the sub-partition) while the agent node 
represents the center of the sub-partition.  
     Having implemented the MA-based network-
partitioning algorithm it was possible to run it under 
a variety of network conditions for the purposes of 
validation and assessment. A comprehensive 
evaluation of the algorithm’s scalability with respect 
to number of network nodes and network diameter is 
reported in [7] which applies the algorithm to 

configure a distributed monitoring system. 
Performance parameters include the traffic incurred 
by the monitoring system and its response time. 
Both of them have been found to increase linearly 
with network size, an interesting result that confirms 
the scalability of the proposed algorithm. 
     Simulations were also essential to study the 
optimality of our algorithm. The algorithm is 
optimal if it computes a set of centers (i.e. the p-
centers) that minimizes the total distance between 
each center and the nodes in its respective partition. 
Optimality has been studied by measuring two 
important distance metrics, “total hop distance” and 
“maximum weighted distance” under different 
network conditions (topology, size, average node 
degree, etc) and by comparing the results with those 
achieved with a provable near-optimal algorithm – 
i.e. the Lagrangian algorithm [6]. It should be 
mentioned that the former algorithm, despite 
providing near-optimal partitions, is not scalable 
because it is centralized and relies on the network 
distance matrix. 
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Figure 7. Simulation results. 

     Simulation results are depicted in Fig.7 which 
proves the near-optimality of our algorithm with 
regard to total hop distance (the MA curve is under 
the Lagrangian curve which is near-optimal). 
Maximum weighted distance is not provably near-
optimal but is, however, relatively close to it. 
 
 
5   Applicability of MA Simulator 
Sections 3 and 4 suggest an evaluation methodology 
which does not significantly differ from the typical 
simulation-based system performance evaluation 



described, for instance, in [8] (part V, p.391-504). 
Simulations design involves the appropriate choice 
of metrics, parameters, factors, and workload. It 
entails: the validation of the simulation model 
against the real system; the repetition of simulations 
over randomly generated network topologies having 
similar topological features; the performance of 
continuity, degeneracy, and consistency tests; and 
the statistical analysis of simulation traces.  
     Our simulation environment poses, however, a 
peculiar issue arising from its hybrid nature. In fact, 
it allows running the agent system in real time while 
network events are simulated. This generates the 
paradox of a system where data processing happens 
virtually instantaneously – i.e. the real-time clock – 
whereas network-bound events progress at the pace 
of the simulator – i.e. the simulator clock. Our MA 
virtual execution environment provides a loose 
synchronization between MA processing and 
network events by pausing MA execution during the 
generation of network events (Fig.3).  
     This approach suits those MA distributed systems 
whose processing is not tightly bound to networking 
events, such as the case study presented above. Each 
MA bases its cloning/partitioning decision based on 
the local routing table which is not assumed to 
change during MA processing. This assumption is 
reasonable because MA processing time is orders of 
magnitude smaller than that of networking events.  
     More generally, the MA simulator successfully 
captures the behavior of MA systems in which MA 
processing is relatively fast with respect to network 
events or is loosely coupled with them. We are 
currently working towards releasing this constraint 
in order to extend the applicability of the MA 
simulator to systems that are tightly coupled with 
networking events. 
 
 
6   Conclusions 
As MA distributed systems assume an increasingly 
important role in diverse areas of communications, 
management and service provisioning, tools for their 
evaluation become important. Simulation-based 
assessment has traditionally been limited to ad hoc 
implementations, often aimed at capturing particular 
aspects of the system. In this article, we have 
described a general-purpose MA simulation 
environment which allows the realization of MA 
code that can run over simulated networks. Our 
main design requirement was the ability to assess 
performance and scalability of complex MA systems 
over realistic networking environments. For this 
reason we have based our system on the NS network 

simulator, a well established environment which can 
handle networks of the order of thousand of nodes 
and supports the most common networking 
protocols. 
     We have realized, however, a prototype that can 
be used to validate new MA systems, study their 
behavior under a variety of conditions, and facilitate 
software re-use. We have illustrated our hybrid 
approach via a case study in which the MA code is 
only loosely coupled with the network simulator and 
can be easily ported to a real MA system.  
     Clearly, more work is needed to refine the MA 
models, add new MA functionality, and improve the 
synchronization between real-time and simulator 
clocks. It is through the lessons learned from new, 
additional cases studies that the limits of the 
simulator will be identified and stretched even 
further. 
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