
Using Linear Temporal Model Checking for Goal-oriented Policy Refinement

Frameworks

Javier Rubio-Loyola
1
, Joan Serrat

1
, Marinos Charalambides

2
, Paris Flegkas

2
,

George Pavlou
2
, Alberto Lluch Lafuente

3

1Universitat Politècnica de Catalunya, 2University of Surrey, 3Università di Pisa
1
{jrloyola, serrat}@tsc.upc.edu,

2
{M.Charalambides, P.Flegkas, G.Pavlou}@eim.surrey.ac.uk

3
lafuente@di.unipi.it

Abstract

Policy refinement is meant to derive lower-level

policies from higher-level ones so that these more

specific policies are better suited for use in different

execution environments. Although it has been

recognized as crucial, it has received relatively little

attention. We present a policy refinement framework

grounded in goal-elaboration methodologies and

reactive systems analysis. Through Linear-Time Model

Checking, we obtain system trace executions aimed at

fulfilling lower-level goals refined with the KAOS

goal-elaboration method. From system executions, we

abstract managed entities, conditions and actions to

encode the refined policies. We present our framework

and provide a refinement scenario applied to the

DiffServ QoS Management domain.

1. Introduction

A Policy-Based Network Management (PBNM)

system should allow the description of high-level

policies, enable their refinement into lower-level ones

and map them to commands that ultimately configure

the managed devices. Despite the enormous research

done on languages for specifying policies and

architectures for managing and deploying such policies

into distributed environments for different application

domains, policy refinement is a key area that still

remains scarcely studied.

Goal-oriented Requirements Engineering has been

proposed as a feasible alternative to formalize policy

refinement [1]. Goal-elaboration assisted by domain-

independent refinement patterns [2] has opened a new

and promising research area for policy analysis.

The representation of individual or several managed

objects is possible by defining finite state machines

that describe the multiple states in which such

managed objects can be [3], being possible to relate the

behavior of an object or a set of objects to the value of

one or more attributes that are used to characterize the

states of the system. State transitions are directly

related to changes of attributes, which policies

configure and control. The general "on-event and if-

condition then action" structure of policy rules makes

it possible to consider policy-based systems as

event/state-driven systems and use formal methods to

analyze their behavior. Model checking [4] is a formal

automated approach to exhaustively analyze whether

event/state-based systems satisfy specific behavioral

claims characterizing safety and reliability

requirements. After modeling a system and its

requirements in suitable formalisms, verification

algorithms check whether the system satisfies its

requirements by exhaustively testing all possible

combinations. One of the keys in the success of model

checking remains in its ability to find and report

counterexamples as execution traces that show the

processes, conditions, actions and states that make a

requirement not to hold.

In this paper, we present a policy refinement

approach based on Goal-oriented Requirements

Engineering and Model Checking techniques. As

initially proposed in [1], through goal-elaboration

methods, we refine lower-level goals that logically

entail high-level administrative guidelines. After this,

making use of linear temporal logic formulae and

model checking capabilities, we obtain execution

traces aimed at fulfilling the refined lower-level goals.

From system executions, relevant policy information is

abstracted and eventually encoded into a set of refined

policies. The novelty of the approach presented in this

paper is the introduction of formal verification

techniques in the context of goal-oriented policy

refinement frameworks.

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

The main issue behind policy refinement is to

abstract generic policy refinement patterns.

Nevertheless, abstracting patterns applicable to all

management domains is too difficult and probably

impossible. We start our study towards this direction

for a Differentiated Services (DiffServ) Quality of

Service (QoS) Management domain and present a

refinement scenario for this domain.

After this introduction, Section 2 provides the

formalisms used in our approach. Section 3 reviews

our policy refinement framework. Section 4 presents a

refinement scenario and Section 5 discusses some

important issues and future work as well. Section 6

presents the related work to conclude in Section 7.

2. Background

2.1. Pattern-driven goal elaboration

Goals capture, at different levels of abstraction, the

various objectives a system should achieve [5]. They

provide the rationale for requirements elaboration.

Many goal classifications have been presented in the

literature and different approaches for goal-oriented

elaboration and reasoning techniques have been

developed in the Requirements Engineering (RE) area

[5]. A temporal classification of goals is based on the

behavior prescribed by the goal. The following are

identified:

Achieve and Cease goals obey to system

behaviors that require some target property to

be eventually satisfied or denied respectively,

in some future state.

Maintain and Avoid goals restrict behaviors,

in that they require some target property to be

permanently satisfied or denied respectively,

in every future state.

We will follow the above classification for

reasoning analysis since it can be related to the

obligation, refrain, authorization and negation

concepts, widely used in policy-based management.

Several approaches have been proposed to

formalize goal elaboration [5]. For the reasons

expressed above, we propose to use support provided

by goal refinement methodologies grounded in

temporal logic. As initially proposed by [1], we use

KAOS [2], a formal technique to elaborate goals

inspired by the classic linear temporal logic of Manna

and Pnueli [6]. In the remaining of this section we

briefly outline KAOS.

By definition, a set of goal assertions G1, G2,…,Gn

is a complete refinement of a goal assertion G iff the

following conditions hold:

1. G1 G2 … Gn |= G (entailment)

2. i,j: j i Gj | Gi (minimality)

3. G1 G2 … Gn | false (consistency)

4. n > 1 (nonequivalence)

The KAOS method contains two essential operators

to relate goals: AND and OR refinement. The former

relates a goal to a set of subgoals in which satisfying

all subgoals in the refinement is a sufficient condition

for satisfying the high-level goal. OR-refinement

relates a goal to an alternative set, satisfying a

refinement is a sufficient condition for satisfying the

goal.

In KAOS, a refinement pattern is a one-level AND-

tree of abstract goal assertions such that the set of leaf

assertions is a complete refinement of the root

assertion. The KAOS method proposes the general

principle of reusing domain-independent refinement

patterns. These patterns have been included in a set of

libraries [7] that have been previously proved to be

correct. The libraries are grouped by the behavior

prescription of the high-level goals, namely Achieve,

Cease, Maintain and Avoid. Due to space limitations

and to the nature of the scenario proposed in Section 4,

we limit our study to Achieve refinement patterns; the

interested reader might consult [7] for an extended

description. Table 1 shows some AND-decomposition

patterns for high-level Achieve parent goals.

Table 1.Some prepositional patterns for achieve goals

RP Subgoals

RP1 P R Q P R P P W Q

RP2 P R R R U Q

RP3 P R R Q

RP4 P P1 Q1 P P2 Q2 (P1 P2)

 Q1 Q2 Q

RP5 P R R P R Q P P

RP6 R R P R Q P P

Table 1 presents different refinement patterns (RPs)

that represent different possibilities to decompose the

high-level goal into the respective subgoals. The

Achieve goal is formally expressed as P Q: If P then

eventually Q in the future. We use the classical

temporal operators: eventually in the future,

always in the future, U always in the future until and W

always in the future unless. RP3 for instance, defines a

milestone-driven tactic where an intermediate state

satisfying R must first be reached, from which a final

state satisfying Q must be reached. RP4 proposes

decomposition by cases. KAOS provides the necessary

support to hierarchically structure goals as graphs by

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

using different tactics in which the lower-level

subgoals logically entail the higher-level goal.

2.2. Linear temporal model checking

Model Checking [4] is a formal and automated

application of computational logic with high relevance

in concurrent and distributed systems verification. As

shown in Figure 1, it consists of three main processes:

modeling system behavior, modeling the requirements

specification of the system and verifying whether the

system satisfies its specification.

Figure 1. Model checking basic steps

Different formalisms have been proposed to model

system behavior, each tailored for specific domains.

Amongst the most common, labeled transition systems

(LTSs) are typically used. An LTS is a set of states

together with a transition set, modeling how a system

changes its state. Additionally, a labeling function is

used to relate states and transitions with observations.

The second process corresponds to the requirements

specifications' modeling. At this stage, system

observables like events, state of variables or the

processes responsible of the transitions are the subject

of interest. In fact, observations of a system are crucial

to specify the requirements for the correctness of an

event/state-based system. A fundamental dimension is

time and how observables are time-related. This is

precisely the aim of temporal logics. The use of a

specific logic depends on the type of verification to be

performed. Different model checkers have been

developed for different temporal logics. Different

temporal logics and model checkers can be found in

[6] and [4] respectively.

The third process is the verification of the

requirements specifications under "all" circumstances

of system execution. It attempts to span the entire state

space and verify every possible combination of inputs

(events and conditions). If a requirement (i.e. a

property) does not hold, model checkers can help to

identify the input sequence that triggers the failure (i.e.

conditions, events and states that made the property

not to hold). This ability has made model checking so

successful for reactive systems verification.

In our study, we need to have a mechanism that

allows one to express the ordering of events in time

where observations are extended with temporal

connections such as “eventually in the future” or

“always in the future”. We will then focus our work on

Linear Temporal Logic (LTL) Model Checking

verification. LTL formulae are interpreted over

computations of a system with sequences of states

representing executions of a system. If we let P be a set

of observable predicates, and f and g be LTL formulae

on P, then the representations shown on Table 2 are

also LTL formulae. The predicates and boolean

connectives expressed in the first row formulae have

the usual meaning. For the second row formulae,

operator next state is used in addition to those

described in Section 2.1, formula f would be satisfied

if the next state of the computation satisfies f. The

interested reader might consult [6] for extended

description of LTL formulae.

Table 2. Different LTL formulae

f f || g f && g f g f g

f f f f U g f W g

Broadly speaking, with LTL model checking we

can design and verify typical temporal properties that

express absence, universality, existence, precedence

and response of observable predicates and any

combination of these. A guide of how to design

formulas using temporal descriptions can be found at

[8].

If we were to verify a property of an event/state-

based system in which P is globally absent (formally

expressed as !P), we could get a counterexample

trace indicating the conditions, states, events and

transitions that make such absence not to hold, namely

the occurrence of P. From the counterexample, it is

also possible to identify the managed entities that

collaborate to make the absence not to hold. In other

words, we can use LTL formulae to obtain the

conditions, states, events and transitions and the

managed entities’ collaboration that make P to hold.

This is the basic idea behind the approach presented in

this paper; counterexamples traces can be interpreted

as plans that make the system satisfy determined

properties using a fully automated formal method.

As a model checking tool we use SPIN [9], a LTL

model checker that focuses on the verification of

concurrent software systems. It uses Promela [9] as the

D om ainrequestR eceived
requestN otA ccepted

requestR eceived
requestA ccep ted

T em pora l form ula

requestR eceived & requ estN otA ccepted ->
even tua lly (requ estR eceived & r equestA ccep ted)

M ode l
C hecker

Y es

N o!!

C ounterexam ple trace

System behaviour

R equirem ents Spec ifica tion

V erifica tion o f
requ irem ents

requestR eceived

requestA ccep ted

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

modeling language. Promela specifications are

basically state machines that communicate via

message-passing or shared variables. Requirement

specification can be done using some ad-hoc

mechanism to express deadlock-freedom or validity of

assertions, but, more generally, LTL is used. Not only

does SPIN provide the possibility to verify properties

but also to simulate the system and obtain/reproduce

counterexamples. As we will see, these capabilities are

relevant for our refinement analysis.

3. Policy Refinement Framework

Goal refinement must eventually result in the

identification and specification of requirements whose

responsibility must be assigned to agents [2]. Our

approach to policy refinement is shown in Figure 2.

Figure 2: Overall process for policy refinement

The following steps may be followed to

systematically deploy policies from high-level goals:

Goal graph elaboration

Responsibility assignment to managed entities

Operationalization (both part of the Counter-

example Management)

Policy encoding

In the Goal graph elaboration step, AND/OR

structures are built, defining goal hierarchies and their

refinement links. High-level goals are decomposed

using domain-independent refinement pattern libraries

following the KAOS elaboration method. The desired

outcome of this step is a set of lower-level goals that

logically entail higher-level ones. From the many

options of the structured goal graph, the administrator

selects the lower level goals that better satisfy his

requirements: lower-level goal selection sub step of

Figure 2. While the KAOS elaboration method

provides support for this first step, it does not provide

support to relate system behavior to goal fulfillment

finding. Nevertheless, in order to carry out the

following steps, this gap needs to be filled.

As described in Section 2.2, the inputs of model

checking are the specification of system behavior and

that of requirements. For the former, we propose

graphical representation, as depicted in Figure 2. As

mentioned, the modeling language of SPIN is

PROMELA [9] whose specifications are expressed

basically as state machines that communicate via

message passing or shared variables. The procedure to

translate graphic state charts or other visual modeling

languages into PROMELA is out of the scope of this

paper, this issue has been widely studied in the

literature [10]. Regarding the other input of Model

checking, i.e. the specification of requirements, the

Property formulation step shown in Figure 2 is aimed

at designing property formulae that characterize lower-

level goals. As in plan-based techniques [5], lower-

level goals are identified by state predicates, hence the

requirements must be characterized by such lower-

level goals. The Property formulation step takes into

account temporal information in which the lower-level

goals have been constructed. As described in Section

2.2, a very important issue here is that the requirements

are encoded into LTL formulae that basically describe

the absence of the behavior prescribed by the low-level

goal predicates. For example, if the low-level goals

G11 and G31 must be fulfilled to satisfy a high-level

goal G, and their temporal behavior is such that G11

must be fulfilled before G31, we might encode a

temporal formula specifying that G31 is never fulfilled

after G11. That way, the execution trace might indicate

system behavior to achieve G13 after G11 and

consequently G.

The property management process inside the MC

Management module is aimed at coordinating the

query to the model checker (SPIN). When the model

checker is queried with LTL formulae, it generates

counterexample traces that might be interpreted further

for the following refinement steps. Due to the nature of

the requirement specification (absence-based), the

counterexample will display the execution trace that

results as a consequence of the presence of the

predicates and the desired temporal behavior.

For the Managed entities responsibility assignment

and Operationalization steps, a systematic

interpretation of the counterexample trace generated by

SPIN is necessary. Both steps are part of the

Counterexample management process shown in Figure

2. One of the outputs of SPIN is a sequence chart. For

High-level goals

System behavior

Object

distribution

Refinement

pattern

database

Goal graph elaboration
preProcessing

G13:delayLossEstimation

AndResAllocatedG10:
conservative

G11:
optimistic

G14: delayLoss
Estimation

G18: explicitRes
Allocated

G12:
average

G15:

conservative

G16:
optimistic

G17:
average

G19: resourceAnd
LinkAllocated

G25: rescourceAnd

LSPAllocated

G31: explicit
Allocation

G32: LSP

ExpSetUp

G37: LinkBW

ExplicitlySetUp

G33: rangeRes
Allocated

G30: LSP
ExplicitlySetUp

G26: resources

Allocated

G24: Link
Explicitly SetUp

G20: resources

Allocated

G27: minRes

Allocated

G28: max

ResAllocated

G29: range

ResAllocated

G21: minRes
Allocated

G22: maxRes
Allocated

G23: range
ResAllocated

RP4’

RP4

RP3

RP4’

RP4’

RP3

RP3

RP4’

RP3

RP3

G34: minRes
Allocated

G35: maxRes
Allocated

G36: range

ResAllocated
RP3

[] (G15 -> [] (! G32))

¦¦ [] (G78 -> [] (! G92))

MC Management

Property formulation

SPIN

Property

mgmt

Counter-

example mgmt

Policy encoding
inst oblig busyHoursNDDelayLossEstimation {

on doRPC();

subject managers/TrafficEngineering/ND;

target CountDerivationManager;

do calculate_hop_count(EF, maxDelayLink);

when time.between (“0800” and “1200”); }

Policy deployment

Lower-level

goal selection

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

the responsibility step, we take this message sequence

chart to select the managed entities responsible to

achieve the administrative decisions. This information

and the object distribution information are used in the

final step of refinement as shown later.

Undoubtedly, the Operationalization process is

crucial for policy refinement. It implicitly includes the

responsibility assignment in the sense that the

operationalization step goes into the details of the

counterexample trace to identify the actions that the

managed entities may take. For our refinement

problem, the Operationalization step is particularly

focused at finding the processes that imply decisions in

order to identify the conditions, transitions and

operations that are meaningful for policy encoding. For

this step of the refinement we rely on the SPIN

capabilities to generate detailed traces from which this

valuable information is obtained.

Finally, the Policy encoding step takes as input the

information described above and the object distribution

in order to encode the policies in a policy specification

language. We have considered Ponder [11]. Following

its deployment model, the refined policies can be

compiled and deployed in the policy-based system.

4. Policy Refinement Application Scenario

The specialization of refinement patterns applicable

to all management domains is very difficult. In

practice, specialization patterns might be abstracted

from specific policy applicability areas. We present a

policy refinement scenario applied to DiffServ QoS

management. We describe the steps of the refinement

process applied to this domain and the feasibility of

our approach.

4.1. Application domain

The application domain of our scenario relies on the

framework developed in the context of the EU IST

TEQUILA project [12]. TEQUILA provides a policy-

based functional architecture for supporting QoS in IP

DiffServ networks. The generic architecture of the

TEQUILA framework is shown in Figure 3. It is

decomposed into three major subsystems, namely; the

Service Level Specification (SLS) management, the

Traffic Engineering (TE) and Monitoring system. The

former is responsible for agreeing QoS services (SLSs)

with customers and handling respective requests while

the TE subsystem is responsible for fulfilling the

contracted SLSs by appropriately engineering the

network. Due to space limitations, we will focus on the

TE part of TEQUILA, particularly the Network

Dimensioning (ND), in order for the reader to better

understand the scenario proposed in Section 4.2. More

details about TEQUILA can be found at [12] and [13].

Figure 3: Generic architecture of TEQUILA

ND is responsible for mapping the traffic onto the

physical network resources in order to accommodate

the forecasted traffic demands. Configuration includes

the definition of Label Switched Paths (LSPs) and

anticipated loading for each Per Hop Behavior (PHB)

on all interfaces. The output of ND is provided to

DRtM and DRsM, and also to SLS Management in

order to base the admission control decisions for future

SLS subscriptions. ND is decomposed in the following

subcomponents: Traffic Matrix Manipulation: this is

responsible for retrieving the Traffic Matrix (TM)

from Traffic Forecast and also provides functions for

manipulating entries in the TM. Network topology: this

holds the objects describing the physical network

topology together with the physical capacity of the

network links. Explicit LSP and BW allocation: this

offers methods that can explicitly define the MPLS

Labeled Switched Paths (LSPs) that Traffic Trunks

(TTs, aggregates of traffic flows with the same origin-

destination pair and same performance requirements)

should follow (expLSP state in Fig. 4). This

subcomponent also offers methods that can explicitly

define the way bandwidth (BW) should be allocated to

different traffic classes Ordered Aggregates (OAs,

minResAlloc and masResAlloc states in Fig. 4). Hop

Count Derivation: this provides functionality to handle

the QoS requirements of the expected traffic in terms

of delay and loss requirements by transforming them

into maximum hop count constraints (see

minDelayLoss, maxDelayLoss and avgDelayLoss

states in Fig. 4). Optimization Algorithm: its objective

is to find a set of paths for which the BW requirements

SLS

subscription

SLS

invocation

Traffic

Forecast

Traffic

Matrix

Network

Dimensioning

Dynamic

Resource Mgmt

Dynamic

Route Mgmt

Subscribed

SLSs

Resource

Availability

Matrix

Resource Provisioning Cycle

RI3

RI4

RI6

RI1

RI2
RI7

RI5 RI8

RE3

RE1

RE2

L1

L2

L3

L4

L5
L7

L8

L9

L10
L11

L12
L13

L6

L14

L15

Network Monitoring

Traffic

Engineering

SLS

Mgmt

OFFLINE

ONLINE

Customer
Traffic

Invocation

SLS

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

of the TTs are met as well as the requirements for

delay and loss by using the hop count constraint as an

upper bound and at the same time optimize the use of

network resources. ND allows setting upper bounds on

the number of hops the calculated paths are permitted

to have and on the number of alternative paths for

every TT for load balancing purposes (hopBalancing

and pathBalancing states in Fig. 4). It provides

functions to customize the BW allocation by setting

importance guidelines for a particular OA (cost

function settings; min/max/expCostResAlloc states in

Fig. 4). It also supports two optimization objectives: i)

avoid overloading parts of the network while other

parts are under loaded (minLinkLoad state in Fig. 4) or

ii) provide overall low network load (maxNetLoad

state in Fig. 4) . A compromise between these two

options is also possible (netCompromised state in Fig.

4). Spare/over-provisioned BW treatment: this assigns

residual physical capacity to the various classes

(spareCap states in Fig. 4) or reduces the allocated

capacity (OverCapacity states in Fig. 4) when link

capacity cannot satisfy the predicted traffic

requirements. Due to the complexity of the ND

component, we consider the summarized behavior

specification shown in Figure 4.

Figure 4: Simplified behavior of ND module

4.2. Scenario description

Consider the case where a set of subscribed SLSs

includes one from the "AOL" client for which the

administrator wants to ensure that specific

dimensioning directives be enforced especially during

specific periods of time, namely during busy hours

(8:00 to 12:00hrs and 15:00 to 17:00hrs). Consider

also that the AOL client in the network of Figure 3 has

contracted an SLS with the following technical

parameters:

A pipe between routers RE1 and RE2 with EF

PHB, 5ms delay, zero packet loss and assured

throughput of 5Mbps.

We consider that pipe defines the boundaries of the

QoS to be enforced as a “one-to-one” ingress-egress

SLS model. During busy hours, the administrator

wants to ensure that traffic entering the domain from

the node RE1 and exits from the node RE2 belonging

to such Ordered Aggregate (OA), follows the route

RE1-RI1-RI3-RI6-RE2. Additionally, due to the strict

requirements of delay and packet loss, the

administrator wants to be extremely conservative for

the hop-count estimation for traffic of the same QoS-

class as that of the “AOL” client. During busy hours,

the administrator wants to avoid under-loaded parts of

the network when other parts are overloaded and wants

to make sure that any spare capacity is equally split

amongst the PHBs.

The administrator will need to encode these

administrative goals into policies, considering the

managed entities that would enforce them, the actions,

conditions and constraints for their execution.

Considering that not only might the administrator

design policies for the ND module but for other

components in the TEQUILA framework, this task

might become extremely difficult.

4.3. Proposed solution

4.3.1 Step 1: Goal graph elaboration

Since the requirement of the administrator in the

above scenario is to ensure a given behavior, we use

the Achieve goal refinement patterns described in

Section 2.1. The final goal of the administrator is that

appropriate administrative directives are stored and

propagated to the underlying components. This high-

level goal can be formulated using the following

Linear Temporal specification:

G1 busyHoursDimensioning:

TM_busyHours configStored&Propagated

G1 is interpreted as: "when retrieving the traffic

matrix, appropriate ND directives for busy hours

should eventually be configured, stored and

propagated to the underlying components". Applying

the case-driven refinement pattern RP4 of Table 1, we

derive the subgoals G2 and G3, formally expressed as

follows:

G2 preProcessing&Calculation:

TM_busyHours /\ preProcessed&Calculated

 configStored&Propagated

idle

getting
Forecast

avgDelay
Loss

maxDelay
Loss

minDelay
Loss

expLSP

pre-processing

DRsM

maxRes
Alloc

minRes
Alloc

calculating

Path
Balancing

Hop
Balancing

maxNet
Load

minLink
Load

maxCost
resAlloc

net
Compromised

minCost
resAlloc

expCost
resAlloc

equallySplit
SpareCap

propSplit
SpareCap

expSplit
SpareCap

equallySplit
OverCapacity

propSplit
OverCapacity

expSplit
OverCapacity

Post

processing

store&
propagate

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

G3 preProcessingAndPostProcessing:

TM_busyHours /\ pre&PostProcessed

 configStored&Propagated

For each of these sub-goals (G2 and G3), we apply a

milestone-driven refinement tactic (RP3 of Table 1).

For G3, this has to be extended since RP3 is only

applicable for a single milestone refinement pattern.

We propose to extend RP3 and RP4 to make them

suitable for a multiple milestone-driven and case-

driven fashion respectively. RP3 and RP4 are modified

as depicted in Table 2.

Table 2. Some extended refinement patterns

RP Subgoals

RP3’ P R R S S Q

RP4’ P /\ P1 Q1, P /\ P2 Q2, P /\ P3 Q3,

(P1\/P2\/P3), Q1\/Q2\/Q3 Q

Applying RP3 and RP3' to G2 and G3 respectively, we

elaborate the goal graph shown in Figure 5.

Figure 5: Initial high-level goal elaboration

Lower-level goals preProcessing (G4), calculation

(G5), preProcessing (G6), calculation (G7) and

postProcessing (G8) are represented as follows:

G4: TM_busyHours /\ preProcessed&CalculatedReq/\

preProcessedReq calculated

G5: calculatedReq configStored&Propagated

G6: TM_busyHours /\ pre&PostProcessedReq /\

preProcessedReq calculated

G7: calculatedReq postProcessing

G8: postProcessingReq configStored&Propagated

From this initial goal-decomposition, it is not feasible

for the administrator to select the sub-goals that best

satisfy the high-level goals, so further decomposition is

needed for these lower-lever goals (G4 to G8).

Applying similar refinement guidelines, we elaborate

the goal graph for the preProcessing subgoal (G4 and

G6) as shown on Figure 6. In order to compose this

goal graph, RP3 and RP4 have been used. We have

used the extended RP4’ shown in Table 2 to refine G9,

G14 and G18 into their respective subgoals. Taking

delayLossEstimation (G9) as a high-level goal,

subgoals conservative (G10), optimistic (G11) and

average (G12) are refined. They are formally

represented as follows:

G9: preProcessReq/\delayLossEstReq calculated

G10: preProcessedReq/\delayLossEstReq/\

conservativeReq calculated

G11: preProcessedReq/\delayLossEstReq/\

optimisticReq calculated

G12: preProcessedReq/\delayLossEstReq/\

averageReq calculated

Similar temporal representations can be obtained for

the remaining subgoals. Regarding the calculation and

postProcessing sub goals shown in Figure 5, they are

refined similarly and their goal elaboration hierarchies

are shown in Figures 7 and 8 respectively.

Figure 6: Pre processing goal graph

Figure 7: Calculation goal graph

G1: busyHours
Dimensioning

G2: preProcessing
andCalculation

G3: preProcessing
AndPostProcessing

G4:
preProcessing

G5:
calculation

G6:
preProcessing

G7:
calculation

G8:
postProcessing

OR decomposition

AND decompositionRP4

RP3 RP3’

G5, G7:
calculation

G53:
Optimised

G54: costFct
Configured

G55: min
Importance

G56: max
Importance

G57: expl
Importance

G58: costAndLoad
Compromised

G59: costFct
Configured

G63: loadNet
Compromised

G67: loadNet
Compromised

G69: maxNet
LowLoaded

G70: expLoad
Compromised

G68: mnLink
Overloaded

G47: balanced

G51: hop
Limtied

G52: path
Limited

G48: hop&
pathBalanced

G50: path
Limited

G49: hop
Limited

G29: Optimised

G30: costFct
Configured

G31: min
Importance

G32: max
Importance

G33: expl
Importance

G34:costAndLoad
Compromised

G35: costFct
Configured

G36: min
Importance G37: max

Importance

G38: expl
Importance

G39: loadNet
Compromised

G40: minLink
OverLoaded

G41: maxNet
LowLoaded

G42: expLoad
Compromised

G43: loadNet
Compromised

G45: maxNet
LowLoaded

G46: expLoad
Compromised

G44: mnLink
Overloaded

G28: balanced
&Optimised

G60: min
Importance

G61: max
Importance

G62: expl
Importance

G64: minLink
OverLoaded

G65: maxNet
LowLoaded

G66: expLoad
Compromised

OR decomposition

AND decomposition

G4, G6:
preProcessing

G13:delayLossEstimation
AndResAllocated

G10:
conservative

G11:
optimistic

G18: Res
Allocated

G12:
average

RP4

RP3

RP4’

G19: LSP
ExpSetUp

G20: res
Allocated

G21: minRes
Allocated

G22: maxRes
Allocated

RP3

G23: rescourceAnd
LSPAllocated

G27: LSP
ExplicitlySetUp

G24: resources
Allocated

G25: minRes
Allocated

G26: max
ResAllocated

RP3

RP3

RP4’

G15:
conservative

G16:
optimistic

G17:
average

RP4’

OR decomposition

AND decomposition

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

G8:
postProcessing

G84: overProvisioning
Treatment

G85: red
Proportionally

G86: red
Equally

G87: red
Explicitly

G81: split
Proportionally

G71: spare&Over
Treatment

G72: spare
Configured

G73: split
Proportionally

G74: split
Equally

G75: split
Explicitly

G76: overProvisioning
Configured

G78: red
Equally

G79: red
Explicitly

G77: red
Proportionally

G82: split
Equally

G83: split
Explicitly

G80: spare
Treatment

OR decomposition

AND decomposition

Figure 8: Post processing goal graph

Analyzing the description of the administrative

high-level goal, we consider that the administrator's

requirements are fulfilled by satisfying the subgoals

G15, G19, G68 and G82.

4.3.2 Step 2: Responsibility assignment and

operationalization of goals

Due to the distribution of modules in the TEQUILA

architecture, as in any distributed system, fulfilling a

high-level goal may require the cooperation of a

combination of multiple components. The fist step

towards Responsibility assignment in our framework is

to design a temporal property that characterizes

absence of the system behavior that could make the

lower-level goals be fulfilled. For this purpose, we

design the following LTL property:

(G15 (G19)) || (G68 (G82)) …. (P1)

The interpretation of P1 is: “there is no system

behavior in which either, state G19 is true after G15 or

G82 is not fulfilled after G68”. By querying SPIN with

P1, the counterexample generated would give the

opposite: “system behavior in which both G19 is

fulfilled after G15 and G82 after G68 respectively”.

For a detailed description of how to make up similar

specification patterns the reader may consult [8]. One

of the outputs of the counterexample generation

process is a message sequence chart from which the

managed entities in charge of enforcing the

administrative guidelines are easily identified. The

abstract message chart of our scenario is shown in

Figure 9. From this chart, we identify the following

components responsible to enforce the administrative

guidelines: hop Count Option module, explicit

Route/BW Selection, optimisation and

spare/overprovisioning treatment modules.

Figure 9: SPIN abstract message chart

For the operationalization step, we go into the

detailed counterexample trace generated by SPIN. This

implicitly includes the responsibility assignment step

in the sense that operationalization goes into the details

of the trace to identify the actions that the managed

entities may take to achieve the administrative

guidelines. In Figure 10 we show the counterexample

trace for our ND scenario after a basic filtering

process. The first bracket corresponds to the condition

that enables the system behavior of our

counterexample. The subsequent brackets indicate

which actions the managed entities may take to fulfill

the high-level guidelines. The first three lines of each

of these brackets indicate that the managed entity

needs to be invoked and the invocation needs to be

attended (values from 1 to 0). The fourth line indicates

what action the managed entity needs to take. Finally,

the 5th line sets the attributes of the managed entity

that determine the desired state goal.

Figure 10: SPIN Detailed trace

Hop count derivation entity

Action:

calculate_hop_count(OA, max)

Explicit LSP/BW allocation

entity

Action:

setup_LSP(OA, {nodes}, bw)

Optimisation entity

Action:

set_exponent(max)

Spare and Over provisioning

entity

Action:

alloc_spare_bw(OA, equally)

|>(_doRPCAction)

|>dm_fine.dmState_fine = GettingForecast

| |>_hopcountConsideration = 1

| |>(_hopcountConsideration)

| |>_hopcountConsideration = 0

| |>calculate_hop_count_max = 1

| |>dm_fine.dmState_fine = maxDelayLoss

| | |>_explicitRoute_BWSelection = 1

| | |>(_explicitRoute_BWSelection)

| | |>_explicitRoute_BWSelection = 0

| | |>setup_LSP = 1

| | |>dm_fine.dmState_fine = expLSP

| | | |>_optimisationProcess = 1

| | | |>(_optimisationProcess)

| | | |>_optimisationProcess = 0

| | | |>set_exponent_Max = 1

| | | |>dm_fine.dmState_fine = minLinkLoad

| |>_spareAndOverprovisioningTreatment = 1

| |>(_spareAndOverprovisioningTreatment)

| |>_spareAndOverprovisioningTreatment = 0

| |>Alloc_spare_bw_equally = 1

| |>dm_fine.dmState_fine = equallySplitSpareCap

| |>_storeAndPropagation = 1

Condition: doRPC()

72

DMinvocation:1

72

hopCountOptionModule:2

72

explicitRoute_BWSelection:3

72

optimisationProcess:4

72

spareAndOverprovisioningTreatment:5

72

storingAndPropagation:6

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

4.3.3 Step 3: Policy encoding

Once conditions, managed entities and actions have

been identified, we need to encode the policies whose

enforcement might reproduce the counterexample

traces obtained in the previous step. In Ponder [11],

Obligation policies are event-triggered and define the

activities (actions) that subjects must perform on

targets. The event triggering our policies is the

condition identified in the last section (doRPC). The

subject is the automated manager component in charge

of enforcing the ND policies (ND_PMA). The targets

are the managed entities and the actions are identified

in the last section (hop Count Derivation Manager,

Explicit Allocation Manager, Optimisation Manager

and Spare/Over Provisioning BW Manager). It is

evident that the applicability of these policies is

restricted by administrative decisions (only during

busy hours), hence these constraints are directly

mapped to the obligation policy constraints. The

resulting set of the refined policies for our scenario is

shown in Figure 11.

inst oblig busyHoursNDDelayLossEstimation {

on doRPC();

subject ND_PMA;

target managers/TE/ND/hopCountDerivationManager;

do calculate_hop_count(EF, maxDelayLink);

when time.between ("08:00", "12:00") and time.between ("15:00",

"17:00"); }

inst oblig busyHoursNDAllocation {

on doRPC();

subject ND_PMA;

target managers/TE/ND/ExplicitAllocationManager;

do setup_LSP(EF, {RE1, RI1, RI3, RI6, RE2}, 5000);

when time.between ("08:00", "12:00") and time.between ("15:00",

"17:00"); }

inst oblig busyHoursNDOptimisation {

on doRPC();

subject ND_PMA;

target managers/TE/ND/OptimisationManager;

do set_exponent(maxValue);

when time.between ("08:00", "12:00") and time.between ("15:00",

"17:00"); }

inst oblig busyHoursNDOverProvisioning {

on doRPC();

subject ND_PMA;

target managers/TE/ND/SpareOverProvisioningBWManager;

do alloc_spare_bw(EF, equally);

when time.between ("08:00", "12:00") and time.between ("15:00",

"17:00"); }

Figure 11: Set of policies resulting from the

refinement process

5. Discussion and future work

Two issues about counterexample generation

deserve discussion. The first is when no

counterexamples are found. Two options might cause

this problem additional to exhaustion of the time and

space available to the model checker: 1; Wrong goal

refinement patterns applied to elaborate the goal-

graph. 2; The behavior of the system mismatches the

temporal goal elaboration. To overcome these

problems, an additional activity of Requirements

Engineering is needed, namely Alternative selection of

goals [5]. An additional alternative would be to extend

the system specification. A potential compromise

between these two options needs to be studied further.

The second issue is when more than one

counterexample is found. This might imply that the

administrator could choose between different options,

corresponding to different policy encodings, possibly

for different conditions. A comparative notion of

multiple counterexamples will also be part of our

future work.

The core of our work will be directed to provide

tool support to automate the processes presented in this

paper. We have envisaged the use of Objectiver [14]

for goal-elaboration/management and ArgoUML and

Hugo/RT [10] for behavior and PROMELA translation

processes respectively. Additionally, for large-scale

systems, work by Edelkamp and Lluch [15] will be

included to provide support with guided search

techniques additional to those provided by SPIN.

Additionally, we will study other temporal formulae

and goal elaboration patterns aimed at formalizing

inconsistencies between goals and between policies.

Additionally, the verification of other temporal

behavior prescription like universality, existence,

precedence and response would be used to explore

system behavior aimed at verifying such properties to

find inconsistencies or potential conflicting behaviors.

6. Related work

POWER [16] is one of the few policy refinement

approaches hitherto implemented. Our approach differs

to POWER in the sense that the latter is an

environment in which the user is guided to choose

policies from pre-designed policy templates designed

by an expert, tailored for specific use. Instead, we use

space exploration to find system behavior that satisfies

pre-refined high-level goals in a goal-oriented

framework. We consider reactive system analysis

through temporal verification and model checking.

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

More recently, work by Bandara et al [17] propose

an approach for transforming both policy and system

behavior specifications into a formal notation based on

Event Calculus (EC). The authors use goal elaboration

and abductive reasoning to derive strategies that would

achieve high-level goals. Our approach and the EC-

based approach differ in the way system behavior is

analyzed and in how policy information is abstracted.

While Event Calculus and abduction is used in the

former to infer the sequences of actions that achieve

particular goals, our approach goes through state

exploration to obtain system behavior that fulfils

lower-lever goals elaborated through temporal

refinement patterns. We encode policies using the

information abstracted from the execution trace while

in the EC-based approach these are encoded using the

generated strategies. The main advantage of the model

checking-based framework over the EC-based

framework is that the former can be used in situations

where it is necessary to account for an explicit

temporal execution of the goals when performing

refinement. This has not been addressed in the EC-

based approach [17]. At the time of this publication,

there is no evidence of performance evaluation of any

refinement approach. Future work will also address

comparative evaluations between the EC-based

approach and our framework.

7. Conclusions

We have presented an approach to policy

refinement based on Requirements Engineering and

model checking techniques. It allows find system

executions aimed at fulfilling low-level goals that

logically entail high-level administrative guidelines.

From system executions, policy information is

abstracted and eventually encoded into a set of refined

policies specified in Ponder [11]. We have described

the foundations, the reasoning of our approach and the

refinement process through a scenario applied to the

DiffServ QoS Management domain.

The main contribution of our work is the

introduction of formal verification techniques in the

context of policy refinement. This approach is novel

and opens a new front of study for policy analysis. We

hope that our proposal may contribute to solve the

policy refinement problem, so many times recognized

as crucial but at the same time so much dismissed.

Several outstanding issues have been identified.

Amongst the most important, we can mention the lack

or the existence of more than one solution (i.e. none or

more than one counterexample), the partial or total

automation of the involved processes and finally, the

scalability of framework directly related to “state

explosion” problem. All these issues have been

assessed and will be the focus of our work.

8. References

[1] A.K. Bandara, E.C. Lupu, J. Moffett, A. Russo; "A goal-

based approach to policy refinement" Fifth IEEE

International Workshop on Policies for Distributed Systems

and Networks, 2004

[2] R. Darimont and A. van Lamsweerde, "Formal

Refinement Patterns for Goal-Driven Requirements

Elaboration," 4th ACM Symposium on the Foundations of

Software Engineering (FSE4) No. 179-190, 1996.

[3] C.J. Strassner. Policy-based Network Management,

Solutions for the Next Generation. Elsevier, Morgan

Kaufmann Publishers 2004. ISBN: 1-55860-859-1

[4] E.M. Clarke, O. Grumberg, and D.A. Peled. Model

Checking. The MIT Press, 1999.

[5] A. van Lamsweerde “Goal-Oriented Requirements

Engineering: A Guided Tour”. 5th IEEE International

Symposium on Requirements Engineering, Toronto, August,

2001, pp. 249-263.

[6] Z. Manna and A. Pnueli. The Temporal Logic of Reactive

and Concurrent Systems: Specification. Springer, 1992

[7] R. Darimont, Process Support for Requirements

Elaboration, PhD Thesis, Université Catholique de Louvain,

Louvain-la-Neuve, Belgium, 1995.

[8] M. B. Dwyer, G. S. Avrunin and J. C. Corbett. “Property

Specification Patterns for Finite-State Verification”

Workshop on Formal Methods in Software Practice 1998.

[9] G. Holzmann. The SPIN Model Checker: Primer and

Reference Manua". A. Wesley. ISBN 0-321-22862-6. 2004

[10] M. Balser, S. Bäumler, A. Knapp, W. Reif, A. Thums.

“Interactive Verification of UML State Machines”. Proc. 6th

Int. Conf. Formal Engineering Methods (ICFEM'04)

[11] N. Damianou, T. Tonouchi, N. Dulay, E. Lupu, and M.

Sloman. "Tools for Doamin-based Policy Management of

Distributed Systems", (NOMS2002), Friorence, Italy, 2002

[12] P. Flegkas, P. Trimintzios, and G. Pavlou, "A Policy-

based Quality of Service Management Architecture for IP

DiffServ Networks," IEEE Network Magazine, 2002.

[13] P.Trimintzios etal. "A Management and Control

Architecture for Providing IP Differentiated Services in

MPLS-based Networks". IEEE Communications s Magazine,

2001.

[14] E. Delor, R. Darimont, A. Rifaut. “Software Quality

Starts with the Modelling of Goal-Oriented Requirements”.

(ICSSEA 2003), December 2-4, 2003

[15] S. Edelkamp, A. Lluch , S. Leue. “Directed explicit-

state model checking in the validation of communication

protocols”, Software Tools for Technology Transfer, 2003.

[16] M. Casassa, et al “POWER prototype: towards

integrated policy-based management”. NOMS 2000

[17] A. Bandara et al. "Policy refinement for DiffServ

Quality of Service Management". To appear in International

Symposium on Integrated Network Management (IM 2005).

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

