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Abstract 

Policy refinement is meant to derive lower-level 

policies from higher-level ones so that these more 

specific policies are better suited for use in different 

execution environments. Although it has been 

recognized as crucial, it has received relatively little 

attention. We present a policy refinement framework 

grounded in goal-elaboration methodologies and 

reactive systems analysis. Through Linear-Time Model 

Checking, we obtain system trace executions aimed at 

fulfilling lower-level goals refined with the KAOS 

goal-elaboration method. From system executions, we 

abstract managed entities, conditions and actions to 

encode the refined policies. We present our framework 

and provide a refinement scenario applied to the 

DiffServ QoS Management domain.  

1. Introduction 

A Policy-Based Network Management (PBNM) 

system should allow the description of high-level 

policies, enable their refinement into lower-level ones 

and map them to commands that ultimately configure 

the managed devices. Despite the enormous research 

done on languages for specifying policies and 

architectures for managing and deploying such policies 

into distributed environments for different application 

domains, policy refinement is a key area that still 

remains scarcely studied. 

Goal-oriented Requirements Engineering has been 

proposed as a feasible alternative to formalize policy 

refinement [1]. Goal-elaboration assisted by domain-

independent refinement patterns [2] has opened a new 

and promising research area for policy analysis.  

The representation of individual or several managed 

objects is possible by defining finite state machines 

that describe the multiple states in which such 

managed objects can be [3], being possible to relate the 

behavior of an object or a set of objects to the value of 

one or more attributes that are used to characterize the 

states of the system. State transitions are directly 

related to changes of attributes, which policies 

configure and control. The general "on-event and if-

condition then action" structure of policy rules makes 

it possible to consider policy-based systems as 

event/state-driven systems and use formal methods to 

analyze their behavior. Model checking [4] is a formal 

automated approach to exhaustively analyze whether 

event/state-based systems satisfy specific behavioral 

claims characterizing safety and reliability 

requirements. After modeling a system and its 

requirements in suitable formalisms, verification 

algorithms check whether the system satisfies its 

requirements by exhaustively testing all possible 

combinations. One of the keys in the success of model 

checking remains in its ability to find and report 

counterexamples as execution traces that show the 

processes, conditions, actions and states that make a 

requirement not to hold. 

In this paper, we present a policy refinement 

approach based on Goal-oriented Requirements 

Engineering and Model Checking techniques. As 

initially proposed in [1], through goal-elaboration 

methods, we refine lower-level goals that logically 

entail high-level administrative guidelines. After this, 

making use of linear temporal logic formulae and 

model checking capabilities, we obtain execution 

traces aimed at fulfilling the refined lower-level goals. 

From system executions, relevant policy information is 

abstracted and eventually encoded into a set of refined 

policies. The novelty of the approach presented in this 

paper is the introduction of formal verification 

techniques in the context of goal-oriented policy 

refinement frameworks. 
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The main issue behind policy refinement is to 

abstract generic policy refinement patterns. 

Nevertheless, abstracting patterns applicable to all 

management domains is too difficult and probably 

impossible. We start our study towards this direction 

for a Differentiated Services (DiffServ) Quality of 

Service (QoS) Management domain and present a 

refinement scenario for this domain. 

After this introduction, Section 2 provides the 

formalisms used in our approach. Section 3 reviews 

our policy refinement framework. Section 4 presents a 

refinement scenario and Section 5 discusses some 

important issues and future work as well. Section 6 

presents the related work to conclude in Section 7. 

2. Background 

2.1. Pattern-driven goal elaboration 

Goals capture, at different levels of abstraction, the 

various objectives a system should achieve [5]. They 

provide the rationale for requirements elaboration. 

Many goal classifications have been presented in the 

literature and different approaches for goal-oriented 

elaboration and reasoning techniques have been 

developed in the Requirements Engineering (RE) area 

[5]. A temporal classification of goals is based on the 

behavior prescribed by the goal. The following are 

identified: 

Achieve and Cease goals obey to system 

behaviors that require some target property to 

be eventually satisfied or denied respectively, 

in some future state.  

Maintain and Avoid goals restrict behaviors, 

in that they require some target property to be 

permanently satisfied or denied respectively, 

in every future state. 

We will follow the above classification for 

reasoning analysis since it can be related to the 

obligation, refrain, authorization and negation 

concepts, widely used in policy-based management. 

Several approaches have been proposed to 

formalize goal elaboration [5]. For the reasons 

expressed above, we propose to use support provided 

by goal refinement methodologies grounded in 

temporal logic. As initially proposed by [1], we use 

KAOS [2], a formal technique to elaborate goals 

inspired by the classic linear temporal logic of Manna 

and Pnueli [6]. In the remaining of this section we 

briefly outline KAOS. 

By definition, a set of goal assertions G1, G2,…,Gn 

is a complete refinement of a goal assertion G iff the 

following conditions hold: 

1. G1 G2 … Gn |= G  (entailment) 

2. i,j: j i  Gj |  Gi  (minimality) 

3. G1 G2 … Gn |  false  (consistency) 

4. n > 1    (nonequivalence) 

The KAOS method contains two essential operators 

to relate goals: AND and OR refinement. The former 

relates a goal to a set of subgoals in which satisfying 

all subgoals in the refinement is a sufficient condition 

for satisfying the high-level goal. OR-refinement 

relates a goal to an alternative set, satisfying a 

refinement is a sufficient condition for satisfying the 

goal. 

In KAOS, a refinement pattern is a one-level AND-

tree of abstract goal assertions such that the set of leaf 

assertions is a complete refinement of the root 

assertion. The KAOS method proposes the general 

principle of reusing domain-independent refinement 

patterns. These patterns have been included in a set of 

libraries [7] that have been previously proved to be 

correct. The libraries are grouped by the behavior 

prescription of the high-level goals, namely Achieve, 

Cease, Maintain and Avoid. Due to space limitations 

and to the nature of the scenario proposed in Section 4, 

we limit our study to Achieve refinement patterns; the 

interested reader might consult [7] for an extended 

description. Table 1 shows some AND-decomposition 

patterns for high-level Achieve parent goals.  

Table 1.Some prepositional patterns for achieve goals 

RP Subgoals 

RP1 P R Q      P R                P  P W Q 

RP2 P R           R  R U Q

RP3 P R           R Q

RP4 P P1 Q1  P P2 Q2    (P1 P2) 

                                                 Q1 Q2 Q

RP5 P R R   P R Q      P P

RP6 R R        P R Q      P P

Table 1 presents different refinement patterns (RPs) 

that represent different possibilities to decompose the 

high-level goal into the respective subgoals. The 

Achieve goal is formally expressed as P Q: If P then 

eventually Q in the future. We use the classical 

temporal operators:  eventually in the future, 

always in the future, U always in the future until and W

always in the future unless. RP3 for instance, defines a 

milestone-driven tactic where an intermediate state 

satisfying R must first be reached, from which a final 

state satisfying Q must be reached. RP4 proposes 

decomposition by cases. KAOS provides the necessary 

support to hierarchically structure goals as graphs by 
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using different tactics in which the lower-level 

subgoals logically entail the higher-level goal. 

2.2. Linear temporal model checking 

Model Checking [4] is a formal and automated 

application of computational logic with high relevance 

in concurrent and distributed systems verification. As 

shown in Figure 1, it consists of three main processes: 

modeling system behavior, modeling the requirements 

specification of the system and verifying whether the 

system satisfies its specification.  

Figure 1. Model checking basic steps

Different formalisms have been proposed to model 

system behavior, each tailored for specific domains. 

Amongst the most common, labeled transition systems 

(LTSs) are typically used. An LTS is a set of states 

together with a transition set, modeling how a system 

changes its state. Additionally, a labeling function is 

used to relate states and transitions with observations.  

The second process corresponds to the requirements 

specifications' modeling. At this stage, system 

observables like events, state of variables or the 

processes responsible of the transitions are the subject 

of interest. In fact, observations of a system are crucial 

to specify the requirements for the correctness of an 

event/state-based system. A fundamental dimension is 

time and how observables are time-related. This is 

precisely the aim of temporal logics. The use of a 

specific logic depends on the type of verification to be 

performed. Different model checkers have been 

developed for different temporal logics. Different 

temporal logics and model checkers can be found in 

[6] and [4] respectively. 

The third process is the verification of the 

requirements specifications under "all" circumstances 

of system execution. It attempts to span the entire state 

space and verify every possible combination of inputs 

(events and conditions). If a requirement (i.e. a 

property) does not hold, model checkers can help to 

identify the input sequence that triggers the failure (i.e. 

conditions, events and states that made the property 

not to hold). This ability has made model checking so 

successful for reactive systems verification. 

In our study, we need to have a mechanism that 

allows one to express the ordering of events in time 

where observations are extended with temporal 

connections such as “eventually in the future” or 

“always in the future”. We will then focus our work on 

Linear Temporal Logic (LTL) Model Checking 

verification. LTL formulae are interpreted over 

computations of a system with sequences of states 

representing executions of a system. If we let P be a set 

of observable predicates, and f and g be LTL formulae 

on P, then the representations shown on Table 2 are 

also LTL formulae. The predicates and boolean 

connectives expressed in the first row formulae have 

the usual meaning. For the second row formulae, 

operator  next state is used in addition to those 

described in Section 2.1, formula f would be satisfied 

if the next state of the computation satisfies f. The 

interested reader might consult [6] for extended 

description of LTL formulae. 

Table 2. Different LTL formulae 

f f || g f && g f  g f  g 

f f f f U g f W g 

Broadly speaking, with LTL model checking we 

can design and verify typical temporal properties that 

express absence, universality, existence, precedence

and response of observable predicates and any 

combination of these. A guide of how to design 

formulas using temporal descriptions can be found at 

[8].  

If we were to verify a property of an event/state-

based system in which P is globally absent (formally 

expressed as !P), we could get a counterexample 

trace indicating the conditions, states, events and 

transitions that make such absence not to hold, namely 

the occurrence of P. From the counterexample, it is 

also possible to identify the managed entities that 

collaborate to make the absence not to hold. In other 

words, we can use LTL formulae to obtain the 

conditions, states, events and transitions and the 

managed entities’ collaboration that make P to hold. 

This is the basic idea behind the approach presented in 

this paper; counterexamples traces can be interpreted 

as plans that make the system satisfy determined 

properties using a fully automated formal method.  

As a model checking tool we use SPIN [9], a LTL 

model checker that focuses on the verification of 

concurrent software systems. It uses Promela [9] as the 

D om ainrequestR eceived
requestN otA ccepted

requestR eceived
requestA ccep ted

T em pora l form ula

requestR eceived & requ estN otA ccepted ->
even tua lly  (requ estR eceived & r equestA ccep ted )

M ode l
C hecker

Y es

N o!!

C ounterexam ple  trace

System  behaviour

R equirem ents  Spec ifica tion

V erifica tion  o f
requ irem ents

requestR eceived

requestA ccep ted
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modeling language. Promela specifications are 

basically state machines that communicate via 

message-passing or shared variables. Requirement 

specification can be done using some ad-hoc 

mechanism to express deadlock-freedom or validity of 

assertions, but, more generally, LTL is used. Not only 

does SPIN provide the possibility to verify properties 

but also to simulate the system and obtain/reproduce 

counterexamples. As we will see, these capabilities are 

relevant for our refinement analysis. 

3. Policy Refinement Framework 

Goal refinement must eventually result in the 

identification and specification of requirements whose 

responsibility must be assigned to agents [2]. Our 

approach to policy refinement is shown in Figure 2.  

Figure 2: Overall process for policy refinement

The following steps may be followed to 

systematically deploy policies from high-level goals: 

Goal graph elaboration 

Responsibility assignment to managed entities 

Operationalization (both part of the Counter-

example Management)

Policy encoding 

In the Goal graph elaboration step, AND/OR 

structures are built, defining goal hierarchies and their 

refinement links. High-level goals are decomposed 

using domain-independent refinement pattern libraries 

following the KAOS elaboration method. The desired 

outcome of this step is a set of lower-level goals that 

logically entail higher-level ones. From the many 

options of the structured goal graph, the administrator 

selects the lower level goals that better satisfy his 

requirements: lower-level goal selection sub step of 

Figure 2. While the KAOS elaboration method 

provides support for this first step, it does not provide 

support to relate system behavior to goal fulfillment 

finding. Nevertheless, in order to carry out the 

following steps, this gap needs to be filled. 

As described in Section 2.2, the inputs of model 

checking are the specification of system behavior and 

that of requirements. For the former, we propose 

graphical representation, as depicted in Figure 2. As 

mentioned, the modeling language of SPIN is 

PROMELA [9] whose specifications are expressed 

basically as state machines that communicate via 

message passing or shared variables. The procedure to 

translate graphic state charts or other visual modeling 

languages into PROMELA is out of the scope of this 

paper, this issue has been widely studied in the 

literature [10]. Regarding the other input of Model 

checking, i.e. the specification of requirements, the 

Property formulation step shown in Figure 2 is aimed 

at designing property formulae that characterize lower-

level goals. As in plan-based techniques [5], lower-

level goals are identified by state predicates, hence the 

requirements must be characterized by such lower-

level goals. The Property formulation step takes into 

account temporal information in which the lower-level 

goals have been constructed. As described in Section 

2.2, a very important issue here is that the requirements 

are encoded into LTL formulae that basically describe 

the absence of the behavior prescribed by the low-level 

goal predicates. For example, if the low-level goals 

G11 and G31 must be fulfilled to satisfy a high-level 

goal G, and their temporal behavior is such that G11 

must be fulfilled before G31, we might encode a 

temporal formula specifying that G31 is never fulfilled 

after G11. That way, the execution trace might indicate 

system behavior to achieve G13 after G11 and 

consequently G. 

The property management process inside the MC 

Management module is aimed at coordinating the 

query to the model checker (SPIN). When the model 

checker is queried with LTL formulae, it generates 

counterexample traces that might be interpreted further 

for the following refinement steps. Due to the nature of 

the requirement specification (absence-based), the 

counterexample will display the execution trace that 

results as a consequence of the presence of the 

predicates and the desired temporal behavior.  

For the Managed entities responsibility assignment

and Operationalization steps, a systematic 

interpretation of the counterexample trace generated by 

SPIN is necessary. Both steps are part of the 

Counterexample management process shown in Figure 

2. One of the outputs of SPIN is a sequence chart. For 

High-level goals

System behavior

Object

distribution

Refinement

pattern

database

Goal graph elaboration
preProcessing

G13:delayLossEstimation

AndResAllocatedG10:
conservative

G11:
optimistic

G14: delayLoss
Estimation

G18: explicitRes
Allocated

G12:
average

G15:

conservative

G16:
optimistic

G17:
average

G19: resourceAnd
LinkAllocated

G25: rescourceAnd

LSPAllocated

G31: explicit
Allocation

G32: LSP

ExpSetUp

G37: LinkBW

ExplicitlySetUp

G33: rangeRes
Allocated

G30: LSP
ExplicitlySetUp

G26: resources

Allocated

G24: Link
Explicitly SetUp

G20: resources

Allocated

G27: minRes

Allocated

G28: max

ResAllocated

G29: range

ResAllocated

G21: minRes
Allocated

G22: maxRes
Allocated

G23: range
ResAllocated

RP4’

RP4

RP3

RP4’

RP4’

RP3

RP3

RP4’

RP3

RP3

G34: minRes
Allocated

G35: maxRes
Allocated

G36: range

ResAllocated
RP3

[] (G15 -> [] ( ! G32 ))  

¦¦ [] ( G78 -> [] ( ! G92 ) )

MC Management

Property formulation

SPIN

Property

mgmt

Counter-

example mgmt

Policy  encoding
inst oblig busyHoursNDDelayLossEstimation {

on doRPC();

subject managers/TrafficEngineering/ND;

target CountDerivationManager;

do calculate_hop_count(EF, maxDelayLink);

when time.between (“0800” and “1200”); }

Policy  deployment

Lower-level

goal selection
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the responsibility step, we take this message sequence 

chart to select the managed entities responsible to 

achieve the administrative decisions. This information 

and the object distribution information are used in the 

final step of refinement as shown later. 

Undoubtedly, the Operationalization process is 

crucial for policy refinement. It implicitly includes the 

responsibility assignment in the sense that the 

operationalization step goes into the details of the 

counterexample trace to identify the actions that the 

managed entities may take. For our refinement 

problem, the Operationalization step is particularly 

focused at finding the processes that imply decisions in 

order to identify the conditions, transitions and 

operations that are meaningful for policy encoding. For 

this step of the refinement we rely on the SPIN 

capabilities to generate detailed traces from which this 

valuable information is obtained.  

Finally, the Policy encoding step takes as input the 

information described above and the object distribution 

in order to encode the policies in a policy specification 

language. We have considered Ponder [11]. Following 

its deployment model, the refined policies can be 

compiled and deployed in the policy-based system. 

4. Policy Refinement Application Scenario 

The specialization of refinement patterns applicable 

to all management domains is very difficult. In 

practice, specialization patterns might be abstracted 

from specific policy applicability areas. We present a 

policy refinement scenario applied to DiffServ QoS 

management. We describe the steps of the refinement 

process applied to this domain and the feasibility of 

our approach. 

4.1. Application domain 

The application domain of our scenario relies on the 

framework developed in the context of the EU IST 

TEQUILA project [12]. TEQUILA provides a policy-

based functional architecture for supporting QoS in IP 

DiffServ networks. The generic architecture of the 

TEQUILA framework is shown in Figure 3. It is 

decomposed into three major subsystems, namely; the 

Service Level Specification (SLS) management, the 

Traffic Engineering (TE) and Monitoring system. The 

former is responsible for agreeing QoS services (SLSs) 

with customers and handling respective requests while 

the TE subsystem is responsible for fulfilling the 

contracted SLSs by appropriately engineering the 

network. Due to space limitations, we will focus on the 

TE part of TEQUILA, particularly the Network 

Dimensioning (ND), in order for the reader to better 

understand the scenario proposed in Section 4.2. More 

details about TEQUILA can be found at [12] and [13]. 

Figure 3: Generic architecture of TEQUILA  

ND is responsible for mapping the traffic onto the 

physical network resources in order to accommodate 

the forecasted traffic demands. Configuration includes 

the definition of Label Switched Paths (LSPs) and 

anticipated loading for each Per Hop Behavior (PHB) 

on all interfaces. The output of ND is provided to 

DRtM and DRsM, and also to SLS Management in 

order to base the admission control decisions for future 

SLS subscriptions. ND is decomposed in the following 

subcomponents: Traffic Matrix Manipulation: this is 

responsible for retrieving the Traffic Matrix (TM) 

from Traffic Forecast and also provides functions for 

manipulating entries in the TM. Network topology: this 

holds the objects describing the physical network 

topology together with the physical capacity of the 

network links. Explicit LSP and BW allocation: this 

offers methods that can explicitly define the MPLS 

Labeled Switched Paths (LSPs) that Traffic Trunks 

(TTs, aggregates of traffic flows with the same origin-

destination pair and same performance requirements) 

should follow (expLSP state in Fig. 4). This 

subcomponent also offers methods that can explicitly 

define the way bandwidth (BW) should be allocated to 

different traffic classes Ordered Aggregates (OAs, 

minResAlloc and masResAlloc states in Fig. 4). Hop

Count Derivation: this provides functionality to handle 

the QoS requirements of the expected traffic in terms 

of delay and loss requirements by transforming them 

into maximum hop count constraints (see 

minDelayLoss, maxDelayLoss and avgDelayLoss 

states in Fig. 4). Optimization Algorithm: its objective 

is to find a set of paths for which the BW requirements 
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SLS
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RI4

RI6
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of the TTs are met as well as the requirements for 

delay and loss by using the hop count constraint as an 

upper bound and at the same time optimize the use of 

network resources. ND allows setting upper bounds on 

the number of hops the calculated paths are permitted 

to have and on the number of alternative paths for 

every TT for load balancing purposes (hopBalancing 

and pathBalancing states in Fig. 4). It provides 

functions to customize the BW allocation by setting 

importance guidelines for a particular OA (cost 

function settings; min/max/expCostResAlloc states in 

Fig. 4). It also supports two optimization objectives: i) 

avoid overloading parts of the network while other 

parts are under loaded (minLinkLoad state in Fig. 4) or 

ii) provide overall low network load (maxNetLoad 

state in Fig. 4) . A compromise between these two 

options is also possible (netCompromised state in Fig. 

4). Spare/over-provisioned BW treatment: this assigns 

residual physical capacity to the various classes 

(spareCap states in Fig. 4) or reduces the allocated 

capacity (OverCapacity states in Fig. 4) when link 

capacity cannot satisfy the predicted traffic 

requirements. Due to the complexity of the ND 

component, we consider the summarized behavior 

specification shown in Figure 4. 

Figure 4: Simplified behavior of ND module  

4.2. Scenario description 

Consider the case where a set of subscribed SLSs 

includes one from the "AOL" client for which the 

administrator wants to ensure that specific 

dimensioning directives be enforced especially during 

specific periods of time, namely during busy hours 

(8:00 to 12:00hrs and 15:00 to 17:00hrs). Consider 

also that the AOL client in the network of Figure 3 has 

contracted an SLS with the following technical 

parameters: 

A pipe between routers RE1 and RE2 with EF 

PHB, 5ms delay, zero packet loss and assured 

throughput of 5Mbps.

We consider that pipe defines the boundaries of the 

QoS to be enforced as a “one-to-one” ingress-egress 

SLS model. During busy hours, the administrator 

wants to ensure that traffic entering the domain from 

the node RE1 and exits from the node RE2 belonging 

to such Ordered Aggregate (OA), follows the route 

RE1-RI1-RI3-RI6-RE2. Additionally, due to the strict 

requirements of delay and packet loss, the 

administrator wants to be extremely conservative for 

the hop-count estimation for traffic of the same QoS-

class as that of the “AOL” client. During busy hours, 

the administrator wants to avoid under-loaded parts of 

the network when other parts are overloaded and wants 

to make sure that any spare capacity is equally split 

amongst the PHBs.  

The administrator will need to encode these 

administrative goals into policies, considering the 

managed entities that would enforce them, the actions, 

conditions and constraints for their execution. 

Considering that not only might the administrator 

design policies for the ND module but for other 

components in the TEQUILA framework, this task 

might become extremely difficult.  

4.3. Proposed solution 

4.3.1 Step 1: Goal graph elaboration 

Since the requirement of the administrator in the 

above scenario is to ensure a given behavior, we use 

the Achieve goal refinement patterns described in 

Section 2.1. The final goal of the administrator is that 

appropriate administrative directives are stored and 

propagated to the underlying components. This high- 

level goal can be formulated using the following 

Linear Temporal specification: 

G1 busyHoursDimensioning: 

TM_busyHours  configStored&Propagated 

G1 is interpreted as: "when retrieving the traffic 

matrix, appropriate ND directives for busy hours

should eventually be configured, stored and 

propagated to the underlying components". Applying 

the case-driven refinement pattern RP4 of Table 1, we 

derive the subgoals G2 and G3, formally expressed as 

follows: 

G2  preProcessing&Calculation: 

TM_busyHours /\  preProcessed&Calculated 

 configStored&Propagated 

idle

getting
Forecast

avgDelay
Loss

maxDelay
Loss

minDelay
Loss

expLSP

pre-processing

DRsM

maxRes
Alloc

minRes
Alloc

calculating

Path
Balancing

Hop
Balancing

maxNet
Load

minLink
Load

maxCost
resAlloc

net
Compromised

minCost
resAlloc

expCost
resAlloc

equallySplit
SpareCap

propSplit
SpareCap

expSplit
SpareCap

equallySplit
OverCapacity

propSplit
OverCapacity

expSplit
OverCapacity

Post

processing

store&
propagate
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G3  preProcessingAndPostProcessing: 

TM_busyHours /\ pre&PostProcessed 

 configStored&Propagated 

For each of these sub-goals (G2 and G3), we apply a 

milestone-driven refinement tactic (RP3 of Table 1). 

For G3, this has to be extended since RP3 is only 

applicable for a single milestone refinement pattern. 

We propose to extend RP3 and RP4 to make them 

suitable for a multiple milestone-driven and case-

driven fashion respectively. RP3 and RP4 are modified 

as depicted in Table 2. 

Table 2. Some extended refinement patterns 

RP Subgoals 

RP3’ P  R      R  S       S  Q 

RP4’ P /\ P1  Q1,  P /\ P2  Q2,  P /\ P3  Q3, 

(P1\/P2\/P3),     Q1\/Q2\/Q3  Q 

Applying RP3 and RP3' to G2 and G3 respectively, we 

elaborate the goal graph shown in Figure 5. 

Figure 5: Initial high-level goal elaboration  

Lower-level goals preProcessing (G4), calculation

(G5), preProcessing (G6), calculation (G7) and 

postProcessing (G8) are represented as follows: 

G4: TM_busyHours /\  preProcessed&CalculatedReq/\ 

preProcessedReq  calculated 

G5: calculatedReq  configStored&Propagated 

G6: TM_busyHours /\ pre&PostProcessedReq /\ 

preProcessedReq  calculated 

G7: calculatedReq  postProcessing 

G8: postProcessingReq configStored&Propagated 

From this initial goal-decomposition, it is not feasible 

for the administrator to select the sub-goals that best 

satisfy the high-level goals, so further decomposition is 

needed for these lower-lever goals (G4 to G8).  

Applying similar refinement guidelines, we elaborate 

the goal graph for the preProcessing subgoal (G4 and 

G6) as shown on Figure 6. In order to compose this 

goal graph, RP3 and RP4 have been used. We have 

used the extended RP4’ shown in Table 2 to refine G9, 

G14 and G18 into their respective subgoals. Taking 

delayLossEstimation (G9) as a high-level goal, 

subgoals conservative (G10), optimistic (G11) and 

average (G12) are refined. They are formally 

represented as follows: 

G9:  preProcessReq/\delayLossEstReq  calculated 

G10: preProcessedReq/\delayLossEstReq/\ 

conservativeReq  calculated 

G11: preProcessedReq/\delayLossEstReq/\ 

optimisticReq  calculated 

G12: preProcessedReq/\delayLossEstReq/\ 

averageReq  calculated 

Similar temporal representations can be obtained for 

the remaining subgoals. Regarding the calculation and 

postProcessing sub goals shown in Figure 5, they are 

refined similarly and their goal elaboration hierarchies 

are shown in Figures 7 and 8 respectively. 

Figure 6: Pre processing goal graph 

Figure 7: Calculation goal graph 
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Figure 8: Post processing goal graph 

Analyzing the description of the administrative 

high-level goal, we consider that the administrator's 

requirements are fulfilled by satisfying the subgoals 

G15, G19, G68 and G82. 

4.3.2 Step 2: Responsibility assignment and 

operationalization of goals

Due to the distribution of modules in the TEQUILA 

architecture, as in any distributed system, fulfilling a 

high-level goal may require the cooperation of a 

combination of multiple components. The fist step 

towards Responsibility assignment in our framework is 

to design a temporal property that characterizes 

absence of the system behavior that could make the 

lower-level goals be fulfilled. For this purpose, we 

design the following LTL property:  

(G15 ( G19 )) || (G68 ( G82)) …. (P1) 

The interpretation of P1 is: “there is no system 

behavior in which either, state G19 is true after G15 or 

G82 is not fulfilled after G68”. By querying SPIN with 

P1, the counterexample generated would give the 

opposite: “system behavior in which both G19 is 

fulfilled after G15 and G82 after G68 respectively”. 

For a detailed description of how to make up similar 

specification patterns the reader may consult [8]. One 

of the outputs of the counterexample generation 

process is a message sequence chart from which the 

managed entities in charge of enforcing the 

administrative guidelines are easily identified. The 

abstract message chart of our scenario is shown in 

Figure 9. From this chart, we identify the following 

components responsible to enforce the administrative 

guidelines: hop Count Option module, explicit 

Route/BW Selection, optimisation and 

spare/overprovisioning treatment modules.  

Figure 9: SPIN abstract message chart 

For the operationalization step, we go into the 

detailed counterexample trace generated by SPIN. This 

implicitly includes the responsibility assignment step 

in the sense that operationalization goes into the details 

of the trace to identify the actions that the managed 

entities may take to achieve the administrative 

guidelines. In Figure 10 we show the counterexample 

trace for our ND scenario after a basic filtering 

process. The first bracket corresponds to the condition 

that enables the system behavior of our 

counterexample. The subsequent brackets indicate 

which actions the managed entities may take to fulfill 

the high-level guidelines. The first three lines of each 

of these brackets indicate that the managed entity 

needs to be invoked and the invocation needs to be 

attended (values from 1 to 0). The fourth line indicates 

what action the managed entity needs to take. Finally, 

the 5th line sets the attributes of the managed entity 

that determine the desired state goal. 

Figure 10: SPIN Detailed trace 
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| | |>_explicitRoute_BWSelection = 0
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| | |>dm_fine.dmState_fine = expLSP
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4.3.3 Step 3: Policy encoding

       

Once conditions, managed entities and actions have 

been identified, we need to encode the policies whose 

enforcement might reproduce the counterexample 

traces obtained in the previous step. In Ponder [11], 

Obligation policies are event-triggered and define the 

activities (actions) that subjects must perform on 

targets.  The event triggering our policies is the 

condition identified in the last section (doRPC). The 

subject is the automated manager component in charge 

of enforcing the ND policies (ND_PMA). The targets 

are the managed entities and the actions are identified 

in the last section (hop Count Derivation Manager, 

Explicit Allocation Manager, Optimisation Manager 

and Spare/Over Provisioning BW Manager). It is 

evident that the applicability of these policies is 

restricted by administrative decisions (only during 

busy hours), hence these constraints are directly 

mapped to the obligation policy constraints. The 

resulting set of the refined policies for our scenario is 

shown in Figure 11. 

inst oblig busyHoursNDDelayLossEstimation { 

on doRPC(); 

subject ND_PMA; 

target managers/TE/ND/hopCountDerivationManager; 

do calculate_hop_count(EF, maxDelayLink); 

when time.between ("08:00", "12:00") and time.between ("15:00",  

"17:00"); } 

inst oblig busyHoursNDAllocation { 

on doRPC(); 

subject ND_PMA; 

target managers/TE/ND/ExplicitAllocationManager; 

do setup_LSP(EF, {RE1, RI1, RI3, RI6, RE2},  5000); 

when time.between ("08:00", "12:00") and time.between ("15:00", 

"17:00"); } 

inst oblig busyHoursNDOptimisation { 

on doRPC(); 

subject ND_PMA; 

target managers/TE/ND/OptimisationManager; 

do set_exponent(maxValue); 

when time.between ("08:00", "12:00") and time.between ("15:00", 

"17:00"); } 

inst oblig busyHoursNDOverProvisioning { 

on doRPC(); 

subject ND_PMA; 

target managers/TE/ND/SpareOverProvisioningBWManager; 

do alloc_spare_bw(EF, equally); 

when time.between ("08:00", "12:00") and time.between ("15:00", 

"17:00"); } 

Figure 11: Set of policies resulting from the 

refinement process 

5. Discussion and future work 

Two issues about counterexample generation 

deserve discussion. The first is when no 

counterexamples are found. Two options might cause 

this problem additional to exhaustion of the time and 

space available to the model checker: 1; Wrong goal 

refinement patterns applied to elaborate the goal-

graph. 2; The behavior of the system mismatches the 

temporal goal elaboration. To overcome these 

problems, an additional activity of Requirements 

Engineering is needed, namely Alternative selection of 

goals [5]. An additional alternative would be to extend 

the system specification. A potential compromise 

between these two options needs to be studied further. 

The second issue is when more than one 

counterexample is found. This might imply that the 

administrator could choose between different options, 

corresponding to different policy encodings, possibly 

for different conditions. A comparative notion of 

multiple counterexamples will also be part of our 

future work. 

The core of our work will be directed to provide 

tool support to automate the processes presented in this 

paper. We have envisaged the use of Objectiver [14] 

for goal-elaboration/management and ArgoUML and 

Hugo/RT [10] for behavior and PROMELA translation 

processes respectively. Additionally, for large-scale 

systems, work by Edelkamp and Lluch [15] will be 

included to provide support with guided search 

techniques additional to those provided by SPIN. 

Additionally, we will study other temporal formulae 

and goal elaboration patterns aimed at formalizing 

inconsistencies between goals and between policies. 

Additionally, the verification of other temporal 

behavior prescription like universality, existence, 

precedence and response would be used to explore 

system behavior aimed at verifying such properties to 

find inconsistencies or potential conflicting behaviors.  

6. Related work 

POWER [16] is one of the few policy refinement 

approaches hitherto implemented. Our approach differs 

to POWER in the sense that the latter is an 

environment in which the user is guided to choose 

policies from pre-designed policy templates designed 

by an expert, tailored for specific use. Instead, we use 

space exploration to find system behavior that satisfies 

pre-refined high-level goals in a goal-oriented 

framework. We consider reactive system analysis 

through temporal verification and model checking. 
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More recently, work by Bandara et al [17] propose 

an approach for transforming both policy and system 

behavior specifications into a formal notation based on 

Event Calculus (EC). The authors use goal elaboration 

and abductive reasoning to derive strategies that would 

achieve high-level goals. Our approach and the EC-

based approach differ in the way system behavior is 

analyzed and in how policy information is abstracted. 

While Event Calculus and abduction is used in the 

former to infer the sequences of actions that achieve 

particular goals, our approach goes through state 

exploration to obtain system behavior that fulfils 

lower-lever goals elaborated through temporal 

refinement patterns. We encode policies using the 

information abstracted from the execution trace while 

in the EC-based approach these are encoded using the 

generated strategies. The main advantage of the model 

checking-based framework over the EC-based 

framework is that the former can be used in situations 

where it is necessary to account for an explicit 

temporal execution of the goals when performing 

refinement. This has not been addressed in the EC-

based approach [17]. At the time of this publication, 

there is no evidence of performance evaluation of any 

refinement approach. Future work will also address 

comparative evaluations between the EC-based 

approach and our framework. 

7. Conclusions 

We have presented an approach to policy 

refinement based on Requirements Engineering and 

model checking techniques. It allows find system 

executions aimed at fulfilling low-level goals that 

logically entail high-level administrative guidelines. 

From system executions, policy information is 

abstracted and eventually encoded into a set of refined 

policies specified in Ponder [11].  We have described 

the foundations, the reasoning of our approach and the 

refinement process through a scenario applied to the 

DiffServ QoS Management domain. 

The main contribution of our work is the 

introduction of formal verification techniques in the 

context of policy refinement. This approach is novel 

and opens a new front of study for policy analysis. We 

hope that our proposal may contribute to solve the 

policy refinement problem, so many times recognized 

as crucial but at the same time so much dismissed. 

Several outstanding issues have been identified. 

Amongst the most important, we can mention the lack 

or the existence of more than one solution (i.e. none or 

more than one counterexample), the partial or total 

automation of the involved processes and finally, the 

scalability of framework directly related to “state 

explosion” problem. All these issues have been 

assessed and will be the focus of our work. 
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