GOREMOCH: A Distributed Goal-oriented Policy
Refinement Environment

Javier Rubio-Loyola, Joan Serrat

Universitat Politécnica de Catalunya
Barcelona, Catalonia. Spain
{jrloyola, serrat}@tsc.upc.edu

Abstract—Goal-oriented requirements engineering methodologies
have been suggested as an alternative to address the policy
refinement paradigm. Moreover, practical approaches that
capture the administrative and technical requirements to make
policy refinement a systematic process are still missing although
such integrated solutions are rather convenient to make policy-
based management systems really useful. In this paper, we
present GOREMOCH, a goal-oriented policy refinement
environment grounded in goal-oriented requirements
engineering methodologies, linear temporal logic and reactive
systems analysis techniques. We describe the rationale of this
integrated solution and the necessary mechanisms to achieve
policy refinement in a systematic manner.

Keywords: Policy refinement, Goal-oriented refinement, Goals

L INTRODUCTION

Policy refinement is meant to derive lower level policies
from higher level ones so these more specific policies are better
suited for use in specific environments. Although policy
refinement has been recognized as crucial, at the same time it
has been a rather neglected area in policy-based management.
Functional approaches are still missing in spite of the high
relevance of policy refinement to policy-based management.

Goal-oriented Requirements Engineering techniques have
been proposed as an alternative to address the policy
refinement paradigm [1]. The generic policy refinement
methodology presented in [1] is based on the KAOS goal-
elaboration formal approach [2]. KAOS is used to elaborate goal
graphs grounded in temporal logic [3]. High-level goals are
decomposed into lower-level goals that logically entail the
administrative guidelines prescribed by high-level goals. Goals
are decomposed by using a set of pre-defined refinement
patterns during the goal elaboration process [2].

In our previous work [4], we have proposed the use of
linear temporal model checking to obtain system trace
executions aimed at fulfilling lower level goals, elaborated with
the KAOS goal elaboration method. From system executions, it
is possible to abstract the managed entities, conditions and
actions that need to be taken to fulfill lower-level goals,
considering that these are temporally-related and that
meaningful state transitions are policy-controlled.

Here, we move one step ahead towards the materialization
of a functional approach to policy refinement following the
above formalisms. We present GOREMOCH, a Distributed Goal-
oriented Policy Refinement Framework. Our main contribution

1-4244-0143-7/06/$20.00 ©2006 IEEE

Marinos Charalambides, Paris Flegkas, George Pavliou

University of Surrey
Guildford, Surrey. United Kingdom
{M.Charalambides, P.Flegkas, G.Pavlou}@surrey.ac.uk

is the identification and description of the components,
necessary to make policy refinement a systematic process. For
this, we have identified a set of functional issues and additional
supporting activities of our environment.

The functional issues addressed in GOREMOCH are those
related to the practicability of the goal-oriented tasks (e.g. goal
elaboration), the practicability to prescribe administrative
decisions in accordance with the refined policies (e.g. selection
of goals to fulfill with the refined policies), and the balancing
of the computational complexity for large-scale refinements
(i.e. distribution of management tasks). On the other hand, the
supporting activities involve the practical support to document
both, object distribution and system behavior within an
integrated policy refinement environment.

The next section describes the refinement framework in
which GOREMOCH relies. While Section 3 describes the
GOREMOCH solution, Section 4 gives some flavor of how it is
used to refine policies. Related work and conclusions are given
in Sections 5 and 6 respectively.

II. POLICY REFINEMENT FRAMEWORK

GOREMOCH follows the goal-based approach to policy
refinement initially proposed in [1], making use of linear
temporal logic and model checking verification as policy
analysis techniques [4]. The overall policy refinement
framework on which GOREMOCH relies is shown in Figure 1. It
demonstrates the steps to systematically deploy policies from
high-level goals. We differentiate between operator directed
processes and automated mechanisms. The formers are the
Goal Elaboration, Goal Selection and Request for Policy
Refinement steps. Regarding the automated mechanisms,
namely the Policy Refinement Mechanisms, these are integrated
by the Requirements Formulation, Get System Behavior, Apply
Translation Primitives and Encode/store Deployable Policies
steps. A brief description of these is given hereafter.

In the Goal Elaboration process (Step 1 in Fig. 1), the
operator expert documents goal-graph structures following the
formal KAOS goal elaboration method [2]. The expert makes
use of refinement patterns to decompose goals into sub-goals
that logically entail the original goal. Since the refinement
patterns have been proved to be correct and given that they take
into account the temporal prescription of goals, goal-graph
structures are considered logically consistent.

In the Goal Selection process (Step 1 in Fig. 1), the
operator consultant chooses the goal strategies that better
commit with his directives. He achieves this by consulting the
goal-graph library in which goals are stored and classified.

Operator consultants

5‘ Operator experts [
’g Goal graph Step2: _,, _ \’]}, \\ Formulate applicability
\ Step1 Goal library Goa A /%(/ conslra/nts

= Elaboration Sele_Ltion ,J ;

},LI SLAs

. Selected
Document system behavior goals Applicability
\ constraints

Step 3: Request for
Policy Refinement
«Class diagrams e \
«Collaboration diagrams el

Step 5:

“State charts T, .
Tl Get system 4

System behavior
documentation

+Sequence diagrams

Populate and update
object distribution

Object Distribution
documentation

Refinement
Mechanisms

Translation
Primitives

Step 7:Encode
Deployable
policies

Deployable
policies

Figure 1. Overall policy refinement framework

The policy refinement process starts with the submission of
a Request for Policy Refinement (Step 3 in Fig. 1). It consists
of the selection of goals that better suit the consultant needs
and the applicability constraints (if necessary) for the to-be-
refined policies (see Step 3 in Fig. 1).

The Policy Refinement Mechanisms are in charge of
identifying the managed entities and the operations that they
may take so that the system will meet the administrative
requirements characterized as goals. In order to do so, the
following processes are realized systematically:

The Requirements Formulation (Step 4 in Fig. 1) is aimed at
producing the corresponding linear temporal logic (LTL)
formulae that characterize goal fulfillment. This is achieved by
abstracting the Temporal Relationships amongst the goal
selection. In addition, this step also considers the refinement
patterns with which the selected goals had been previously
elaborated and the temporal prescription of its refinements.

The Get System Behavior (Step 5 in Fig. 1) aims to determine
the necessary transitions a managed system may exhibit as to
fulfill the goals. In our previous work [4], we demonstrated that
by providing meaningful formulae characterizing goal
fulfillment, model checking engines would automatically
generate the system behavior, necessary to fulfill the
corresponding goals. For this task we rely on the automated
support provided by the SPIN model checker [5], specifically in
its ability to find and report counterexamples. The two inputs
of model checking are the specification of system behavior and
that of requirements. Given that LTL requirements formulae can
characterize goal fulfillment [4], we use SPIN to produce the
necessary transitions that our managed system may exhibit as
to fulfill the goals. Regarding system behavior specification,
this is documented making use of standard UML notations such
as state charts, class, collaborations and sequence diagrams.
This information is managed properly during this step so that
the model checking engine can take it as reference to find
meaningful counterexamples.

1-4244-0143-7/06/$20.00 ©2006 IEEE

The Apply Translation Primitives (Step 6 in Fig. 1) aims to
abstract the policy fields from the counterexample reports
produced in the Get System Behavior step. As counterexamples
may include more than one policy enforceable transition,
typical counterexamples may produce multiple sets of policy
fields, each set corresponding to one policy enforceable
transition. In order to abstract the policy fields from the
counterexample reports, this step implements a set of
translation primitives. The result of applying these primitives is
a set of policy instances, one for each enforceable transition.
Finally, the Encode Deployable Policies step takes as input this
information and the object distribution to encode deployable
policies in a policy specification language. In this paper we
have considered the Ponder specification language [8].

III. GOREMOCH SOLUTION

The refinement process might become overwhelming and
exhaustive for large-scale refinements. Additionally, different
stakeholders might contribute to its update, management and
usage. GOREMOCH has been proposed as a CORBA-based
distributed component environment that logically entails the
approach described above. Our current implementation
integrates the following components: Objectiver package, Goal
Manager, Behaviour Manager, Requirements Manager, Search
Manager, Policy Encoder and Inventory. In Figure 2 we show
the components that integrate GOREMOCH and the most relevant
interactions of these components during a refinement process.
A brief description of these components is given hereafter.

0 Q
bjectiver| | Goal ehaviour | f e quirements| Search Policy Inventory
;K /\ Package | [Manager | |Manager Manaer Manager | | Encoder
Operator. Operator |
Expert Consultant

q 1: elaborateGoals

: selectGoals

: startPoljcyRefinement(RPR[])

4: getObjectiverData
< . e T .
5: formulateReqyirements

GpalMetaData_List)

ields(LTL[])

7: getPfomelaCodi

: encodePplcies

9 getObject[?etail

101 storePolic;

i
Figure 2. GOREMOCH components and main interactions

We begin our description with the Objectiver package.
Objectiver [9] is a Requirements Engineering toolkit that
supports the KAOS methodology. It is intended to help analysts
identify, formalize requirements and write such requirements
documents in a pure goal-oriented fashion. In our environment,
Objectiver is the toolkit available for the operator expert to
elaborate and document goals following the KAOS method. In
this regard, it is the support for the Goal Elaboration step of
the refinement process (elaborateGoals interaction in Fig. 2).
For the consultant, it is the interface to select the goals that
better fulfil his needs. In this sense, the Objectiver package is
the support for the Goal Selection step of the policy refinement
process (selectGoals interaction in Fig 2).

Goal Manager: The policy refinement process starts with
the submission of a Request for Policy Refinement (RPR).
Many RPRs may be submitted concurrently. A RPR consist of a
selection of goals that better suit the consultant needs and the
applicability constraints for the to-be-refined policies. The
Goal Manager is the component in charge of processing the
RPRs (startPolicyRefinement interaction in Fig 2). It is the
logical component that bridges the gap between the Goal
Selection step and the Requirements Formulation step. The
Goal Manager exchanges information with the Objectiver
package during the Goal Selection process. In this regard we
could say that it shares the tasks with the Objectiver package
for the Goal Selection step of the overall policy refinement
process. The submissions of the Requests for Policy
Refinement are carried out by the operator consultant.
GOREMOCH provides an interface for RPR submissions. Since
the goals selected by the operator may influence other goals
stored in the Objectiver package database, one of the main
tasks of the Goal Manager is to coordinate queries to
Objectiver in order to get the relevant information about the
goals selected by the consultant (getObjectiverData in Fig 2).

Requirements Manager: This component is in charge of
realizing the Requirements Formulation step of the overall
policy refinement process. It receives the goal-related
information from the Goal Manager (formulateRequirements
interaction in Fig. 2). The Requirements Manager implements a
finite-state verification property pattern design database [6].
The later allows producing LTL formulae from specific
requirements in a systematic manner. By managing the
information contained in this database in a proper manner, the
Requirements Manager formulates LTL formulae that
characterize goal fulfilment in our solution.

Search Manager: This component derives a set of policy
fields (i.e. subjects, targets, events and actions) that would
make the selected goals to be fulfilled. This component
executes the Get system behavior and Apply Translation
Primitives steps of the overall policy refinement process in
order to derive the relevant policy fields. It receives the set of
LTL formulae that characterize goal fulfillment from the
Requirements Manager (searchPolicyFields in Fig 2). In
order to execute its management tasks, the Search Manager
interacts with the Behavior Manager (see getPromelaCode
interaction in Fig 2). The first process carried out by the Search
Manager is that of the Get system behavior of the overall policy
refinement process. For this, this component integrates a SPIN
toolkit for the counterexample acquisition. Once the
meaningful counterexamples are produced, the Search
Manager executes the Apply Translation Primitives step of the
overall policy refinement process. During the later, the Search
Manager applies a set of pre-defined Translation Primitives as
to abstract the corresponding policy fields.

Behavior Manager: This component manages the
documentation of the system behavior specification. It provides
an interface to which other components get information related
to the system behavior specification (e.g. getPromelaCode
interaction in Fig. 2). In our environment, the administrator
expert is enabled to document system bahaviour using standard
representation such as UML models. These models may contain
active classes with state machines, collaborations and

1-4244-0143-7/06/$20.00 ©2006 IEEE

interactions. In this sense, this component provides support for
the System behaviour documentation supporting activity of the
overall policy refinement process. Since the analysis technique
of this approach relies on guided-search model checking, one
of the main functions of this component is to coordinate the
UML managed objects specifications and their translation into
PROMELA (input language of SPIN). In order to achieve this, the
Behavior Manager implements the libraries provided by HUGO
[7]. In this sense, the Behavior Manager is a supporting
component for the Get System Behavior step of the policy
refinement process.

Policy Encoder and Inventory Manager: The former
coordinates the Encode Deployable Policies process of the
overall policy refinement process. It receives the set of policy
fields produced by the Search Manager and the administrative
constraints provided by the consultant (see encodePolicies
interaction in Fig. 2). It follows the syntax of the Ponder
specification language [8] and includes in its internal
architecture, a Ponder Policy Editor and compiler (slightly
modified to automate the compilation process). Special
attention might be put to the subject and target objects for the
deployable policies. On one hand, we consider that the
administrative guidelines may influence a set of managed
objects (e.g. routers, sub networks, etc) to which the consultant
refers during the RPR submissions. On the other hand, we
consider that the actual managed objects are classified
following a domain-dependent logical representation in which
a well-defined structure of this information may allow
automating the policy refinement process. For this purpose, we
have included a support component; the Inventory Manager.
This component provides support for the administrator to
document object distribution. In addition, the Inventory
Manager enables other components to access to this
information. For instance, the Policy Encoder asks for
meaningful information (getobjectDetails interaction in Fig.
2) as to encode and store deployable policies. In this sense, the
Inventory Manager component provides support for the Object
Distribution documentation supporting activity of the policy
refinement process. The introduction of the Inventory
Component has enabled to automate the policy refinement
process considering that its internal database is populated for a
specific policy applicability domain.

IV. REFINING POLICIES WITH GOREMOCH

In this section we give a brief description of how the
operator consultant refines policies with GOREMOCH. In general
terms, GOREMOCH has been designed and implemented as a
distributed system where several components instances may be
running for large-scale refinements. It provides support for all
the functional issues and supporting activities mentioned along
the paper. Due to space limitations, we only give a general
overview of the refinement procedure. We consider that the
operator expert has previously elaborated the goal graphs with
Objectiver, documented system behaviour making use of UML
standards and populated the Inventory database with the
appropriate information according to the applicability domain.

Under these circumstances, the refinement process starts
when the operator consultant selects the goals that better satisfy
his requirements (Step 1 in Fig. 3). For this purpose he browses

through the Objectiver GUI attached to GOREMOCH. The
Objectiver databases store all the available goal strategies
elaborated for the managed system. After the goals have been
selected, the operator consultant submits the Request for Policy
Refinement (RPR), including the arguments for the goals if
necessary (Step 2 in Fig.3). In order to submit this and
subsequent RPRs (concurrently if desired), the operator
consultant uses the GOREMOCH interface available for this
purpose. After RPR submission, GOREMOCH executes the
automated Policy Refinement Mechanisms mentioned in
Section 2 resulting in an orchestration of its components (Step
3 in Fig.3). Having the components executed their management
tasks and internal algorithms, the outcome of the refinement
process is a set of deployable policies.

Objectiver GUI |
ona
/ coctnes y

i ALARM
RAISED
PROCESSING

LOWER N
THRESHOLD UPPER HRESHOLDS
(/ Processingdf/resroL. 4, 7 conrisured/
g P’m -

Refined Ponder policies

nst oblig /Private/PolicyloTypes/Ohligs/overdR UpprThalcl (
on alarmRaised (wpprThr , utilValue , Link , EF | ;
subject 3 = /Links/LC1/Router/drsnfMA ;
target t = /Links/LC1/Router/DRsM/Monitor ;
do t . incrThUpprRel (Link , EF , "0.10*dynamicRange”)
when utilvalue > .60 * £ . dynawicRange ;

2 1: Goal
Vo Selection

=

2: RPR Submission — Dy
=~ %
A
AT

GOREMOCH Interface [~ —

_ 14 struct Goremoch.GoalMetaData_T([0]
=4 globaldefs NamingAfiributes_T globaldefs NamingAft)
= _4 struct globaldefs NameAndSiringValue_T(0]
sting name: DRsM Goal Bt
sfing value: DRsM CONFIGURED
= _4 globaldefs NamingAfiributes_T globaldefs NamingAf)
=~ _ struct globaldefs NameAndStringValue_T([0]
siring name G1
sting value: LYWWR THR INCRSD REL YALUE
. S,””;},?,L;b::jn(3: Policy Refinement Mechanisms

® sting value: UPPR THR INCRSD RELVALUE| | | |

Components orchestration

jectivel| Goal four Requi Search || Policy
Manager | Manager || manager |Manager | |Encoder @

11 getObjectiverData

 List)

L)

=

: encodePplcies

7i{5torePolicy
=

Generic overview of policy refinement with GOREMOCH

Figure 3.

V. RELATED WORK

Practical approaches to policy refinement are scarce.
POWER [10] is a tool for refining policies from policy templates
designed by an expert so that consultants could create business
policies from such templates. Policies are expressed as Prolog
programs and an inference engine interprets them to guide the
user through the refinement process. Our approach differs to
POWER in the sense that ours is a goal-oriented policy
refinement approach in which the consultant selects the goals
that better satisfy his needs, having the possibility to formulate
any combination of goals as required, with no pre-definition of
policy template choices. More recently, work by Bandara et al
[1] has contributed significantly to the policy refinement area.
They propose an approach for transforming both policy and
system behavior specifications into a formal notation based on
Event Calculus (EC). The authors use goal elaboration and
abductive reasoning to derive strategies that would achieve
high-level goals. From these strategies, policies are encoded.
While Event Calculus and abduction is used in the EC-based
approach to infer the sequences of actions that achieve
particular goals, our approach goes through state exploration to
obtain system behavior that fulfils lower-lever goals elaborated
through temporal refinement patterns. We encode policies
using the information abstracted from the execution trace while
in the EC-based approach these are encoded using the
generated strategies.

1-4244-0143-7/06/$20.00 ©2006 IEEE

Besides the above, explicit approaches for policy
refinement are scarce. Recent efforts mostly cope with
application specific policy translations. In [11] the authors
address refinement introducing a set of decomposition rules
and pre-defined resource type hierarchies for access control
environments. In [12] the authors propose a refinement
mechanism based on multi-layer system modeling. Here, low-
level policy generation for security systems is achieved by
analyzing system object’s relationships between layers.

VI. CONCLUSIONS

We have presented a functional environment for goal-
oriented policy refinement grounded in Requirements
Engineering methodologies, Linear Temporal Logic and
Reactive systems analysis techniques. We have demonstrated
in general terms, the necessary mechanisms for an integrated
solution that provides support to capture the administrative and
functional requirements to achieve systematic policy
refinement in a goal-oriented fashion.

We have demonstrated that systematic policy refinement is
feasible once we have identified and defined a set of distributed
components which interact accordingly to carry out the policy
refinement process. As far as it is reflected in the literature,
policy refinement is at its initial stage. In this sense, we hope
that GOREMOCH may contribute to solve the policy refinement
problem by providing a practical approach that captures the
administrative and technical requirements to automate the
refinement process, so many times recognized as crucial but at
the same time so much dismissed.

REFERENCES

[1] A.K. Bandara, E.C. Lupu, J. Moffett, A. Russo; "A goal-based approach to
policy refinement" IEEE Intl. Workshop on Policies for Distributed Systems
and Networks, 2004

[2] R. Darimont and A. van Lamsweerde, "Formal refinement patterns for
goal-driven requirements elaboration," Symp. on Found. of Soft. Eng. 1996
[3] Z. Manna, A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springr-Verlag, 1992

[4] J. Rubio-Loyola, J. Serrat, M.Charalambides, P. Flegkas, G. Pavlou, A.
Lluch. “Using linear temporal model checking for goal-oriented policy
refinement frameworks” IEEE International Workshop on Policies for
Distributed Systems and Networks Stockholm, Sweden June 6-8, 2005

[5] G. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
A. Wesley. ISBN 0-321-22862-6. 2004

[6] M. Dwyer, G. Avrunin, and J. Corbett. “A system of specification
patterns”. http://patterns.projects.cis.ksu.edu/

[7] M. Balser, S. Baumler, A. Knapp, W. Reif, and A. Thums. “Interactive
verification of UML state machines”. Intl. Conference on Formal Engineering
Methods 2004

[8] N. Damianou, T. Tonouchi, N. Dulay, E. Lupu, and M. Sloman. "Tools for
doamin-based policy management of distributed systems", NOMS, Friorence,
Italy, 2002

[9] E. Delor, R. Darimont, A. Rifaut. “Software quality starts with the
modelling of goal-oriented requirements”. Intl. Conference of Software &
Systems Engineering, 2003

[10] M. Casassa, A. Baldwin, C. Goh. “POWER prototype: towards integrated
policy-based management” NOMS 2000

[11] S. Linying et al. “Automated Decomposition of Access Control Policies”.
IEEE POLICY, Stockholm, Sweden 2005.

[12] J.P. de Albuquerque et al. “Policy Modeling and Refinement for Network
Security Systems”. IEEE POLICY, Stockholm, Sweden 2005.

